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,e autonomous driving has shown its enormous potential to become the new generation of transportation in the last decade.
Based on the automated technology, vehicles can drive in a new form, vehicle platoon, which can significantly increase the
efficiency of the road system and save road resources. ,e space-vehicle traffic state estimation model has shown its benefits in
modeling autonomous vehicle platoon in nonpipeline corridors with on- and off-ramps in ideal observation environment.
However, in the current initial stage of automated connected vehicles’ application, the observation environment is quite imperfect.
Limited by financial and investment, traffic flow observation equipment is sparsely distributed on the road. How to adapt to the
sparse observer layout is a critical issue in the current application of the space-time traffic state estimation, which is originally
designed for the autonomous transportation. ,erefore, this manuscript overviews the observation environment in practice and
summarizes three key observation problems. ,is article designs 22 numerical experiments focusing on the three key issues and
implements the space-time estimation model in different observation scenarios. Finally, the observation environment adaptability
is analyzed in detail based on the experiment results. It is found that the accuracy of the estimation results can be improved with
the highest efficiency under the premise of limited equipment input by reducing the observation interval to 1000m and increasing
the density of the observer to 1/km. For the road sections with relatively homogeneous traffic conditions, the layout of observation
equipment can be relatively reduced to save the investment input. Also, the maintenance of observation equipment for the ramp
with larger flow can be slowed down appropriately in limited equipment investment. ,is manuscript is of great practical
significance to the popularization and application of connected automatic transportation.

1. Introduction

Autonomous driving has obtained abundant attractions in
the last decade. Road automated driving as a new generation
of information technology and the integration of the
transport industry’s development has become a new round
of global scientific and technological innovation and in-
dustrial transformation. ,is technology will promote the
continuous upgrading of the field of road traffic. At present,
the government, enterprises, and investors all take this as the

goal and direction to accelerate automated driving around
the world [1–3].

In the ideal application scenario of autonomous driving,
the next generation of sustainable urban development re-
quires a new wave of infrastructure construction. However,
in the early development stage of autonomous driving, due
to financial and investment constraints, existing infra-
structure needs to adapt to the application and promotion of
autonomous driving. ,erefore, we need to propose a traffic
model that is not only applicable to the operation
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mechanism of automatic driving but also can adapt to the
existing observation infrastructure.

In the field of traffic flow modeling for connected au-
tomatic vehicles, the space-vehicle traffic flow model (re-
ferred to as “N-X traffic flow model”) with vehicles as the
research object has been proposed since 2007 [4, 5]. Besides
the traditional space-time model (referred to as “X-T traffic
flow model”) based on space (referred to as “X”) and time
(referred to as “T”) dimension [6–9], the traffic flow can also
be described in vehicle (referred to as “N”) dimension. In the
X-T model, traffic flow can be described as the traffic
character variables such as flow rate and speed varying with
time index. Similarly, In the N-T model, traffic flow can be
described in a different form: traffic character variables such
as headway and pace which are varying with the vehicle
index. In the X-T model, the time index can be integrated
into 10 seconds or 5 minutes. Similarly, the vehicle index in
the N-X model can also be integrated into a vehicle packet
with 5 vehicles or 10 vehicles as well. ,e N-X model has
attracted many researchers’ interest and has shown its ad-
vantages in modeling vehicle platoon, which is the essential
form of connected automatic traffic flow. In other words, the
N-X model has shown its enormous potentials in the
connected automatic transportation system. In 2014, Jin
proposed the traffic state estimation framework based on the
N-X traffic flow model (referred to as the N-X traffic state
estimation model) for a pipeline corridor without inflow and
outflow [10]. In 2019, Yang proposed an N-X traffic state
estimation model adding the node model [11]. ,en, this
model can be applied into nonpipeline corridors with on-
and off-ramps. ,en, in 2019, Yang proposed a revised
nonpipeline N-X traffic state estimation model by reducing
the node assumption [12]. ,e proposed N-X traffic state
estimation model has shown its adaptability in fixed-point
vehicle matching detection environment. It is worth noting
that the adaptability is mainly verified in the ideal obser-
vation environment. In the proposed model, the ideal ob-
servation environment refers to the relatively dense layout of
traffic flow observers.

In recent years, with the reduced cost and wide use of data
acquisition equipment, high quality, reliable data, and robust
models are essential to the development of the intelligent
transportation system, and transportation data mining based on
big geospatial data has become a research hotspot and earns a lot
of attention [13–15].,ese emerged big data-based technologies
have been proved as central to the development of trans-
portation operation and management [16, 17].

With the rapid development in automobile
manufacturing, industrial investment, and financing in the
last two years, connected automatic vehicles are gradually
finishing the theoretical verification and starting to enter the
practical road environment. However, the development of
the data environment of automatic driving is still in its
infancy, and the infrastructure cannot generate high quality
and reliable data to support the application of new big data
mining technology. In other words, compared with the
dense detector layout environment, the sparse layout de-
tection environment will be widely applied in practical
applications.

,erefore, for the initial application and promotion of
connected automatic vehicles, it is very important to study the
adaptability of the N-X traffic state estimation model in the
practical imperfect detection environment with sparse detector
layout, which has high potential to support the development of
the next-generation intelligent transportation system.

,erefore, in this paper, the adaptability of the N-X traffic
state estimation model is analyzed in detail in view of the
practical imperfect detector layout environment, which is of
great practical significance to the popularization and application
of connected automatic transportation. ,is manuscript first
analyzes the existing problems in the practical observation
environment. Secondly, the observation infrastructure envi-
ronment is designed and simulated based on the urban channel.
,e ability to adapt to the actual observation infrastructure
environment is discussed from three aspects: trunk road ob-
servation equipment damage, trunk road observation interval
distance, and ramp observation equipment missing. Finally, this
article puts forward the design and planning suggestion of the
observation infrastructure’s layout in connected automated
vehicle scenario.

2. Overview of Imperfect
Observation Environment

Automatic vehicle license plate recognition (ALPR) is one of the
important components in modern intelligent transportation
systems [18]. ALPR technology can detect vehicles on the
monitored road surface through roadside fixed observation
equipment and automatically extract vehicle license plate in-
formation (including Chinese characters, English letters, Arabic
numerals, and plate colors) for processing. At present, this
technology has been widely used in highway vehicle manage-
ment [19]. In practice, affected by natural conditions, financial
investment, operation, and maintenance, the actual observation
environment of ALPR is often “imperfect.” For example, the
damage of the equipment onmain roads and ramps often occurs
because of the maintenance. Also, the limit of financial in-
vestment and natural conditions often lead to the too wide
layout intervals of the equipment on main roads.

Problem 1. Damaged main road observer
Affected by factors such as equipment operation and

maintenance, the vehicle license plate recognition observer
deployed on arterial roads is often damaged. ,e damaged
observation equipment cannot transmit effective arterial
road observation data, which will result in a lack of ob-
servation space for arterial road. Figure 1 shows the dis-
tribution of vehicle license plate recognition observers in
Shenzhen, among which about 10% of vehicle license plate
observers are damaged.

Problem 2. Different observation interval on arterial road
,e arterial road observation interval size refers to the

spatial distance between adjacent observers on the arterial
road. ,e interval of the main road observation interval will
be affected by factors such as financial investment and
equipment layout environment. In addition, the granularity
of the observation interval on arterial roads is often various
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for different observation scenarios such as expressways in
central areas, expressways in suburbs, and expressways
outside cities. Taking Shanghai as an example, the VLPR
observation interval within the inner ring expressway is
about 300m–500m, on the middle ring expressway is about
1 km, and on the outer city expressway can reach 2 km or
more.

Problem 3. Ramp observer missing
,e ALPR observation equipment is also deployed on

the up-ramp and the down-ramp to effectively detect the
information of vehicles entering and exiting the arterial
road. However, because the license plate recognition system
is more inclined to recognize vehicles entering the main
road, the observation equipment located on the off-ramp is
often missing. In addition, with the deepening of urbani-
zation, urban road networks are highly dense, which leads to
the numerous ramps. ,en, in practice, it is quite normal to
cut down the ramp observation equipment to save invest-
ment. For example, in Shanghai’s ALPR system, there is no
observation equipment on off-ramps, and about 70% of the
on-ramps do not install observation equipment.

3. Methodology

3.1. N-X State Process Model. ,e classic traffic state esti-
mation framework includes two key components: a state
process model and a measurement model [20–26]. Based on
the proposed travel time transmission model, the state

process model for the nonpipeline N-X Kalman filter
framework is formulated as
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where ζ i(n) denotes the state noise in the estimation. Travel
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this paper, for the free-flow regime in the N-X fundamental
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3.2.N-XMeasurementModel. In practice, travel time cannot
be fully observed because of the limited penetration of probe
vehicle. ,us, we formulate the N-X measurement model as

Ti(n) � Ti(n) + ξi(n) � Δx · τx(n) + v
τ
x(n), (4)

where Ti(n) denotes the estimated measurement of travel
time Ti(n) and ξi(n) is the measurement noise.

3.3. State-Space Model. ,e state-space representation for
the N-X traffic state estimation framework is given as
follows:
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ALPR observer (work)
ALPR observer (broken)

Figure 1: Layout and distribution of vehicle license plate recog-
nition observation equipment in Shenzhen
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F and H are the vector functions based on equation
(1)–(4). Vectors T, b, u, α, ζ, T, and ξ are system state
variable, boundary variable, control input variable, pa-
rameter, process noise, system observation variable, and
measurement noise, respectively. ,ese vectors are defined
as follows:
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3.4. Unscented Kalman Filter Configuration. Because state
process model equation (1) is nonlinear, unscented Kalman
filter (UKF) is applied to estimate the traffic state.,eUKF is
an effective filter method for nonlinear systems, avoiding the
linear approximation error and Jacobian matrix calculation.
,e UKF relies mainly on unscented transform (UT) to
process the mean and covariance transition in a nonlinear
system [27, 28].

3.5. Performance Evaluation. To illustrate the estimation
result, the traffic state travel time Ti(n) in the N-X model is
converted to travel speed ui(n). Furthermore, the N-X result
recorded in the vehicle dimension is converted into the time
dimension ui(t) via the N-X interpolation method [21]. ,e
method tracks the link entry time of each flow packet and
conducts linear interpolation of the traffic states.

,e performances of the results are evaluated by the
following performance indexes: the root mean squared error
(RMSE), mean absolute error (MAE), and mean absolute
percentage error (MAPE). ,ey are defined as follows:
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where i� 1, . . .,M. Θ is the total number of time index
during the estimation period:

Θ � 3.5 ×
3600
Δt

. (9)

M is the total number of segments in the corridor. uGT
i (t)

and ui(t) are the ground truth state and estimated state of
segment i at timestamp t, respectively.

4. Design of Numerical Experiment

4.1. Simulation Model and Parameters. ,e proposed N-X
estimation model is evaluated through the VISSIM simulation
model, which is calibrated by field loop data. VISSIM simulation
allows for flexibility in generating vehicle-based paired detector
data, alongwith high-resolution ground truth data for evaluating
the congestion patterns. ,e VISSIM simulation model is
established and calibrated by field loop detector data from IH-
894 in Milwaukee, Wisconsin, during the morning peak hours
from 5 : 30 am to 9 : 30 am [29]. ,e simulated area is a 4-mile
segment of a nonpipeline freeway corridor with five on-ramps
and three off-ramps, as shown in Figure 2. ,e nonpipeline
freeway includes a significant bottleneck, which can be used to
further analyze the accuracy of the model in the congestion
pattern.

,e entire corridor is divided into 12 segments with the
same length of 500m. Propagation packet size Δn is set as 50
vehicles for all the segments with (or without) freeway ramps.
Uniform traffic parameters are assumed across the entire cor-
ridor to simplify the calculation. ,en, C, kjam, and ufree are
7,200 veh/h, 500veh/km, and 100km/h, respectively. In the
estimation process, the system and observation noise are as-
sumed to be 1% of the average traffic state value and observation
value, respectively. ,e assumption for traffic system state and
observation noise is as the same as the noise assumption in [21].
,e uncertainty terms, R and Q, are defined as 0.5∗ I(M),
where I(M) is a unit matrix with M dimensions.

4.2. Observation Environment. ,is paper designs the nu-
merical observation environment according to the actual
observation situation of ALPR. ,e designed scene is a
partial passage of Highway 894 (I-894) in Milwaukee,
Wisconsin, USA, with a total length of 6.5 km. ,e designed
scene channel contains 13 sequentially numbered cells, and
Cell 1 and Cell 13 are the boundary cells of the channel.
License plate observers are set up between each adjacent
channel, as the blue rectangle identified in Figure 3, num-
bered A0, A1, A2, ..., A11, A12, and A13.,rough the vehicle
license plate observers placed at the boundary position at
both ends of the cell, the time information of the vehicle
passing the cell boundary can be recorded, and the travel
time of the vehicle through the cell can be obtained. Ob-
servers A0, A1, A12, and A13 are set as the boundary ob-
servers of the channel to obtain the travel time of the channel
boundary cell (Cell 1 and Cell 12). ,ese observers’ layout
conditions remain unchanged and the passing time infor-
mation of all passing vehicles can be obtained. Observers A2,
A3, ..., A10, and A11 are experimentally designed ALPR
observation equipment. In addition, the green line segments
identified in the figure are the license plate recognition
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observers placed on the up- and down-ramps, which are
numbered as R1, R2, ..., R7, and R8 in sequence. ,is paper
will design different observation equipment layout based on
different experimental observation scenarios.

4.3. Observation Scenarios

Scenario 1. Damaged arterial road observer
,e damage rate of the arterial road observers in the

actual observation environment is about 10%. ,erefore, for
the 10 trunk road observers designed in the experimental

scene, we assume that there is a damaged observer in the
channel. According to the 10 trunk road observers laid out in
the passage, 10 groups of cases are designed in this section,
corresponding to damaged observers A2, A3, ..., A10, and
A11, respectively, as shown in Table 1. For example, in CASE
A-2, observer A3 is damaged, as shown in Figure 4.,en, red
observer A3 is the damage observer, and the travel time of
the vehicle in Cell 3 and Cell 4 cannot be obtained directly.
In this case, only the travel time of the vehicle passing
through Cell 3 and Cell 4 can be obtained. In addition,
because Cell 3 contains an up-ramp, the number of vehicles
passing through Cell 4 is higher than that passing through

S 27th St.W Loomis Rd.S 60th St.

S 76th St.S 84th St.

Coldspring Rd.

Howard Ave.

Beloit Rd.

Oklahoma Ave.

Cleveland Ave.
National Ave.

Lincoln Ave.

Greenfield Ave.

Forest Home Ave.

Inductive loop detector

Vehicle driving
direction

Figure 2: Detail of IH-894 in Milwaukee.

Travel direction

Cell 1
(boundary cell) Cell 2 Cell 3 Cell 4 Cell 5

Cell 6 Cell 7 Cell 8 Cell 9 Cell 10

Cell 11 Cell 12 Cell13
(boundary cell)

Road observers (boundary)

Road observers

A1 A2 A3 A4 A5

A5 A6 A7 A8 A9

A10 A11 A12

A10

A13

A0 R1 R2

R3 R4 R5 R6 R7

R8

Ramp observers

Cell length: 500m Passage length: 6.50km 

Figure 3: Simulation of observation environment.
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Cell 3. In other words, several vehicles’ channel entering
time cannot be found in the ALPR system. ,en, according
to the travel time calculation principle of license plate
recognition andmatching, only a part of vehicles’ travel time
information in Cell 4 can be obtained.

Scenario 2. Different observation intervals on arterial road
,e granularity of arterial road observation interval

refers to the spatial distance between adjacent observers on
the arterial road. Because of the limitation of funds and
technology, the distance between adjacent trunk road ob-
servers in the actual observation environment is between
500m and 2 km. For the experimental channel, four arterial
road observers’ interval granularities are designed: 500m,
1000m, 1500m, and 2000m, as shown in Table 2. For ex-
ample, in CASE B-2, the observation interval distance is set

as 1000m as, as shown in Figure 5. Limited by the designed
observation interval granularity, the travel time of the ve-
hicle in Cell 2 and Cell 3 cannot be obtained directly, and
only the travel time of the vehicle passing through Cell 2 and
Cell 3 can be obtained. In addition, since Cell 2 contains a
down-ramp and Cell 3 contains an up-ramp, only a part of
vehicles’ travel time can be recorded. According to the travel
time calculation principle, the ALPR system can obtain the
travel time information of vehicles passing through ob-
servers A1 and A3 successively and cannot record the in-
formation of vehicles leaving the Cell 2 through off-ramp or
entering the Cell 3 through on-ramp.

Scenario 3. Ramp observer missing
Due to the limitations of funds, technology framework,

and functional requirements of the ALPR system, license

Table 1: Scenario design of arterial road observer damaged.

Scenario Damaged observer Upstream cell Downstream cell
CASE A-1 A2 Cell 2 Cell 3
CASE A-2 A3 Cell 3 Cell 4
CASE A-3 A4 Cell 4 Cell 5
CASE A-4 A5 Cell 5 Cell 6
CASE A-5 A6 Cell 6 Cell 7
CASE A-6 A7 Cell 7 Cell 8
CASE A-7 A8 Cell 8 Cell 9
CASE A-8 A9 Cell 9 Cell 10
CASE A-9 A10 Cell 10 Cell 11
CASE A-10 A11 Cell 11 Cell 12

Cell 1
(boundary cell) Cell 2 Cell 3 Cell 4 Cell 5

Cell 6 Cell 7 Cell 8 Cell 9 Cell 10

Cell 11 Cell 12 Cell13
(boundary cell)

Road observers (boundary)

Travel direction

Road observers

A1 A2 A3 A4 A5

A5 A6 A7 A8 A9

A10 A11 A12

A10

A13

A0

Road observers (damaged)

Cell length: 500m Passage length: 6.50km 

Figure 4: Example of scenario 1 (CASE A-2).
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plate identification observer on-ramps are often missing in
the actual observation environment. For example, the ALPR
system in Shanghai does not install the corresponding ob-
servation equipment in the off-ramp part. However, when
other observation data, such as inductive loop data, are used
to supplement the observation function, there are often data
mismatching problems in heterogeneous granularity, in-
consistent mean variance, and inconsonant spatial and
temporal range. ,erefore, in the experimental channel, we
design eight scenarios of missing ramp observation equip-
ment, as shown in Table 3 and Figure 6. ,e detailed cell
number, ramp observer number, ramp type, and average
ramp flow were recorded, respectively, in the table.

5. Results and Analysis

,e estimation results of N-X traffic state estimation
framework in scenarios of different experimental observa-
tion scenes are shown in Figures 7–9. ,e estimation results
are transformed from travel time into travel speed to make
results easy to be understood. ,e result figures have two
forms: estimated travel speed figures and estimation error
figures. In the estimated travel speed figures, the dark blue
areas represent free-flow situation of 110 km/h, and the dark

red areas represent blocked flow situation of 10 km/h. Black
outline draws the contour of space-time congestion area of
30 km/h, which is a congestion time and space area sur-
rounded by 30 km/h boundary. ,e figure can show the
spatial and temporal development process of the generation,
spread, and dissipation of congestion in the case channel
during the morning rush hour. In the estimation error
figures, the blue area represents the estimated result which is
higher than the actual situation. In this case, the travel speed
is overestimated, and the congestion is underestimated. ,e
red area represents the estimated result which is lower than
the actual situation. In this case, travel speed is under-
estimated, and congestion is overestimated. ,e green area
represents the estimation error which is relatively close to 0.
In this case, the estimated result is very close to the actual
situation.

5.1. Adaptability Analysis of Damaged Arterial Road
Observer. ,e estimation results of N-X traffic state esti-
mation framework in scenarios of different damaged arterial
road observers are shown in Figure 10 and Figure 8. It is
found that the damage of the trunk road observer has a small
impact on the estimation results of congestion status, but an

Cell 1
(boundary cell) Cell 2 Cell 3 Cell 4 Cell 5

Cell 6 Cell 7 Cell 8 Cell 9 Cell 10

Cell 11 Cell 12 Cell 13
(boundary cell)

Road observers (boundary)

Road observers

A1 A3 A5

A5 A7 A9

A11 A12 A13

A0

Cell length: 500m Passage length: 6.50km 
Travel direction

Figure 5: Example of scenario 2 (CASE B-2).

Table 2: Scenario design of arterial road observation interval granularity.

Scenario Observation interval (m) Division of observation section
CASE B-1 500 [Cell 2]; [Cell 3];. . .; [Cell 11]; [Cell 12]
CASE B-2 1000 [Cell 2-Cell 3]; [Cell 4-Cell 5]; [Cell 6-Cell 7]; [Cell 8-Cell 9]; [Cell 10-Cell 11]; [Cell 12]
CASE B-3 1500 [Cell 2-Cell 3-Cell 4]; [Cell 5-Cell 6-Cell 7]; [Cell 8-Cell 9-Cell 10]; [Cell 11-Cell 12]
CASE B-4 2000 [Cell 2-Cell 3-Cell 4-Cell 5]; [Cell 6-Cell 7-Cell 8-Cell 9]; [Cell 10-Cell 11-Cell 12]
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obvious impact on the estimation results of free-flow status.
In addition, the damage of the trunk road observer has a
significant impact on the travel speed estimation results of
adjacent cells on both sides of the damage observer. For
example, in CASE A-4, trunk road observer A5 was dam-
aged, and the adjacent Cells 5 and 6 on both sides of observer
A5 could not be directly observed. In other words, the space
position cannot be directly observed within the range of
2.0 km to 3.0 km. ,en, it is found that the estimation error
near the broken observation increases, while the estimation
error in other functioning observation areas does not in-
crease significantly.

5.2. Adaptability Analysis of Different Observation Intervals.
,e estimation results of different trunk road observations’
distance interval are as shown in Table 4 and Figure 8. ,e
trunk road observation interval size refers to the space
distance between the adjacent road observers. ,e number
of the trunk observers refers to the number of installed
observations on the channel. ,e trunk road observer layout

density refers to the arterial observer number on unit space
length, which is equal to the number of arterial road observer
divided by channel distance. It is found that the estimation
error of the channel increases gradually with the increasing
distance between the adjacent observers of the trunk road. In
addition, the estimation error of free-flow condition in-
creases significantly, while the estimation error of conges-
tion condition changes relatively little. Compared with the
scenario of the damaged trunk road observers, the effect of
changing the granularity of the trunk road observation
interval on the estimated results is significantly higher.

,e estimation results vary with trunk road observers’
distribution density and distance interval, which is shown in
Figure 11. ,e blue curve is the change of RMSE, and the
green curve is the change ofMAPE. From the figure, with the
increase of the trunk road observations’ distance interval, the
density of trunk road observations gradually decreases,
RMSE and MAPE both gradually increase, and the accuracy
of estimation model decreases gradually. ,ere is an in-
flection point of RMSE and MAPE indices between 1000m
and 1500m in the observation range and between 0.91/km

Cell 1
(boundary cell) Cell 2 Cell 3 Cell 4 Cell 5

Cell 6 Cell 7 Cell 8 Cell 9 Cell 10

Cell 11 Cell 12 Cell 13
(boundary cell)

R1 R2

R3 R4 R5 R6 R7

R8

Ramp observers

Cell length: 500m Passage length: 6.50km

Ramp observers (missing) 

Travel direction

Figure 6: Example of scenario 3 (CASE C-1).

Table 3: Scenario design of ramp observer missing.

Scenario Cell without ramp observer Ramp observer missing Ramp type Traffic flow on-ramp (veh/h)
CASE C-1 Cell 2 R1 Off-ramp 972.14
CASE C-2 Cell 3 R2 On-ramp 1566.55
CASE C-3 Cell 6 R3 Off-ramp 218.75
CASE C-4 Cell 6 R4 On-ramp 332.09
CASE C-5 Cell 9 R5 On-ramp 481.12
CASE C-6 Cell 10 R6 Off-ramp 261.91
CASE C-7 Cell 10 R7 On-ramp 337.77
CASE C-8 Cell 12 R8 On-ramp 458.70
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Figure 7: Result and error of scenario 1: (a) result of Case A-4, (b) result of Case A-7, (c) result of Case A-10, (d) error of Case A-4, (e) error
of Case A-7, and (f) error of Case A-10
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Figure 8: Continued.
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and 1.27/km in the distribution density. ,erefore, the ac-
curacy of the estimation results can be improved with the
highest efficiency by reducing the particle size of the ob-
servation interval to 1000m and increasing the observer
density to 1/km.

5.3. Adaptability Analysis of Missing Ramp Observers. ,e
estimated results for different missing ramp observers are

shown in Table 5 and Figure 10. It is found that the absence
of ramp observation environment has a higher impact on the
free-flow conditions but a smaller impact on the congestion
conditions. In addition, for high inflow and outflow ramps
(take CASE C-1 and CASE C-2 as examples), the absence of
ramp observation equipment has a relatively small impact on
the estimation results, while for low flow ramps, the absence
of ramp observation equipment will significantly increase
the estimation error and reduce the estimation accuracy.
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Figure 8: Result and error of scenario 2: (a) result of Case B-2, (b) result of Case B-3, (c) result of Case B-4, (d) error of Case B-2, (e) error of
Case B-3, and (f) error of Case B-4.
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Figure 9: Result and error of scenario 3: (a) result of Case C-2, (b) result of Case C-6, (c) result of Case C-7, (d) error of Case C-2, (e) error of
Case C-6, and (f) error of Case C-7.
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Figure 10: Result and error of scenario 1 under different evaluation methods: (a) result (RMSE: km/h), (b) result (RMSE: km/h), (c) result
(MAE: km/h), (d) error (MAE: km/h), (e) result (MAPE: %), and (f) error (MAPE: %).
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Moreover, for the same cell (CASE C-6 and CASE C-7, for
example), when the ramps’ inflow and outflow are relatively
similar, the error caused by the absence of the off-ramp’s
observation equipment is smaller than that caused by the
absence of the on-ramp observation equipment. In other
words, the impact of the absence of the off-ramp’s obser-
vation equipment is relatively small. Also, the impact of
ramp observer loss on the estimated results is lower than that
with 1000m or longer distance interval and is close to that of
the road observer damage environment.

6. Conclusion

Under the global development of autonomous driving, the
new generation of urban infrastructure is required. How-
ever, limited by the financial and investment input, it is quite
necessary tomodel a new traffic flowmodel which is not only
applicable to autonomous driving vehicles but also can adapt
to the existing urban observation infrastructure. ,erefore,
this paper discusses the applicability of the N-X traffic state
estimation model in the actual observation environment by

Table 4: Result of scenarios with different observation distance intervals.

Scenario Observation interval (m) Number of observers Density of observers per km RMSE (km/h) MAE (km/h) MAPE (%)
CASE B-1 500 12 2.18 6.73 2.46 4.19
CASE B-2 1000 7 1.27 15.96 3.99 6.80
CASE B-3 1500 5 0.91 35.89 5.80 9.57
CASE B-4 2000 4 0.73 49.21 6.77 10.85
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Figure 11: Adaptability of different observation intervals: (a) result under different observation intervals; (b) result under different density
of observers.

Table 5: Result of scenarios with missing ramp observers.

Scenario

All cells in the channel Cell without ramp observers
Result Error Result Error

RMSE
(km/h)

MAE
(km/h)

MAPE
(%)

RMSE
(km/h)

MAE
(km/h)

MAPE
(%)

RMSE
(km/h)

MAE
(km/h)

MAPE
(%)

RMSE
(km/h)

MAE
(km/h)

MAPE
(%)

CASE C-1 7.59 2.53 4.34 0.86 0.08 0.15 19.54 4.14 5.81 10.34 0.96 1.71
CASE C-2 11.74 3.01 4.81 5.01 0.55 0.62 69.06 10.34 11.62 56.05 6.20 6.87
CASE C-3 51.61 4.17 6.12 44.88 1.72 1.93 501.15 21.44 25.66 495.45 19.17 21.59
CASE C-4 48.50 4.31 6.55 41.77 1.86 2.36 461.33 22.13 29.29 455.62 19.86 25.22
CASE C-5 28.63 3.64 6.22 21.90 1.19 2.03 253.58 16.87 28.71 242.80 13.65 22.95
CASE C-6 28.40 3.66 5.78 21.67 1.21 1.59 228.78 14.12 19.67 224.11 12.10 15.77
CASE C-7 27.79 3.77 6.18 21.06 1.31 1.99 231.52 15.82 24.76 226.84 13.79 20.86
CASE C-8 31.51 3.95 6.56 24.78 1.49 2.37 283.22 19.95 31.91 273.36 16.53 26.24
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taking the ALPR technology as an example. ,is manuscript
first analyzes the existing problems in the ALPR system’s
observation environment in practice. Secondly, based on the
observation mechanism of vehicle license plate recognition
technology, the ALPR observation environment is simulated
based on the simulated channel modeling. Finally, through
the observation scene design, the ability to adapt to the
actual measurement environment is discussed from three
aspects: trunk road observation equipment damage, trunk
road observation interval distance, and ramp observation
equipment missing. ,e experimental results reveal several
key features of the adaptability of the N-X traffic state es-
timation model in actual observation environment:

(1) ,e trunk road observation interval has the most
significant influence on the estimation results of the
N-X traffic state estimation model. ,e accuracy of
the traffic state estimation model can be significantly
improved by shortening the distance between ad-
jacent observation devices. In addition, it is found
that the accuracy of the estimation results can be
improved with the highest efficiency under the
premise of limited equipment input by reducing the
observation intervals to 1000m and increasing the
density of observer layout to 1 device per kilometer.

(2) ,e influence of the damage of trunk road obser-
vation equipment on the results of n-X traffic state
estimation model is less than the influence of ex-
cessive interval. When the traffic conditions on both
sides of the observation equipment are relatively
similar, the damage of the observation equipment
has little influence on the traffic state estimation
results. However, when the traffic conditions on both
sides of the observation equipment are significantly
different, the damage of the observation equipment
has a great impact on the traffic state estimation
results. ,erefore, for the section with relatively
homogeneous traffic conditions, the layout of ob-
servation equipment can be relatively reduced.
However, for the road sections with different traffic
conditions, the normal operation of observation
equipment should be ensured in priority, and the
arrangement of observation equipment can be in-
creased relatively.

(3) ,e impact of ramp metering on the estimated re-
sults is smaller than that of the oversize (1.5 km or
more) of the observation interval of the trunk road
and is close to the damage of the observation
equipment of the trunk road. In addition, for ramps
with high flow rate, the absence of ramp observation
equipment has a relatively small impact on the es-
timated results. For ramps with low flow rate, the
absence of ramp observation equipment will sig-
nificantly increase the estimation error and reduce
the estimation accuracy. In addition, compared with
the absence of on-ramp observation equipment, the
absence of off-ramp observation equipment has
relatively little impact on traffic status estimation

results. ,erefore, in the case of limited equipment
investment, observation equipment should be placed
on the on-ramp in priority, and maintenance of
observation equipment on the ramp with large flow
can be slowed down appropriately.

Future work following this study may include the N-X
estimation framework to more complicated automated
connected applications in the intelligent transportation
system. Furthermore, field probe vehicle data-based esti-
mation analysis is desired to reveal the actual potentials of
the proposed model in practice.

Notations

n: ,e order of the vehicle packet and vehicle coordinate
x: Location, distance on a road, and space coordinate
t: Time, duration, and time coordinate
k: Density, k � − (zn/zx)

q: Flow, q � (zn/zt)

u: Speed, u � (zx/zt)

p: Time headway between two vehicles, p � (zt/zn) and
p � (1/q)

τ: Travel time density and travel time over a unit distance,
τ � (zt/zx) and τ � (1/u)

h: Distance headway between two vehicles, h � − (zx/zn)

and h � (1/k)

Δx: Segment length
Δn: Number of vehicles in a flow packet n and packet size
T: Travel time, T � τ × Δx � p × Δn.
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