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In order to improve the prediction performance of the existing nonlinear grey Bernoulli model and extend its applicable range, an
improved nonlinear grey Bernoulli model is presented by using a grey modeling technique and optimization methods. First, the
traditional whitening equation of nonlinear grey Bernoulli model is transformed into its linear formulae. Second, improved
structural parameters of the model are proposed to eliminate the inherent error caused by the leap jumping from the differential
equation to the difference one. As a result, an improved nonlinear grey Bernoulli model is obtained. Finally, the structural
parameters of the model are calculated by the whale optimization algorithm. ,e numerical results of several examples show that
the presented model’s prediction accuracy is higher than that of the existing models, and the proposed model is more suitable for
these practical cases.

1. Introduction

Professor Deng [1] originally proposed the grey system
theory to solve the uncertain system with partially known
and partially unknown information. As a crucial branch of
the grey system theory, it has been widely used to address
numerous real-world problems owing to its effectiveness,
such as electricity prediction [2–4], energy prediction [5, 6],
and tourism prediction [7]. In these models, a common
characteristic is that they do not require a large number of
observations (not less than 4). It has attracted considerable
interests of researchers because it is difficult, even impos-
sible, to collect enough data to build the traditional models,
including linear [8] or nonlinear regression models [9],
autoregressive integrated moving average model [10] and its
extensive versions [11], support vector machine [12], and
artificial neural network [13].

Generally speaking, the development of discipline also
benefits from practical applications. In the past three de-
cades, various grey models have been emerged rapidly
according to practical applications. For example, Xie and
Liu [14] investigated the discrete grey model and analyzed

the traditional grey model’s connection. Wu et al. [15]
investigated the grey model with fractional order accu-
mulation that made the grey model more flexible. For the
purpose of considering the effects of related factors on the
behavioral system, Tien [16] initially proposed a novel grey
model called GM (1, n) in which the “n” stands for the n − 1
driving variable. More recently, Wang et al. [17] presented
a data-grouping approach-based grey modeling method to
predict quarterly hydropower production in China. Sub-
sequently, they proposed a seasonal grey model based on
the accumulation operators for forecasting the seasonal
electricity consumption of China [18]. Zeng et al. [19]
predicted the sequence of ternary interval numbers using a
novel multivariable grey model. Ma et al. [20] raised a
conformable fractional grey system model; he also inves-
tigated the novel fractional time-delayed grey model with
grey wolf optimizer [21]. A large number of related re-
search studies emerge continuously. Zeng et al. [22] pre-
sented a new-structure grey Verhulst model for predicting
China’s tight gas production. In the model, they deduced
the time-response function and an initial value optimi-
zation method. ,e same year, they proposed another new-
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structure grey Verhulst model by introducing a new
nonhomogeneous exponential function [23]. ,e model
solved the problem of displacement substitution of pa-
rameters and optimization of initial values.

,e metaheuristic algorithm is a strategy to solve the
optimal or satisfactory solution of complex optimization
problems, and it is derived from the behavior of biological
systems and/or physical systems in nature [24]. ,e
common metaheuristic algorithm includes simulated
annealing algorithm [25], genetic algorithm [26], particle
swarm optimization algorithm [27], and ant colony opti-
mization algorithm [28]. For example, the simulated
annealing algorithm was first used by Kirpatrick et al. [25]
for combinatorial optimization problems, which over-
comes the shortcoming of the hill-climbing method (HC)
and is easy to fall into local solution. Yldz et al. [29] studied
metaheuristic methods and proved that Henry gas solu-
bility optimization algorithm can be used for solving shape
optimization problems. ,e main development directions
of the metaheuristic algorithm can be divided into three
classes. ,e first is to combine with other algorithms to
form a new hybrid algorithm to give full play to their
characteristics. Yildiz et al. [30] presented a hybrid opti-
mization algorithm combining the Nelder–Mead local
search algorithm with the Harris hawks optimization al-
gorithm for solving a milling manufacturing optimization
problem. Similarly, a hybrid optimization algorithm based
on the Nelder–Mead local search algorithm and whale
optimization algorithm was proposed to accelerate global
convergence speed of the whale algorithm [31], and the
algorithm optimized the processing parameters in
manufacturing processes. ,e second is to seek a new
metaheuristic algorithm for optimization of complex
problems in the real world from the mechanism of bio-
logical evolution. For example, Wang et al. [32] proposed a
monarch butterfly optimization algorithm. ,e third is to
improve the existing algorithms by introducing new me-
chanics or strategies. Hammou et al. [33] improved the
particle swarm optimization algorithm with a strategy
based on cooperation and hierarchization concepts for the
updating of the best personal positions of particles. In
recent years, metaheuristic algorithms are used in grey
models for finding the optimal parameter solutions. Zhang
et al. [34] optimized the background value weighting co-
efficients of the grey model using the genetic algorithm. In
[35], a multiobjective grey wolf optimizer was used to
optimize the kernel-based nonlinear extension of the Arps
decline model to ensure both prediction stability and ac-
curacy. Wu et al. [36] used the particle swarm optimization
algorithm to search optimal system parameters of the
nonlinear grey Bernoulli model.

,is study focuses on improving the nonlinear grey
Bernoulli model, which was initially proposed by Chen [37]
and abbreviated as NGBM (1, 1). As is known, NGBM (1, 1)
has been widely used in many problems with nonlinear
characteristics and extended to general versions [38].
However, there are still spaces to improve its accuracy. ,e
root cause of loss of information in the conversion of the
grey differential equation to the grey difference equation is

proposed in the paper [39]. Following the thought of Ma
et al. [7], the model parameters of the NGBM (1, 1) model
are optimized to better match these two equations to reduce
prediction error. ,e main contributions of this paper are
drawn as follows: (1) the grey differential equation is
transformed into linear form rather than sharing the same
form to the traditional NGBM (1, 1) model; (2) the opti-
mized parameters are constructed and the whale optimi-
zation algorithm (WOA) is used to search for the optimal
power index; (3) three cases are employed to verify the
effectiveness of INGBM (1, 1).

,e rest of this paper is organized as follows: Section 2
briefly describes the NGBM (1, 1) model and obtains the
“linear” solution to the NGBM (1, 1) model. In Section 3, the
NGBM (1, 1) model with improved parameters is deduced in
detail. Section 4 provides two real-world examples to vali-
date the effectiveness of the proposed model. Section 5
applies INGBM (1, 1) to predict the number of R&D in-
stitutions of higher education in China to reveal the fore-
casting ability of INGBM (1, 1), and the main conclusions
are listed in the final section.

2. Description of the Nonlinear Grey
Bernoulli Model

,e nonlinear grey Bernoulli model (NGBM (1, 1)), origi-
nally proposed by Chen [37], has wide applications, espe-
cially in solving nonlinear problems. However, this model
still has some drawbacks that impair the prediction accuracy
of NGBM (1, 1).,is section is to analyze the root reason and
propose a novel method to reduce the modeling bias. First, a
brief description of NGBM (1, 1) is introduced. Additionally,
a “linear” solution to the whitening equation of NGBM (1, 1)
is proposed to make the parameter optimization more
simplified.

2.1. #e Traditional Solution to the Nonlinear Grey Bernoulli
Model. Assume
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is called the whitening equation of nonlinear grey Bernoulli
model and n, regarded as the power index, cannot be equal to
one. With the two-point trapezoidal formula, the discrete
difference equation can be written as

x
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(k) � b z
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(k) 
c
, (4)

where z(1)(k) represents the background value and is ob-
tained as
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method and shown that
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,erefore, the solution to equation (3) with x(1)(1) �
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Using the firs-order inverse accumulative generating

operator (1-IAGO), the simulated values of X(0), X
(0), is
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2.2.#e “Linear” Solution to Nonlinear Grey Bernoulli Model.
,is section transforms the whitening equation of the
nonlinear grey Bernoulli model (NGBM (1, 1)) into the
linear formulation, rather than directly solving the whit-
ening equation. ,at is, it does not share the same pattern as
the traditional grey model. ,e detailed computational
process can be depicted as follows.

Analogously to Section 2.1, both sides of whitening
equation (3) are multiplied by x(1)(t)− c, and then
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,ereby, equation (10) can be written as
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+ a(1 − c)y

(1)
(t) � b(1 − c), (11)

which is called the linearization of the NGBM (1, 1) model.
Moreover, it easily yields the discrete form by using the two-
point trapezoidal formula as follows:
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After estimating the model parameters, the whitening
equation, equation (11), is resolved. Multiply both sides in
equation (11) by the integrating operator ea(1− c)t:
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According to 1-AGO and y(1)(t) � x(1)(t)1− c,
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,e solution of the NGBM (1, 1) model, either in lin-
earization or in nonlinearization, is essentially approximate
because the conversion of equations (11) and (12) is based on
two-point trapezoidal formula regarded as an approximate
method. It implies that the “misplaced replacement” of the
model parameters will cause the following: (i) the difference
grey equation does not match with the differential grey
equation because model parameters have different meanings
in these equations; (ii) the predictionmodel is not satisfied in
most situations. It indicates the performance of the NGBM
(1, 1) model must be improved. In other words, the model
parameters should be optimized to better match equations
(11) and (12) and to increase the forecasting ability of the
NGBM (1, 1) model.

3. Parameter Optimization of Nonlinear Grey
Bernoulli Model

,e whitening equation parameters, a, b and power index c,
are important parameters of the nonlinear grey Bernoulli
model. In this section, the parameters are calculated.

3.1. Whitening Equation Parameter Calculation. ,e opti-
mized parameters, a and b, are denoted as p and q for
simplicity.,e optimized parameters are substituted into the
time-response function, and the following equation is
obtained:

y
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p
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+

q

p
. (18)

Equation (18) is substituted into the left-hand side in
equation (4):
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According to equation (4), the left-hand side L(t) should
be equal to the right-hand side R(t); that is, L(t) − R(t) � 0.
,erefore,
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It is easy to find that Part 1 and 2 both are equal to zero in
equation (20); hence,
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By doing so, the optimized parameters p and q can be
estimated. Moreover, it is obviously believed that the op-
timized parameters can better match the differential equa-
tion and the difference equation and reduce the prediction
error. For simplicity, NGBM (1, 1) with the improved pa-
rameters is abbreviated as INGBM (1, 1) in this study.

3.2. Power IndexEstimationBased on theWhaleOptimization
Algorithm. In the above descriptions, the power index c is
assumed to be known. However, the power index is always
changeable in a different situation that requires flexible
adjusting over given datasets. To solve this problem, an
intelligent algorithm, whale optimization algorithm, shorted
forWOA, is employed to automatically determine the power
index.

Based on the humpback whale’s hunting behavior that
recognizes the location of prey and encircles them, Mirjalili
and Lewis designed theWOA [40]. In this optimizer, assume
the current best candidate solution (search agent) to be the
target prey or be near the optimum. Once the best search
agent is defined, the other search agents will update their
positions towards the best search agent:

(i) In this behavioral system, they update their position
by
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where t represents the current iteration, X
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(t) is
the current best agent, and D

→
� (D1, D2, . . . ,

Dd), j � 1, 2, . . . , d denotes the length of the indi-
vidual whale approaching the current best search
agent in jth spatial position. In particular, the co-
efficient vector A

→
and C

→
are defined as

A
→

� 2a · r − a, (24)

C � 2 · r, (25)

where r is a random number generated from [0, 1]

and a is called convergence factor that linearly
decreases from 2 to 0. ,at is,

a � 2 −
2t

tmax
 . (26)

(ii) A spiral equation is also designed between the
position of whale and prey to mimic the helix-
shaped movement of humpback whales:
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where D
→′ � |X

→∗
(t) − X

→
(t)| and implies the dis-

tance of the ith whale to the prey, b is a constant for
fixing the shape of the logarithmic spiral, and l is a
random number and l ∈ [− 1, 1].

(iii) In addition, humpback whales also search for prey
in a random way according to the position of each
other. ,is behavior is written as the following
mathematical expression:

D
→
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→

· X
→

rand − X
→

, (28)

X
→

(t + 1) � X
→

rand(t) − A · D
→

rand, (29)

where X
→

rand is a random position chosen from the current
position. For clearness, the detailed steps of the algorithm
based on WOA to find the optimal c are listed as follows:

Step 1: set algorithm parameters N, dim, and tmax.
Step 2: initialize the whales’ population
Xi(i � 1, 2, . . . , n).
Step 3: calculate the fitness of each search agent f(X

→
i).

Step 4: update a, A, and C according to equations
(24)–(26).
Step 5: generate a random number p in [0, 1]. If p≥ 0.5,
update the position of the current search agent by
equation (27). If p< 0.5 and |A|≥ 1, update the position
of the current search agent by equation (29). If p< 0.5
and |A|< 1, update the position of the current search
agent by equation (22).
Step 6: return to Step 3, until the optimal value c is
found.

Note that the fitness function, f(X
→

i), as usual, is often
defined as an objective function, MAPE, and shown in the
next section. Moreover, the flowchart of the INGBM (1, 1)
model is graphed in Figure 1 for clearness.

4. Validation of the Nonlinear Grey
Bernoulli Model

,is section provides two examples to demonstrate the ef-
ficacy of the proposed model comparing with three com-
peting models, including the GM (1, 1), DGM (1, 1), NGBM
(1, 1), and ONGBM (1, 1). Additionally, to evaluate the
prediction accuracy of these grey models, the mean absolute
percentage error (MAPE) and root mean square error
(RMSE) are applied to measure the level of prediction
performance, which are defined as

MAPE �
1

n − 1


n

i�2

x
(0)

(k) − x
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(k)




x
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× 100%,
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2


.

(30)

,e grade of the prediction performance is depicted by
Lewis [41] using the criteria for MAPE and listed in Table 1.

Case 1. Forecasting education-in-practice-intensive uni-
versity: the example from paper [42] is used to test for ef-
ficacy and applicability of the grey model. ,e data from 1 to
7 are used to build different grey models, and the final data
are used to test for the prediction accuracies of these models.
Accordingly, the five models’ parameters are listed in Ta-
ble 2, and especially parameter values of the proposed model
by WOA are graphed in Figure 2.

Consequently, the simulation and prediction results are
shown in Table 3.

Case 2. Forecasting subway passenger: the data sets of ex-
ample from paper [43] are empirically broken down into two
groups: the data from 2005 to 2012 are used to build five grey
models, and the other data are used to test for the prediction
accuracies of these models.

First of all, the parameter values of the five grey models
are computed in Table 4. Moreover, the track of searching
for the optimal nonlinear parameter of the INGBM (1, 1)
model using WOA is graphed in Figure 3.

Furthermore, the simulation and prediction results are
shown in Table 5.

In Tables 1–5, the desired conclusions can be drawn as
follows:

(1) In case 1, the INGBM (1, 1) model has a better
prediction performance than that of other grey
models whether in simulated or predicted period
because of its lowest MAPE values which are 1.05%
and 12.78%, respectively. Incidentally, it is notable
that the MAPE values of all models increase to more
than 10%, which are 19.17%, 18.86%, 14.17%,
15.44%, and 12.78%, respectively. ,is indicates that
these models do not work quite well in this case.
Nevertheless, the proposed model, INGBM (1, 1),
outperforms these models. It can be seen that in this
case, the fitting errors of all models are relatively
small, while the prediction errors are relatively large,
which indicates that the model has overfitted a little
on this data set.,e issue can be overcome by adding
some penalty terms.

(2) In case 2, the five grey models’ MAPE values are
2.61%, 2.67%, 2.23%, 2.23%, and 2.19% in the sim-
ulated period, respectively. According to the criteria
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Start

Initialize step: obtain data of first few
working steps

F

T

Satisfy raw data checking
condition?

Step 1: generate a new sequence using 1-AGO
based on the linear formula of INGBM (1, 1)

�e predicted output
is measured value
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Step 5: obtain the restored values and
corresponding model evaluation indices

WOA

Final step: use predicted values for a specific
application T
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F
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Figure 1: Flowchart of the INGBM (1, 1) model.

Table 1: ,e criteria for MAPE proposed by Lewis.

MAPE <10 10∼20 20∼50 >50
Forecasting ability Excellent Good Reasonable Weak
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Figure 2: ,e track of searching for the optimal power index by WOA.

Table 3: Simulated and predicted results by different grey models.

Actual data GM (1, 1) DGM (1, 1) NGBM (1, 1) ONGBM (1, 1) INGBM (1, 1)
1033
1105 997.76 1001.69 1105.03 1105.55 1105.02
1199 1176.05 1180.66 1178.47 1173.25 1158.90
1330 1386.20 1391.61 1352.46 1342.52 1330.20
1583 1633.90 1640.25 1599.05 1583.71 1581.54
1882 1925.86 1933.31 1920.67 1898.57 1914.91
2370 2269.99 2278.73 2328.86 2298.04 2343.38
RMSE 70.36 69.58 26.99 32.33 23.81
MAPE 4.27 4.28 1.37 1.18 1.05
3310 2675.62 2685.87 2849.94 2798.78 2886.89
RMSE 634.38 624.13 469.06 511.22 423.11
MAPE 19.17 18.86 14.17 15.44 12.78

Table 4: Parameter values for five grey models.

Parameters a b ζ c β1 β2 p q

GM (1, 1) − 0.155 464.614 0.500
DGM (1, 1) 1.168 503.98
NGBM (1, 1) − 0.138 247.382 0.500 0.094
ONGBM (1, 1) − 0.137 238.140 0.510 0.100
INGBM (1, 1) − 0.133 216.435 0.500 − 0.115 − 0.133 216.685

Table 2: Parameter values for five grey models.

Parameters a b ζ c β1 β2 p q

GM (1, 1) − 0.164 748.161 0.500
DGM (1, 1) 1.179 817.126
NGBM (1, 1) − 0.213 19390.960 0.500 − 0.440
ONGBM (1, 1) − 0.211 20938.930 0.460 − 0.450
INGBM (1, 1) − 0.220 39847.500 0.500 − 0.542 − 0.222 42037.640
Note: ζrepresents the weighted parameter of background value and it is taken as 0.5 generally. It is, however, recommended to search for the optimal value in
ONGBM (1, 1). In addition, β1 and β2 are parameters of DGM (1, 1) in this case.

Mathematical Problems in Engineering 7



for MAPE value listed in Table 1, it is easy to find that
these models can effectively make predictions be-
cause of the low MAPE values. ,e proposed model
has a smaller value that indicates higher accuracy. As
is known, a favorable predictor performs well in the
simulated period and satisfies prediction accuracy in
the verifying period. Herein, the proposedmodel still
is better than other grey models because of its lower
MAPE value again in the predicted period. In this
case, the fitting error and prediction error of all the
models are small, which shows that no fitting has
occurred. More, the nonlinear model (NGBM (1, 1),
ONGBM (1, 1), and INGBM (1, 1)) performs better
than the linear model (GM (1, 1) and DGM (1, 1)),
which proves that the nonlinear grey model can well
capture the nonlinear characteristics of the data.

In cost-effectiveness, the grey model is a kind of model
solving small sample modeling, so the time consumption is
usually very small. For example, in case 1, the time cost of
GM (1, 1), DGM (1, 1), NGBM (1, 1), and INGBM (1, 1) is
0.1638 s, 0.1489 s, 0.1744 s, and 0.1862 s, respectively. All the

time costs are less than 1 s and within the allowable range. In
summary, the INGBM (1, 1) model can enhance the pre-
diction accuracy of the traditional NGBM (1, 1) model by
optimizing the model parameters. Furthermore, the pro-
posed model is applied to analyze the practical application.

5. Application

Universities play an irreplaceable role in the process of
building a strong country in the field of science and tech-
nology in China, as the core department for cultivating
talent and achieving technological innovation, which
shoulder important responsibility and mission in the Na-
tional Innovation System. As is expected, the number of
R&D institutions of higher education has increased fast in
the past few years. Accurately forecasting the number of
R&D institutions of higher education will provide a refer-
ence for the Ministry of Education of the People’s Republic
of China and the government to make better plans and
strategies in advance. However, the effects of related factors
on the number of R&D institutions of higher education are
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Figure 3: ,e track of searching for the optimal power index by WOA.

Table 5: Simulated and predicted results by different grey models.

Actual data GM (1, 1) DGM (1, 1) NGBM (1, 1) ONGBM (1, 1) INGBM (1, 1)
467.63
561.41 581.03 582.55 561.45 561.29 561.41
705.23 678.50 680.42 674.36 675.50 678.27
812.94 792.33 794.75 796.23 798.30 802.45
895.20 925.26 928.28 932.31 935.07 939.61
1069.41 1080.48 1084.25 1086.26 1089.52 1093.49
1305.30 1261.74 1266.42 1261.54 1265.08 1267.40
1463.00 1473.42 1479.20 1461.75 1465.33 1464.76
RMSE 25.51 25.30 26.21 25.96 26.26
MAPE 2.61 2.67 2.23 2.23 2.19
1705.37 1720.60 1727.73 1690.87 1694.21 1689.28
1868.94 2009.25 2018.02 1953.39 1956.15 1945.04
1931.75 2346.33 2357.08 2254.40 2256.14 2236.66
RMSE 165.53 170.56 126.18 127.03 118.94
MPAE 4.27 4.47 3.15 3.16 2.97
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quite uncertain, and reliable observations are limited be-
cause of China’s rapid development, which implies the
traditional models (e.g., regression analysis) are not suitable
for this case because of the small sample size and uncertain
factors. Herein, the proposed model, INGBM (1, 1), is ob-
viously more suitable for this case with few observations.

Empirically, the data collected from China’s National
Bureau of Statistics of the People’s Republic China and listed
in Table 6, are divided into two groups, the data from 2011 to
2016 are used to build these five prediction models, and the
others are used to assess the accuracy of these models.

Similar to Case 1 and 2, all the parameters in these
models are computed and listed in Table 7. Moreover, the
track of the power index c using WOA is exhibited in
Figure 4.

As a consequence, the simulated and predicted results
are shown in Table 8.

In this case, by ignoring the first item of predicted
results, it should be known that the RMSE values (see
Figure 5) of five grey models are 0.14, 0.14, 0.04, 0.04, and

0.03 for simulation and are 0.87, 0.85, 0.39, and 0.40 for
prediction, respectively. Moreover, the MAPE values (see
Figure 6) of these models are 1.17%, 1.18%, 0.28%, 0.27%,
and 0.25% for simulation and those of models mentioned
here are 5.54%, 5.46%, 2.32%, 2.39%, and 1.72% for
prediction, respectively. ,erefore, in the simulation
period, the proposed model outperforms other grey
models with the lowest RMSE value of 0.03 and a MAPE
value of 0.27%. ,e ONGBM (1, 1) model has the fol-
lowing prediction performance with a relatively lower
MAPE value of 0.28%. As mentioned in [44], as a proper
forecasting method, it performs excellently in simulation
and should do well in the prediction stage. By observing
Table 8, it is easy to find that the proposed model is better
than other grey models again because of its lower RMSE
value of 0.40 and MAPE value of 1.72%. Interestingly, the
ONGBM (1, 1) is the second better because its MAPE
value is a bit higher than that of the INGBM (1, 1), which
implies the improved NGBM (1, 1) through optimization
of background value can be regarded as the alternative

Table 6: ,e number of R&D institutions of higher education from 2011 to 2018.

Year Number Year Number
2011 8630 2015 11732
2012 9225 2016 13062
2013 9842 2017 14971
2014 10632 2018 16280

Table 7: Parameter values for five grey models.

Parameters a b ζ c β1 β2 p q

GM (1, 1) − 0.089 7.878 0.500
DGM (1, 1) 1.093 8.346
NGBM (1, 1) − 0.117 10.590 0.500 − 0.126
ONGBM (1, 1) − 0.118 10.689 0.490 − 0.130
INGBM (1, 1) − 0.121 10.924 0.500 − 0.141 − 0.121 10.941
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Figure 4: ,e track of searching for the optimal power index by WOA.
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model to predict the number of R&D institutions of
higher education in this paper. In this case, the prediction
and fitting errors of all models are not big, which shows
that there has no overfitting in the modeling. At the same
time, the prediction effect of the nonlinear grey model is
better than that of the linear model, which shows that the
nonlinear grey model can effectively capture the nonlinear
characteristics of the data. Finally, the improved model
has the highest accuracy, which indicates that our im-
provement strategy is effective.

In order to further verify the advantages of WOA, three
kinds of intelligent optimizer, grey wolf optimizer (GWO)

[45], particle swarm optimizer (PSO) [46], and ant lion
optimizer (ALO) [47], are used for comparison. ,ese four
kinds of algorithms are all excellent optimizers with their
own characteristics and advantages. ,e population num-
bers of the four algorithms are all set to be 100 and the search
times to be 100. ,e population is initialized 100 times to
compare the final MAPE with the corresponding nonlinear
parameters and calculate the average time. For the four types
of optimization algorithms, the MAPE, and the corre-
sponding nonlinear parameters after running 30 times are
shown in Figure 7, and the time consumption is shown in
Table 9.

Table 8: Simulated and predicted performance by five grey models using raw data of the number of R&D institutions of China’s higher
education.

Actual data GM (1, 1) DGM (1, 1) NGBM (1, 1) ONGBM (1, 1) INGBM (1, 1)
8630
9225 9041.86 9049.01 9224.89 9225.38 9225.08
9842 9882.75 9890.73 9820.48 9810.66 9798.18
10632 10801.83 10810.73 10692.04 10677.82 10672.23
11732 11806.39 11816.31 11760.42 11744.56 11757.27
13062 12904.37 12915.43 13011.49 12995.95 13037.11
RMSE 0.14 0.14 0.04 0.04 0.03
MAPE 1.17 1.18 0.28 0.27 0.25
14971 14104.46 14116.78 14450.13 14436.68 14516.89
16280 15416.16 15429.88 16090.00 16080.46 16211.58
RMSE 0.87 0.85 0.39 0.40 0.32
MAPE 5.54 5.46 2.32 2.39 1.72

GM (1, 1) DGM (1, 1) NGBM (1, 1) ONGBM (1, 1) INGBM (1, 1)
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Figure 5: RMSE values generated from five grey system models.
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Figure 6: MAPE values stemmed from five grey system models.
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Figure 7: Performance comparison of four optimizers (WOA, PSO, GWO, and ALO).
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It can be seen from Figure 7 and Table 9 that the op-
eration of WOA is relatively stable, and the running time of
WOA is 9.9931 s, which is relatively small. Overall, theWOA
is reasonable as an optimizer.

6. Conclusion

,is paper aims to further promote the prediction accuracy of
the nonlinear grey Bernoulli model (NGBM (1, 1)), and as a
result, the nonlinear grey Bernoulli model with improved
parameters, abbreviated as INGBM (1, 1), is proposed. ,is
study does not share the same differential equation as the
traditional NGBM (1, 1) model. Instead, the differential
equation is transformed into the linear formula. Besides,
considering that “misplaced replacement” is the root cause of
contradiction when converting the differential equation to the
difference equation, the model parameters are optimized to
better match these two equations to reduce prediction error.
In particular, the whale optimization algorithm is used to
automatically determine the optimal power index of INGBM
(1, 1). ,ree examples are employed to validate the proposed
model’s effectiveness by comparing with commonly used grey
models. In all cases, the proposed model both outperforms
other grey models, implying that the INGBM (1, 1) model can
effectively solve the nonlinear problems with a small sample
size and provide valuable information for related decision-
makers to make strategies in advance.

Although INGBM (1, 1) has a very good effect, there are
some limitations that need to be overcome in future work:
(1) although the model has a good effect, there may be
overfitting in some special cases. (2) More accurate pa-
rameter values can be further obtained with multiple
optimizers.
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