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By an inequality of partial sum and uniform convergence of the central limit theorem under sublinear expectations, we establish
precise asymptotics in the law of the iterated logarithm for independent and identically distributed random variables under
sublinear expectations.

1. Introduction

Motivated by the work of g-expectation of Peng [1], Peng
[2, 3] initiated the concept of the sublinear expectation
space, which is a powerful tool to model the uncertainty of
probability and distribution. We could consider sublinear
expectation as an extension of the classical linear expecta-
tion. Peng [2, 3] constructed the basic framework, inves-
tigated basic properties, and proved the law of large number
and central limit theorem under sublinear expectations.
Motivated by the seminal work of Peng [2, 3], more and
more limit theorems under sublinear expectation space have
been established, which generalize the corresponding fun-
damental, important limit theorems in probability and
statistics. Zhang [4–6] proved the exponential inequalities
and Rosenthal’s inequalities and obtained an extension of
the central limit theorem and Donsker’s invariance prin-
ciple under sublinear expectations. Wu [7] established
precise asymptotics for complete integral convergence
under sublinear expectations. Yu and Wu [8] studied
Marcinkiewicz-type complete convergence for weighted
sums under sublinear expectations. Wu and Jiang [9] ob-
tained a strong law of large numbers and Chover’s law of the
iterated logarithm under sublinear expectations. Ma and
Wu [10] studied the limiting behavior of weighted sums of
extended negatively dependent random variables under

sublinear expectations. Xu and Zhang [11, 12] studied three
series theorem for independent random variables and the
law of logarithm for arrays of random variables under
sublinear expectations. Chen [13] proved strong laws of
large numbers for sublinear expectations. For more results
about limit theorems under sublinear expectations, the
interested reader could refer to the studies of Hu et al. [14],
Fang et al. [15], Kuczmaszewska [16], Wang and Wu [17],
Hu and Yang [18], Zhang [19], and references therein.

Precise asymptotics in the law of the iterated logarithm is
one of the fundamental problems in probability theory.
Many related results have been derived in the probabilistic
space. ,eir results can be found in the work of Gut and
Spătaru [20]; Zhang [21]; Xiao et al. [22]; Huang et al. [23];
Jiang and Yang [24]; Wu and Wen [25]; Xu et al. [26]; Xu
[27, 28]; and Xu [29]. However, in sublinear expectations,
due to the uncertainty of sublinear expectation and related
capacity, the precise asymptotics in the law of the iterated
logarithm under sublinear expectations have not been re-
ported. Motivated by the work of Wu [7], Xiao et al. [22], Xu
et al. [26], and Xu [29], we try to investigate precise as-
ymptotics in the law of the iterated logarithm under sub-
linear expectations. ,e aim of this paper is to prove the
precise asymptotics in the law of the iterated logarithm for
independent, identically distributed random variables under
sublinear expectations. ,e main contribution of this paper
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is that we prove an useful inequality under sublinear ex-
pectations in Lemma 1, and we extend the results of Xiao
et al. [22], Xu et al. [26], and Xu [29] to those of the sublinear
expectation spaces. Our results may have the potential ap-
plications in finance or engineering fields (cf. Wu [7], Peng
[3], Zhang [19], and references therein). Our basic idea in
this paper comes from that of Wu [7], Xiao et al. [22], Xu
et al. [26], Xu [29], Spătaru [30], and Fuk andNagaev [31]. In
conclusion, our results combined with the work of Wu [7]
imply heuristically that many results about precise asymp-
totics in the law of the iterated logarithm in probability
spaces may still hold under sublinear expectations.

,e rest of this paper is organized as follows: in Section 2,
we summarize necessary basic notions, concepts, and rel-
evant properties and give necessary lemmas under sublinear
expectations. In Section 3, we give our main results, ,e-
orems 1 and 2, whose proofs are presented in Sections 4 and
5, respectively.

2. Preliminaries

We use notations similar to those of Peng [3]. Let (Ω,F) be
a given measurable space. Let H be a subset of all random
variables on (Ω,F) such that IA ∈H, where A ∈F, and if
X1, . . . , Xn ∈H, then φ(X1, . . . , Xn) ∈H for each
φ ∈ Cl,Lip(Rn), where Cl,Lip(Rn) denotes the linear space of
(local Lipschitz) function φ satisfying

|φ(x) − φ(y)|≤C 1 +|x|
m

+|y|
m

( 􏼁(|x − y|), ∀x, y ∈ Rn
,

(1)

for some C> 0, m ∈ N, depending on φ. We regardH as the
space of random variables.

Definition 1. A sublinear expectation E onH is a functional
E: H↦R: � [−∞,∞] satisfying the following properties:
for all X, Y ∈H, we have the following:

(a) Monotonicity: if X≥Y, then E[X]≥E[Y]

(b) Constant preserving: E[c] � c, ∀c ∈ R
(c) Positive homogeneity: E[λX] � λE[X], ∀λ≥ 0
(d) Subadditivity: E[X + Y]≥E[X] + E[Y] whenever

E[X] + E[Y] is not of the form ∞ −∞ or −∞ +∞

A set function V: F↦[0, 1] is called a capacity if it
satisfies the following:

(a) V(∅) � 0, V(Ω1) � 1
(b) V(A)≤V(B), A ⊂ B, A, B ∈ F

A capacity V is said to be subadditive if it satisfies
V(A + B)≤V(A) + V(B), A, B ∈F.

In this paper, given a sublinear expectation space
(Ω,H,E), we define a capacity: V(A): � inf E[ξ]:{

IA ≤ ξ, ξ ∈H}, ∀A ∈ F (see Zhang [4]). Clearly, V is a
subadditive capacity. We also define the Choquet expecta-
tions CV by

CV(X) ≔ 􏽚
∞

0
V(X>x)dx + 􏽚

0

−∞
(V(X>x) − 1)dx. (2)

A sublinear expectation E: H↦R is said to be contin-
uous if it satisfies the following:

(a) Lower continuity: E[Xn]↑E[X], if 0≤Xn↑X, where
Xn, X ∈H

(b) Upper continuity: E[Xn]↓E[X], if 0≤Xn↓X, where
Xn, X ∈H

A capacityV: F↦[0, 1] is said to be continuous capacity
if it satisfies the following:

(1) Lower continuity: V(An)↑V(A), if An↑A, where
An, A ∈F

(2) Upper continuity: V(An)↓V(A), if An↓A, where
An, A ∈F

Assume that X � (X1, . . . , Xm), Xi ∈H, and
Y � (Y1, . . . , Yn), Yi ∈H, are two random variables on
(Ω1,H,E). Y is said to be independent of X if for each
φ ∈ Cl,Lip(Rm × Rn), we have E[φ(X,Y)] � E[φ(x,Y)|x�X]

whenever φ(x): � E[|φ(x,Y)|]<∞ for each x and
E[|φ(X)|] <∞. Xn􏼈 􏼉

∞
n�1 is said to be a sequence of inde-

pendent random variables, if Xn+1 is independent of
(X1, . . . , Xn) for each n≥ 1.

Suppose that X1 and X2 are two n-dimensional random
vectors defined, respectively, in sublinear expectation spaces
(Ω1,H1,E1) and (Ω2,H2,E2). ,ey are said to be identi-
cally distributed if

E1 φ X1( 􏼁􏼂 􏼃 � E2 φ X2( 􏼁􏼂 􏼃, ∀φ ∈ Cl,Lip R
n

( 􏼁, (3)

whenever the sublinear expectations are finite. Xn􏼈 􏼉
∞
n�1 is

said to be identically distributed if for each i≥ 1, Xi and X1
are identically distributed.

For 0≤ σ2 ≤ σ2 <∞, a random variable ξ under a sub-
linear expectation space (Ω,H,E) is called a G-normal
N(0, [σ2, σ2]) distributed random variable, if for any
φ ∈ Cl,Lip(Rn), u(x, t): � E[φ(x +

�
t

√
ξ)](x ∈ R, t≥ 0) is

the unique viscosity solution of the following heat equation:

ztu − G z
2
xxu􏼐 􏼑 � 0,

u(0, x) � φ(x),
(4)

where G(α) � (σ2α+ − σ2α− )/2.
In the rest of this paper, let {X,Xn, n≥ 1} be a sequence of

i.i.d. random variables under sublinear expectation space
(Ω,H,E) with E(X) � E(−X) � 0, E(X2) � σ2 <∞, and
−E(−X2) � σ2, limc⟶∞E(X2 − c)+ � 0, CV(X2)<∞. Set
Sn � 􏽐

n
i�1 Xi. Assume that E is continuous. Let ξ be a

G-normal-distributed random variable with
E(ξ) � E(−ξ) � 0, E(ξ2) � σ2, and −E(−ξ2) � σ2. We de-
note by C a positive constant which may vary from line to
line.

To prove our results, we need the following lemmas.

Lemma 1. Suppose E|X|α <∞, 1< α≤ 2. )en, for x, y> 0,

V Sn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥x􏽮 􏽯≤ 2nV |X|>y􏼈 􏼉 + 2n

x/y eE|X|α

nE|X|α + xyα−1􏼠 􏼡

x/y

.

(5)
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Proof. We borrow the proofs from those of ,eorem 2 by
Fuk and Nagaev [31], and Lemma 2 by Spătaru [30]. Let

􏽥Xi �
Xi for Xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤y,

0 for Xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌>y,

⎧⎨

⎩ i � 1, . . . , n,

􏽥Sn � 􏽘
n

i�1

􏽥Xi.

(6)

,erefore, by the subadditivity property of V(·),

V Sn ≥ x􏼈 􏼉≤V 􏽥Sn ≠ Sn􏽮 􏽯 + V 􏽥Sn ≥ x􏽮 􏽯. (7)

ByMarkov’s inequality under sublinear expectations, for
any positive h,

V 􏽥Sn ≥x􏽮 􏽯≤ e− hx
E eh􏽥Sn􏼒 􏼓. (8)

From this and (7), it follows that

V Sn ≥x􏼈 􏼉≤ 􏽘
n

i�1
V Xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥y􏽮 􏽯 + e− hx

E eh􏽥Sn􏼒 􏼓

� nV X≥y􏼈 􏼉 + e− hx
E eh􏽥Sn􏼒 􏼓.

(9)

Application of the monotonicity of u− 2(ehu − 1 − hu) for
u≤y and u− α(ehu − 1 − hu) for u> 0 and the subadditivity
property of sublinear expectations yields

Eeh􏽥Xi ≤ 1 + E hXiI Xi| |≤y􏼒 􏼓 + E
ehXi − 1 − hXi

X
2
i

X
2
i I Xi| |≤y􏼠 􏼡

≤ 1 + hE XiI Xi| |≤y􏼒 􏼓 +
ehy

− 1 − hy

y
2 E X

2
i I Xi| |≤y􏼒 􏼓

≤ 1 + hE XiI Xi| |≤y􏼒 􏼓 +
ehy

− 1 − hy

y
α E Xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
α
I Xi| |≤y􏼒 􏼓

≤ 1 + hE XiI Xi| |≤y􏼒 􏼓 +
ehy

− 1 − hy

y
α E Xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
α

􏼐 􏼑.

(10)

Hence, by Lemma 1.1 in the study of Gao and Xu [32],

e− hx
E eh􏽥Sn􏼒 􏼓≤ exp ehy

− 1 − hy􏼐 􏼑y
− α

nE |X|
α

( 􏼁􏽮

− hx + hnE XI|X|≤y􏼐 􏼑􏽯.

(11)

Setting

h �
1
y
log

xy
α− 1

nE |X|
α

( 􏼁
+ 1􏼠 􏼡, (12)

in the right-hand side of (11), we see that

e− hx
E eh􏽥Sn􏼒 􏼓≤ exp

x

y
−

x − nE XI|X|≤y􏼐 􏼑

y
+

nE |X|
α

( 􏼁

y
α⎛⎝ ⎞⎠log

xy
α− 1

nE |X|
α

( 􏼁
+ 1􏼠 􏼡

⎧⎨

⎩

⎫⎬

⎭. (13)

Since E(X) � E(−X) � 0, by Proposition 3.6 in the
study of Peng [3] and Definition 1, we see that

E XI|X|≤y􏼐 􏼑 � E −XI|X|≥y􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤E |X|I|X|≥y􏼐 􏼑

≤
1

y
α− 1 E |X|

α
I|X|≥y􏼐 􏼑≤

1
y
α− 1 E |X|

α
􏼂 􏼃.

(14)

,erefore,

1
y

x − nE XI|X|≤y􏼐 􏼑􏼐 􏼑 +
nE |X|

α
( 􏼁

y
α ≥

x

y
. (15)

Combining this with (13) and (9), we conclude that

V Sn ≥x􏼈 􏼉≤ nV |X|>y􏼈 􏼉 + n
x/y eE|X|α

nE|X|α + xyα−1􏼠 􏼡

x/y

.

(16)

Combining (16) with the inequality derived from it with−X

and −Xk in place of X and Xk, respectively, leads to (5). □

Remark 1. (see Lemma 2 in [7]). For any X ∈H, we have

CV X
2

􏼐 􏼑<∞⇔􏽚
∞

1
xV(|X|>x)dx<∞. (17)

Lemma 2 (see Lemma 5 in [7]).Assume that Xn; n≥ 1􏼈 􏼉 is
a sequence of independent and identically distributed random
variables with E[X1] � E[−X1] � 0 and limc⟶∞
E(X2 − c)+ � 0. Write σ2 � E[X2

1] and σ2 � −E[−X2
1].

Suppose that E is continuous and set Δn(x) � V(|Sn|/�
n

√
≥x) − V(|ξ|≥x), ξ∼N(0, [σ2, σ2]) under E. )en,

Δn ≔ supx≥0 Δn(x)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌⟶ 0, as n⟶∞. (18)

3. Main Results

,e following are our main results.

Theorem 1. For b, d> 0, we have

lim
ε↘0

εb/d
􏽘

∞

n�3

(log logn)
b− 1

n log n
V Sn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ ε

�
n

√
(log logn)

d
􏽮 􏽯 �

CV |ξ|
b/d

􏼐 􏼑

b
. (19)
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Theorem 2. For d> 0, we have

lim
ε↘0

1
−log ε

􏽘

∞

n�3

1
n log n log logn

V Sn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ εσ

�
n

√
(log logn)

d
􏽮 􏽯 �

1
d

. (20)

In the following two sections, for M≥ 3 and 0< ε< 1, set
b(ε) � 􏽪exp exp Mε− 1/d􏼈 􏼉􏼈 􏼉􏽫.

4. Proof of Theorem 1

Proposition 1. For b, d> 0, we have

lim
ε↘0

εb/d
􏽘

∞

n�3

(log logn)
b− 1

n log n
V |ξ|≥ ε(log logn)

d
􏽮 􏽯 �

CV |ξ|
b/d

􏼐 􏼑

b
.

(21)

Proof.

lim
ε↘0

εb/d
􏽘

∞

n�3

(log logn)
b− 1

n log n
V |ξ|≥ ε(log logn)

d
􏽮 􏽯

� lim
ε↘0

εb/d
􏽚
∞

ee

(log logy)
b− 1

y log y
V |ξ|≥ ε(log logy)

d
􏽮 􏽯dy

� lim
ε↘0

εb/d
􏽚
∞

ε
(y/ε)(b− 1)/d

(1/d)(y/ε)1/d− 11
ε
V(|ξ|≥y)dy

� lim
ε↘0

􏽚
∞

ε
(1/d)y

b/d− 1
V(|ξ|≥y)dy

� lim
ε↘0

􏽚
∞

εb/d
(1/b)V |ξ|

b/d ≥ t􏼐 􏼑dt

� 􏽚
∞

0
(1/b)V |ξ|

b/d ≥ t􏼐 􏼑dt

�
CV |ξ|

b/d
􏼐 􏼑

b
.

(22)

,us, this completes the proof of Proposition 1. □

Remark 2. By the proof of (24) and (25) in the study by Wu
[7], CV(|ξ|b/d) is finite for any b, d> 0.

Proposition 2. For b, d> 0, we have

lim
ε↘0

εb/d
􏽘

n≤ b(ε)

(log logn)
b− 1

n log n
V Sn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ ε

�
n

√
(log logn)

d
􏽮 􏽯

􏼌􏼌􏼌􏼌􏼌

− V |ξ|≥ ε(log logn)
d

􏽮 􏽯
􏼌􏼌􏼌􏼌􏼌 � 0.

(23)

Proof. By Lemma 2 and Toeplitz’s lemma,

lim
ε↘0

εb/d
􏽘

n≤ b(ε)

(log logn)
b− 1

n log n
V Sn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ ε

�
n

√
(log logn)

d
􏽮 􏽯

􏼌􏼌􏼌􏼌􏼌

− V |ξ|≥ ε(log logn)
d

􏽮 􏽯
􏼌􏼌􏼌􏼌􏼌

≤ lim
ε↘0

εb/d
􏽘

n≤ b(ε)

(log logn)
b− 1

n log n
Δn

� lim
ε↘0

CM
b

(log log(b(ε)))b
􏽘

n≤ b(ε)

(log logn)
b− 1

n log n
Δn � 0.

(24)

,e proof is complete. □

Proposition 3. For b, d> 0, we have

lim
M⟶∞

lim sup
ε↘0

εb/d
􏽘

n> b(ε)

(log logn)
b− 1

n log n
V |ξ|≥ ε(log logn)

d
􏽮 􏽯 � 0.

(25)

Proof. We could obtain that

lim sup
ε↘0

εb/d
􏽘

n> b(ε)

(log logn)
b− 1

n log n
V |ξ|≥ ε(log logn)

d
􏽮 􏽯

≤C lim sup
ε↘0

εb/d
􏽚
∞

b(ε)

(log logy)
b− 1

y log y
V |ξ|≥ ε(log logy)

d
􏽮 􏽯dy

≤C 􏽚
∞

Md

t
b/d− 1

V |ξ|≥ t{ }dt

� C 􏽚
∞

Mb

V |ξ|
b/d ≥ t􏽮 􏽯dt.

(26)

Note that 􏽒
∞
Mb V |ξ|b/d ≥ t􏽮 􏽯dt is integrable:

􏽚
∞

Mb

V |ξ|
b/d ≥ t􏽮 􏽯dt⟶ 0, (27)

as M⟶∞. Proposition 3 is established. □
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Proposition 4. For b, d> 0, we have

lim
M⟶∞

lim sup
ε↘0

εb/d
􏽘

n> b(ε)

(log logn)
b− 1

n log n
V Sn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ ε

�
n

√
(log logn)

d
􏽮 􏽯 � 0. (28)

Proof. When 0< b< 2 d, by Markov’s inequality under
sublinear expectations, we have

lim sup
ε↘0

εb/d
􏽘

n> b(ε)

(log logn)
b− 1

n log n
V Sn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ ε

�
n

√
(log logn)

d
􏽮 􏽯

≤C lim sup
ε↘0

εb/d− 2
􏽘

n> b(ε)

(log logn)
b− 1− 2 d

n
2log n

E S
2
n􏽨 􏽩

� C lim sup
ε↘0

εb/d− 2
􏽘

n> b(ε)

(log logn)
b− 1− 2 d

n log n

≤C lim sup
ε↘0

εb/d− 2
(log log(b(ε)))b− 2 d

≤CM
b− 2 d⟶ 0, asM⟶∞.

(29)

For b≥ 2 d, by Lemma 1, we see that

􏽘
n> b(ε)

(log logn)
b− 1

n log n
V Sn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ ε

�
n

√
(log logn)

d
􏽮 􏽯

≤ 􏽘
n> b(ε)

(log logn)
b− 1

log n
V |X|> ε

�
n

√
(log logn)

d/T􏽮 􏽯

+ C 􏽘
n> b(ε)

(log logn)
b− 1

n log n

1
(log logn)

2 dTε2T
≕ L1 + L2,

(30)

where T is a positive constant to be specified later. On the
one hand, we obtain that

lim sup
ε↘0

εb/d
L2 ≤ lim sup

ε↘0
εb/d− 2T

􏽘
n> b(ε)

(log logn)
b− 1− 2 dT

n log n

≤ lim sup
ε↘0

Cεb/d− 2T
(log logb(ε))b− 2 dT

≤CM
b− 2 dT⟶ 0, asM⟶∞,

(31)

for any T> b/(2 d). On the other hand, for L1, without loss
of generality, set T � 1. By the countable subadditivity
property of sublinear expectations and the fact that
((log logx)b− 1/log x)⟶ 0, as x> b(ε)⟶∞ , we obtain
that

L1 � 􏽘
n> b(ε)

(log logn)
b− 1

log n
V |X|> ε

�
n

√
(log logn)

d
􏽮 􏽯

≤C􏽚
x>b(ε)

(log logx)
b− 1

log x
V |X|> ε

��
x

√
(log logx)

d
􏽮 􏽯dx

≤C􏽚
x>b(ε)

V |X|
2 > ε2x(log logx)

2 d
􏽮 􏽯dx

≤Cε− 2
􏽚

x>b(ε)M2 d

V |X|
2 >y􏽮 􏽯dy.

(32)

Hence, for b≥ 2 d, we have

lim sup
ε↘0

εb/d
L1 ≤Cεb/d− 2

􏽚
x>b(ε)M2 d

V |X|
2 >y􏽮 􏽯dy � 0.

(33)

,us, (28) holds for each b, d> 0.
Now, by Proposition 1–4 and the triangle inequality,
∀β> 0, ∃M> 0, which is sufficiently large, such that
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lim
ε↘0

εb/d
􏽘

∞

n�3

(log logn)
b− 1

n log n
V Sn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ ε

�
n

√
(log logn)

d
􏽮 􏽯

≤ lim
ε↘0

εb/d
􏽘

∞

n�3

(log logn)
b− 1

n log n
V |ξ|≥ ε(log logn)

d
􏽮 􏽯

+ lim
ε↘0

εb/d
􏽘

n≤ b(ε)

(log logn)
b− 1

n log n
V Sn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ ε

�
n

√
(log logn)

d
􏽮 􏽯 − V |ξ|≥ ε(log logn)

d
􏽮 􏽯

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

+ lim sup
ε↘0

εb/d
􏽘

n> b(ε)

(log logn)
b− 1

n log n
V |ξ|≥ ε(log logn)

d
􏽮 􏽯

+ lim sup
ε↘0

εb/d
􏽘

n> b(ε)

(log logn)
b− 1

n log n
V Sn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ ε

�
n

√
(log logn)

d
􏽮 􏽯

�
CV |ξ|

b/d
􏼐 􏼑

b
+ β,

lim
ε↘0

εb/d
􏽘

∞

n�3

(log logn)
b− 1

n log n
V Sn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ ε

�
n

√
(log logn)

d
􏽮 􏽯

≥ lim
ε↘0

εb/d
􏽘

∞

n�3

(log logn)
b− 1

n log n
V |ξ|≥ ε(log logn)

d
􏽮 􏽯

− lim
ε↘0

εb/d
􏽘

n≤ b(ε)

(log logn)
b− 1

n log n
V Sn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ ε

�
n

√
(log logn)

d
􏽮 􏽯 − V |ξ|≥ ε(log logn)

d
􏽮 􏽯

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

− lim sup
ε↘0

εb/d
􏽘

n> b(ε)

(log logn)
b− 1

n log n
V |ξ|≥ ε(log logn)

d
􏽮 􏽯

− lim sup
ε↘0

εb/d
􏽘

n> b(ε)

(log logn)
b− 1

n log n
V Sn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ ε

�
n

√
(log logn)

d
􏽮 􏽯

≥
CV |ξ|

b/d
􏼐 􏼑

b
− β.

(34)

We derive,eorem 1 from the arbitrariness of β> 0. □

5. Proof of Theorem 2

Proposition 5. For d> 0, we have

lim
ε↘0

1
−log ε

􏽘

∞

n�3

1
n log n log logn

V |ξ|≥ ε(log logn)
d

􏽮 􏽯 �
1
d

.

(35)

Proof. We claim that

lim
ε↘0

1
−log ε

􏽘

∞

n�3

1
n log n log logn

V |ξ|≥ ε(log logn)
d

􏽮 􏽯

� lim
ε↘0

1
−log ε

􏽚
∞

ee

1
y log y log logy

V |ξ|≥ ε(log logy)
d

􏽮 􏽯dy

�
1
d
lim
ε↘0

1
−log ε

􏽚
∞

ε

1
t
V |ξ|≥ t{ }dt

�
1
d

.

(36)

Indeed, by Lemma 4 in the study by Wu [7], ∀α> 0,
∃δ > 0, such that ∀t< δ < 1, V |ξ|> t{ }> 1 − α d. ,erefore,
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1
d
lim
ε↘0

1
−log ε

􏽚
∞

ε

1
t
V |ξ|≥ t{ }dt − 1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
1
d
lim
ε↘0

1
−log ε

􏽚
δ

ε

1
t
V |ξ|≥ t{ }dt − 1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+ lim

ε↘0

1
−log ε

􏽚
∞

δ

1
t
V |ξ|≥ t{ }dt

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

<
1
d
lim
ε↘0

1
−log ε

􏽚
δ

ε

1
t
(1 − α d)dt − 1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+ lim

ε↘0

1
−log ε

􏽚
∞

δ

1
t
3E |ξ|

2
􏽨 􏽩dt

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ α.

(37)

,is establishes (35). □ Proposition 6. For d> 0, we have

lim
ε↘0

1
−log ε

􏽘
n≤ b(ε)

1
n log n log logn

V Sn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ ε

�
n

√
(log logn)

d
􏽮 􏽯 − V |ξ|≥ ε(log logn)

d
􏽮 􏽯

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � 0. (38)

Proof. By Lemma 2 and Toeplitz’s lemma,

lim
ε↘0

1
−log ε

􏽘
n≤ b(ε)

1
n log n log logn

V Sn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ ε

�
n

√
(log logn)

d
􏽮 􏽯 − V |ξ|≥ ε(log logn)

d
􏽮 􏽯

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

� lim
ε↘0

1
−log ε

􏽘
n≤ b(ε)

1
n log n log logn

Δn

� lim
ε↘0

log(M) − log(ε)/d
−log ε

1
log loglog b(ε)

􏽘
n≤ b(ε)

1
n log n log logn

Δn � 0.

(39)

,e proof is complete. □

Proposition 7. For d> 0, we have

lim
ε↘0

1
−log ε

􏽘
n> b(ε)

1
n log n log logn

V |ξ|≥ ε(log logn)
d

􏽮 􏽯 � 0.

(40)

Proof. By Markov inequality under sublinear expectations,
we see that

lim
ε↘0

1
−log ε

􏽘
n> b(ε)

1
n log n log logn

V |ξ|≥ ε(log logn)
d

􏽮 􏽯

≤C lim
ε↘0

1
−log ε

􏽚
∞

b(ε)

1
y log y log logy

V |ξ|≥ ε(log logy)
d

􏽮 􏽯dy

≤C lim
ε↘0

1
−log ε

􏽚
∞

Md

1
t
V |ξ|> t{ }dt

≤C lim
ε↘0

1
−log ε

􏽚
∞

Md

1
t
3E ξ2􏽨 􏽩dt � 0.

(41)
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,us this proves Proposition 7. □ Proposition 8. For d> 0, we have

lim
ε↘0

1
−log ε

􏽘
n> b(ε)

1
n log n log logn

V Sn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ ε

�
n

√
(log logn)

d
􏽮 􏽯 � 0. (42)

Proof. By Markov inequality under sublinear expectations,
we deduce that

lim
ε↘0

1
−log ε

􏽘
n> b(ε)

1
n log n log logn

V Sn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ ε

�
n

√
(log logn)

d
􏽮 􏽯

≤ lim
ε↘0

1
−ε2log ε

􏽘
n> b(ε)

1
n
2log n(log logn)

1+2 d
E S

2
n􏽨 􏽩

≤C lim
ε↘0

1
−ε2log ε

􏽘
n> b(ε)

1
n log n(log logn)

1+2 d

≤C lim
ε↘0

(log log(b(ε)))− 2 d

−ε2log ε

≤C lim
ε↘0

M
− 2 d

−log ε
� 0.

(43)

,e proof is complete.
Finally, similar to the proof of,eorem 1, by the triangle

inequality and Propositions 5–8, we finish the proof of
,eorem 2. □
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[20] A. Gut and A. Spătaru, “Precise asymptotics in the law of the
iterated logarithm,” )e Annals of Probability, vol. 28, no. 4,
pp. 1870–1883, 2000.

[21] L. X. Zhang, “Precise rates in the law of the iterated loga-
rithm,” 2006, https://arxiv.org/abs/0610519v1.

[22] X.-Y. Xiao, L.-X. Zhang, and H.-W. Yin, “Precise rates in the
generalized law of the iterated logarithm,” Statistics &
Probability Letters, vol. 83, no. 2, pp. 616–623, 2013.

[23] W. Huang, L. Zhang, and Y. Jiang, “Precise rate in the law of
iterated logarithm for-mixing sequence,” Applied Mathe-
matics-A Journal of Chinese Universities Series B, vol. 18, no. 4,
pp. 482–488, 2003.

[24] C. Jiang and X. Yang, “Precise asymptotics in self-normalized
sums of iterated logarithm for multidimensionally indexed
random variables,” Applied Mathematics-A Journal of Chinese
Universities, vol. 22, no. 1, pp. 87–94, 2007.

[25] H. Wu and J. Wen, “Precise rates in the law of the iterated
logarithm for R/S statistics,” Applied Mathematics-A Journal
of Chinese Universities, vol. 21, no. 4, pp. 461–466, 2006.

[26] M. Xu, Y. Ding, and Y. Zhou, “Precise rates in the generalized
law of the iterated logarithm in,” Journal of Mathematical
Research with Applications, vol. 38, no. 1, pp. 103–110, 2018.

[27] M. Xu, “Precise rates in the generalized law of the iterated
logarithm in the Hilbert space,” preprint, 2020.

[28] M. Xu, “Precise asymptotics for partial sums of-mixing se-
quence,” preprint, 2020.

[29] M. Xu, “Precise rates in the generalized law of the iterated
logarithm in the multidimensional space,” Accepted by Chi-
nese Journal of Applied Probability and Statistics, 2020.
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