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,e classical recursive three-step filter can be used to estimate the state and unknown input when the system is affected by
unknown input, but the recursive three-step filter cannot be applied when the unknown input distribution matrix is not of full
column rank. In order to solve the above problem, this paper proposes two novel filters according to the linear minimum-variance
unbiased estimation criterion. Firstly, while the unknown input distribution matrix in the output equation is not of full column
rank, a novel recursive three-step filter with direct feedthrough was proposed. ,en, a novel recursive three-step filter was
developed when the unknown input distribution matrix in the system equation is not of full column rank. Finally, the specific
recursive steps of the corresponding filters are summarized. And the simulation results show that the proposed filters can
effectively estimate the system state and unknown input.

1. Introduction

,e traditional Kalman filter [1] and its extension can re-
cursively estimate the state of the linear system with process
noise and measurement noise. ,e time-domain recursive
filter brings greater convenience for continuously processing
input data, so it can play a more important role in control
theory and engineering. ,e Kalman filter requires the noise
to be stationary white noise, but this supposition is some-
times not feasible because unknown input may not be white
noise and cannot be measured.

In the fields of environmental monitoring [2] and dis-
turbance suppression [3, 4], the system equation or output
equation contains unknown input owing to environmental
impacts and improper selection of model parameters. In
recent decades, the problem of state estimation with un-
known input has received extensive attention.

For continuous-time systems, the necessary and suffi-
cient conditions for the existence of optimal state filters have
been established [5–7]. Furthermore, the steps to reconstruct
unknown input are also quite complete [8, 9]. For the state
estimation problem of discrete-time systems, an early

solution was to add an unknown input vector to the system
state vector. ,en, the Kalman filter was used to estimate the
augmented state. However, the scenarios of using this so-
lution are limited to that the dynamical evolution of un-
known input is known [10, 11]. In order to reduce
computation costs of the augmented state filter, Friedland
[11] proposed the two-stage Kalman filter in which the state
estimation and unknown input estimation are decoupled.
Although this filter has been successfully applied in some
instances, it is still limited to the requirement that the dy-
namic evolution of unknown input is available. When the
unknown input only affects the system equation, Kitanidis
[5] developed an optimal recursive state filter which can
estimate the system state without prior knowledge of the
unknown input. And the stability and convergence condi-
tions of the above filter were raised by Darouach and
Zasadzinski [12]. Further, Darouachet al. [13] extended this
filter. So, the filter is valid when unknown input is directly
feedthrough to the output equation; that is, the unknown
input affects both the system equation and output equation.

Although the above methods can get the estimation
value of the system state, they all ignore obtaining the
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estimation value of unknown input, which is necessary in
some practical applications.

Hsieh [14] established a robust two-stage Kalman filter
(RTSKF). For systems without direct feedthrough of un-
known input to output, it can give the joint state and un-
known input estimation. But the optimality of the unknown
input estimation has not been proven. Furthermore, Gillijns
and De Moor [15] proposed a recursive three-step filter
(RTSF), which gave a proof that the unknown input esti-
mation is optimal. And the form of the unknown input
estimation obtained by RTSF is consistent with that of
RTSKF. On the other hand, Gillijns and De Moor [16]
extended RTSF so that it is still valid for linear discrete-time
systems with direct feedthrough.

Despite the fact that the above filters can solve the
problem of simultaneously estimating system state and
unknown input, they are based on a precondition: the
distribution matrix of unknown input must be of full col-
umn rank.

For systems with direct feedthrough, if the distribution
matrix of unknown input in output equation is not of full
column rank, Cheng et al. [17] presented an unbiased
minimum-variance state estimation (UMVSE). ,is method
transforms the output equation by singular value decom-
position of the distribution matrix. ,en UMVSE is applied
to address the problem of state estimation for the new
system. However, this method omitted the estimation of
unknown input. Hsieh [18] used an extension of RTSF
(ERTSF) to estimate the unknown input and state under the
assumption that the distribution matrix is not of full column
rank, but some parameters in ERTSF were obtained by
experience.,is paper put forward the novel recursive three-
step filter with direct feedthrough (NRTSF-DF) which can
give estimation value of the state and unknown input under
the same assumption. And compared with ERTSF, the
parameter of NRTSF-DF can be exactly obtained. For sys-
tems without direct feedthrough, the problem of filter design
with unknown input still exists though there are few related
literature studies about it. Similar to NRTSF-DF, the novel
recursive three-step filter (NRTSF) is proposed in this paper.
,e novel filters can achieve a simultaneous estimation of
the system state and unknown input under the condition
that the unknown input distribution matrix is not of full
column rank.

In recent years, the research of estimating system state
with unknown input is concentrated on nonlinear systems.
Based on the EKF structure, the filters estimating the state of
the nonlinear systemwere designed in [19, 20]. Furthermore,
by making some improvements on UKF [21], study [22]
obtained the filter with RTSF form. And the filter can es-
timate the state and unknown input simultaneously.

,is paper is organized as follows: in Section 2, the
problem is formulated. Section 3 deals with the design of the
optimal filter for the system with direct feedthrough, and the
specific structure of NRTSF-DF is summarized. Next, the
optimal filter for the system without feedthrough is estab-
lished in Section 4. ,e structure of NRTSF is also obtained.
Finally, Section 5 demonstrates the effectiveness of the
proposed filters through simulation.

2. Problem Formulation

Consider the linear discrete-time-varying system:

xk � Ak−1xk−1 + Gk−1dk−1 + wk−1, (1)

yk � Ckxk + Hkdk + vk, (2)

where xk ∈ Rn is the state vector, dk ∈ Rm is an unknown
input vector, and yk ∈ Rp is the measurement. ,e process
noise wk ∈ Rn and the measurement noise vk ∈ Rp are as-
sumed to be mutually uncorrelated, zero-mean, white
random signals with known covariance matrices,
Qk � E[wkwT

k ]≥ 0, and Rk � E[vkvT
k ]> 0, respectively. ,e

time-varying matrices Ak, Gk, Ck, and Hk are known with an
appropriate dimension. ,roughout the paper, the condi-
tions that (Ak, Gk) is observable and that x0 is independent
of wk and vk are satisfied. And the unbiased estimate 􏽢x0 �

E(x0) with Px
0 � E[(x0 − 􏽢x0)(x0 − 􏽢x0)

T] is known.
,e optimal filtering problem of the above system is to

obtain the unbiased optimal filtering sequence of un-
known input 􏽢d0|0, . . . , 􏽢dk|k􏽮 􏽯 and state 􏽢x0|0, . . . , 􏽢xk|k􏽮 􏽯 re-
cursively based on the initial estimate 􏽢x0, the covariance
matrix Px

0 , and the sequence of measurement
y0, y1, . . . , yk􏼈 􏼉. If Hk � 0, the system is transformed into a
linear discrete-time-varying system without direct feed-
through of unknown input to output. ,en, the corre-
sponding optimal filtering problem is transformed to
obtain the unbiased optimal filtering sequence of un-
known input 􏽢d0|1, . . . , 􏽢dk−1|k􏽮 􏽯 and state 􏽢x0|0, . . . , 􏽢xk|k􏽮 􏽯

under the corresponding conditions.

3. NRTSF-DF

,e RTSF proposed by Steven Gilljins in [16] can solve the
state and unknown input estimation problem of linear
system (1)-(2) while rank(Hk) � m, k � 0, 1, . . .. When the
unknown input distribution matrix in the output equation is
not of full column rank, that is, rank(Hk) � rk <m, we
consider a NRTSF-DF design method. ,e following is the
derivation process.

If rank(Hk) � rk ≤m, perform full rank decomposition:

Hk � HkTk, (3)

where Hk ∈ Rp×rk , Tk ∈ Rrk×m, and rank(Hk) � rank
(Tk) � rk. ,e full rank decomposition steps are given in
Appendix.

Defining the virtual unknown input by dk � Tkdk, then
Hkdk � Hkdk. If the estimation value of dk is expressed as
􏽢
dk|k, the minimal norm estimation value of unknown input
dk is

􏽢dk|k � T
+
k

􏽢
dk|k, (4)

where T+
k is the Moore–Penrose inverse of Tk. ,en, original

output equation (2) is rewritten as

yk � Ckxk + Hkdk + vk, (5)

where dk ∈ Rrk is the virtual unknown input vector.
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Based on the system state equation (1) and output
equation (5), we consider NRTSF-DF of the form

􏽢xk|k−1 � Ak−1􏽢xk−1|k−1 + Gk−1
􏽢dk−1|k−1, (6)

􏽢
dk|k � Mk yk − Ck􏽢xk|k−1􏼐 􏼑, (7)

􏽢xk|k � 􏽢xk|k−1 + Lk yk − Ck􏽢xk|k−1􏼐 􏼑, (8)

where the matrices Mk ∈ Rrk×p and Lk ∈ Rn×p still have to be
determined.

3.1. Time Update. Let 􏽢xk−1|k−1 and 􏽢dk−1|k−1 denote the op-
timal unbiased estimates of xk−1 and dk−1 given measure-
ment sequence y0, y1, · · · , yk−1􏼈 􏼉; then, the time update is

􏽢xk|k−1 � Ak−1􏽢xk−1|k−1 + Gk−1
􏽢dk−1|k−1. (9)

,e error in the estimate 􏽢xk|k−1 is given by

􏽥xk|k−1 ≜xk − 􏽢xk|k−1 � Ak−1􏽥xk−1|k−1 + Gk−1
􏽥dk−1 + wk−1,

(10)

where 􏽥xk|k ≜xk − 􏽢xk|k and 􏽥dk ≜dk − 􏽢dk|k. Consequently, the
covariance matrix of 􏽢xk|k−1 is given by

P
x
k|k−1 ≜E 􏽥xk|k−1􏽥x

T
k|k−1􏽨 􏽩 � Ak−1 Gk−1􏼂 􏼃

P
x
k−1|k−1 P

x d
k−1|k−1

P
dx
k−1|k−1 P

d
k−1|k−1

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦
A

T
k−1

G
T
k−1

⎡⎢⎣ ⎤⎥⎦ + Qk−1, (11)

with Px
k|k ≜E[􏽥xk|k􏽥xT

k|k], Pd
k|k ≜E[􏽥dk

􏽥d
T

k ], (Px d
k|k)T � Pdx

k|k

≜E[􏽥dk􏽥xT
k|k].

3.2. Virtual Unknown Input Estimation. In this section, the
estimation of the virtual unknown input dk is considered.

3.2.1. Unbiased Virtual Unknown Input Estimation.
Defining the innovation 􏽥yk ≜yk − Ck􏽢xk|k−1, it follows from
(5) that

􏽥yk � Hkdk + ek, (12)

where ek is given by

ek � Ck􏽥xk|k−1 + vk. (13)

Owing to 􏽥xk|k−1 is unbiased, E[ek] � 0 and
E[􏽥yk] � HkE[dk]. So, we can obtain an unbiased estimate of
the virtual unknown input dk from 􏽥yk.

Theorem 1. Suppose 􏽢xk|k−1 is unbiased; then, (6) and (7)
calculate the unbiased value of dk if and only if Mk satisfies
MkHk � Irk

.

Proof. ,is process is similar to the proof of ,eorem 1 in
[16], so it is omitted.

From ,eorem 1, rank(Hk) � rk is a necessary and
sufficient condition for an unbiased virtual unknown input
estimator of form (7). ,e matrix Mk � (H

T

k Hk)− 1H
T

k

corresponding to the least-squares (LS) solution of (12)
satisfies ,eorem 1. But from the Gauss–Markov theorem,
the LS solution is not necessarily minimum-variance as a
result of

􏽥Rk ≜E eke
T
k􏽨 􏽩 � CkP

x
k|k−1C

T
k + Rk ≠ cI, (14)

where c is a positive real number. □

3.2.2. MVU Virtual Unknown Input Estimation. An MVU
estimate of dk is calculated by weighted LS (WLS)
estimation.

Theorem 2. Let 􏽢xk|k−1 be unbiased, and let 􏽥Rk and H
T

k
􏽥R

−1
k Hk

be nonsingular; then, for

M
∗
k � H

T

k
􏽥R

− 1
k Hk􏼒 􏼓

− 1
H

T

k
􏽥R

−1
k , (15)

(4) is the MVU estimator of dk. 2e variance of the optimal
virtual unknown input estimate is

P
∗d
k|k � H

T

k
􏽥R

− 1
k Hk􏼒 􏼓

− 1
. (16)

Proof. ,is process is similar to the proof of ,eorem 2 in
[16], so it is omitted.

We use 􏽢
d
∗

k|k to express the optimal virtual unknown
input estimate corresponding to M

∗
k and let 􏽥

d
∗
k ≜ dk −

􏽢
d
∗

k|k.
,en, 􏽥

d
∗
k is given by

􏽥
d
∗
k � I − M

∗
k Hk􏼐 􏼑dk − M

∗
k ek � −M

∗
k ek. (17)

□

3.3. Measurement Update. In the last step, we use mea-
surement yk to update 􏽢xk|k−1. Using (8) and (12), we find that

􏽥xk|k � I − LkCk( 􏼁􏽥xk|k−1 − LkHkdk − Lkvk. (18)

Consequently, (8) is unbiased for all dk if and only if Lk

contents

LkHk � 0. (19)

Suppose Lk satisfy (19), from (18):

P
x
k|k � I − LkCk( 􏼁P

x
k|k−1 I − LkCk( 􏼁

T
+ LkRkL

T

k . (20)

So, we can calculate Lk by minimizing the trace of (20)
under the unbiasedness constraint of (19).
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Theorem 3. Lk is given by

L
∗
k � K

∗
k I − HkM

∗
k􏼐 􏼑, (21)

where K∗k � Px
k|k−1C

T
k

􏽥R
−1
k minimizes the trace of (20) under

the constraint of (19).

Proof. ,is process is similar to the proof of ,eorem 3 in
[16], so it is omitted.

We use 􏽢x∗k|k to express the state estimate corresponding
to L
∗
k . From (7) and (21),

􏽢x
∗
k|k � 􏽢xk|k−1 + K

∗
k I − HkM

∗
k􏼐 􏼑 yk − Ck􏽢xk|k−1􏼐 􏼑 � 􏽢xk|k−1 + K

∗
k yk − Ck􏽢xk|k−1 − Hk

􏽢
d
∗

k|k􏼒 􏼓. (22)

,en, we consider the expressions of P∗xk|k ≜E[􏽥x∗k|k􏽥x∗Tk|k]

and P∗xd
k|k ≜E[􏽥x∗k|k

􏽥
d
∗T
k ], where

􏽥x
∗
k|k ≜xk − 􏽢x

∗
k|k � I − L

∗
k Ck􏼐 􏼑􏽥xk|k−1 − L

∗
k vk. (23)

From (20) and (21), we obtain

P
∗x
k|k � P

x
k|k−1 − K

∗
k

􏽥Rk − HkP
∗d
k|kH

T

k􏼒 􏼓K
∗T
k . (24)

Using (23) and (17), it follows that

P
∗xd
k|k � −P

x
k|k−1C

T
k M
∗T
k � −K

∗
k HkP

∗d
k|k. (25)

Furthermore, by 􏽢dk|k � T+
k

􏽢
dk|k, we can get

P
d
k|k � T

+
k P
∗d
k|k T

+
k( 􏼁

T
P

x d
k|k � P

dx
k|k􏼐 􏼑

T
� −KkHkP

∗d
k|k T

+
k( 􏼁

T
.

(26)□

3.4. Summary of NRTSF-DF Equations. In order to reflect
NRTSF-DF clearly, summarize it as follows:

3.4.1. Time Update. Based on the unbiased estimates 􏽢dk−1|k−1
and 􏽢xk−1|k−1, the state estimates and corresponding variance
matrix from the time instant k−1 to k are obtained:

􏽢xk|k−1 � Ak−1􏽢xk−1|k−1 + Gk−1
􏽢dk−1|k−1,

P
x
k|k−1 � Ak−1 Gk−1􏼂 􏼃

P
x
k−1|k−1 P

x d
k−1|k−1

P
dx
k−1|k−1 P

d
k−1|k−1

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦
A

T
k−1

G
T
k−1

⎡⎢⎣ ⎤⎥⎦ + Qk−1.

(27)

3.4.2. Estimation of Virtual Unknown Input. Calculate the
rank of Hk, make full rank decomposition of Hk, and cal-
culate the virtual unknown input estimates 􏽢

dk|k and cor-
responding variance matrix at time instant k:

􏽥Rk � CkP
x
k|k−1C

T
k + Rk,

Mk � H
T

k
􏽥R

− 1
k Hk􏼒 􏼓

− 1
H

T

k
􏽥R

−1
k ,

􏽢
dk|k � Mk yk − Ck􏽢xk|k−1􏼐 􏼑,

P
d
k|k � H

T

k
􏽥R

− 1
k Hk􏼒 􏼓

− 1
.

(28)

3.4.3. Measurement Update. Calculate the state estimate 􏽢xk|k

and corresponding variance matrix at time instant k:

Kk � P
x
k|k−1C

T
k

􏽥R
−1
k ,

Lk � Kk I − HkMk( 􏼁,

􏽢xk|k � 􏽢xk|k−1 + Lk yk − Ck􏽢xk|k−1􏼐 􏼑,

P
x
k|k � P

x
k|k−1 − Kk

􏽥Rk − HkP
d
k|kH

T

k􏼒 􏼓K
T
k ,

P
xd
k|k � P

dx
k|k􏼒 􏼓

T

� −KkHkP
d
k|k,

􏽢dk|k � T
+
k

􏽢
dk|k,

P
d
k|k � T

+
k P

d
k|k T

+
k( 􏼁

T
,

P
x d
k|k � P

dx
k|k􏼐 􏼑

T
� −KkHkP

d
k|k T

+
k( 􏼁

T
.

(29)

Also, note that if Hk is of full column rank, letting Hk �

Hk and Tk � Im, RTSF is obtained.

4. NRTSF

If Hk � 0, systems (1) and (2) are transformed into a linear
discrete-time-varying system without direct feedthrough of
unknown input to output. It can be expressed as

xk � Ak−1xk−1 + Gk−1dk−1 + wk−1, (30)

yk � Ckxk + vk. (31)

,e classical filter proposed by Gilljins and De Moor in
[15] can solve the state estimation problemwhen Hk � 0, but
the application conditions to use this filter are that the
unknown input distribution matrix Gk−1 in the system
equation must meet rank(Gk−1) � m, k � 1, 2, . . ..

When the unknown input distribution matrix is not of
full column rank, that is, rank(Gk−1) � rk <m, then the
classical filter cannot be used. Similar to Section 3, we can
also consider an NRTSF design method. ,e following is the
NRTSF derivation process.

If rank(Gk−1) � rk ≤m, perform full rank
decomposition:

Gk−1 � Gk−1Tk−1, (32)

where Gk−1 ∈ Rn×rk , Tk−1 ∈ Rrk×m, and
rank(Gk−1) � rank(Tk−1) � rk. ,e full rank decomposition
steps are given in Appendix.
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Defining the virtual unknown input by dk−1 � Tk−1dk−1,
then Gk−1dk−1 � Gk−1dk−1. Because the unknown input is
estimated with one step delay, the estimation value of dk−1 is
expressed as 􏽢

dk−1|k and the minimal norm estimation value
of the unknown input dk−1 is

􏽢dk−1|k � T
+
k−1

􏽢
dk−1|k, (33)

where T+
k−1 is the Moore–Penrose inverse of Tk−1. ,en,

original system equation (30) is rewritten as

xk � Ak−1xk−1 + Gk−1dk−1 + wk−1, (34)

where dk−1 ∈ Rrk is the virtual unknown input vector.
Based on the system state equation (34) and output

equation (31), we consider NRTSF of the form

􏽢xk|k−1 � Ak−1􏽢xk−1|k−1, (35)

􏽢
dk−1|k � Mk yk − Ck􏽢xk|k−1􏼐 􏼑, (36)

􏽢xk|k � 􏽢xk|k−1 + Lk yk − Ck􏽢xk|k−1􏼐 􏼑, (37)

where the matrices Mk ∈ Rrk×p and Lk ∈ Rn×p still have to be
determined. Compared with the previous section, the ob-
vious difference is that the second step in NRTSF calculates
the value of virtual unknown input dk−1|k, while the previous
filter yields an estimate of virtual unknown input dk|k.

4.1. Time Update. Let 􏽢xk−1|k−1 express the optimal unbiased
estimates of xk−1 given measurement sequence
y0, y1, . . . , yk−1􏼈 􏼉; then, the time update is

􏽢xk|k−1 � Ak−1􏽢xk−1|k−1. (38)

Similarly, the covariance matrix of 􏽢xk|k−1 is given by

P
x
k|k−1 ≜Ak−1P

x
k−1|k−1A

T
k−1 + Qk−1 , (39)

with Px
k|k ≜E[􏽥xk|k􏽥xT

k|k], 􏽥xk|k ≜xk − 􏽢xk|k.

4.2. Virtual Unknown Input Estimation. ,e derivation idea
in this section is the same as Section 3.2 except that the time
index of unknown input is different.

4.2.1. Unbiased Virtual Unknown Input Estimation.
Defining the innovation 􏽥yk ≜yk − Ck􏽢xk|k−1, it follows from
(31), (34), and (35) that

􏽥yk � CkGk−1dk−1 + ek, (40)

where ek is given by

ek � Ck Ak−1􏽥xk−1|k−1 + wk−1􏼐 􏼑 + vk. (41)

Due to the fact that 􏽢xk|k−1 is unbiased, we can obtain an
unbiased estimate of the virtual unknown input dk−1 from
􏽥yk.

Theorem 4. Suppose 􏽢xk−1|k−1 is unbiased; then, (35) and (36)
calculate the unbiased value of dk−1 if and only if Mk satisfies
MkCkGk−1 � Irk

.

Proof. ,is process is similar to the proof of,eorem 1, so it
is omitted.

,e matrix corresponding to the LS solution of (40)
satisfies,eorem 4. But from the Gauss–Markov theorem, it
is not necessarily minimum-variance as a result of

􏽥Rk ≜E eke
T
k􏽨 􏽩 � Ck Ak−1P

x
k−1|k−1A

T
k−1 + Qk−1􏼐 􏼑C

T
k + Rk

� CkP
x
k|k−1C

T
k + Rk ≠ cI,

(42)

where c is a positive real number. □

4.2.2. MVU Virtual Unknown Input Estimation. ,rough
weighted LS estimation, we obtain an MVU estimate of dk−1.

Theorem 5. Let 􏽢xk−1|k−1 be unbiased and let 􏽥Rk and FT
k

􏽥R
−1
k Fk

be positive definite; then, for

Mk � F
T
k

􏽥R
− 1
k Fk􏼐 􏼑

− 1
F

T
k

􏽥R
−1
k , (43)

where Fk ≜CkGk−1, (33) is the MVU estimator of dk−1. 2e
variance of the corresponding input estimate is

P
d
k−1|k � F

T
k

􏽥R
− 1
k Fk􏼐 􏼑

− 1
. (44)

Proof. ,is process is similar to the proof of,eorem 2, so it
is omitted. □

4.3. Measurement Update. First, the estimator must satisfy
E[􏽢xk|k − xk] � 0, which can be expressed as

E 􏽢xk|k−1 + Lk CkAk−1xk−1 + CkGk−1dk−1 + Ckwk−1 + vk − Ck􏽢xk|k−1􏼐 􏼑 − Ak−1xk−1 − Gk−1dk−1 − wk−1􏽨 􏽩 � 0. (45)

Consequently, (37) is unbiased for all possible dk−1 if and
only if Lk satisfies

LkCkGk−1 − Gk−1 � 0. (46)

Let Lk satisfy (46); then, Px
k|k is given by

P
x
k|k � I − LkCk( 􏼁 Ak−1P

x
k−1|k−1A

T
k−1 + Qk−1􏼐 􏼑 I − LkCk( 􏼁

T
+ LkRkL

T

k

� Lk
􏽥RkL

T

k − P
x
k|k−1C

T
k L

T

k − LkCkP
x
k|k−1 + P

x
k|k−1.

(47)

So, we can calculate Lk by minimizing the trace of (47)
under the unbiasedness constraint of (46).
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Theorem 6. Lk is given by

Lk � Kk + I − KkCk( 􏼁Gk−1Mk, (48)

where Kk � Px
k|k−1C

T
k

􏽥R
−1
k minimizes the trace of (47) under

the constraint of (46).

Proof. ,is process is similar to the proof of,eorem 3, so it
is omitted.

Substituting (48) in (37) yields the equivalent state
update:

􏽢xk|k � 􏽢xk|k−1 + Kk + I − KkCk( 􏼁Gk−1Mk􏽨 􏽩 yk − Ck􏽢xk|k−1􏼐 􏼑.

(49)

Form (47) and (48),

P
x
k|k � P

x
k|k−1 − Kk

􏽥RkK
T
k + I − KkCk( 􏼁Gk−1P

d
k−1|kG

T

k−1 I − KkCk( 􏼁
T
.

(50)

□

4.4. Summary of NRTSF Equations

4.4.1. Time Update. Based on the unbiased estimates
􏽢xk−1|k−1, the state estimates and corresponding variance
matrix from time instant k−1 to k are obtained:

􏽢xk|k−1 � Ak−1􏽢xk−1|k−1,

P
x
k|k−1 � Ak−1P

x
k−1|k−1A

T
k−1 + Qk−1.

(51)

4.4.2. Estimation of Virtual Unknown Input. Calculate the
rank of Gk−1, make full rank decomposition of Gk−1, and
calculate the virtual unknown input estimates 􏽢

dk−1|k and
corresponding variance matrix at time instant k:

􏽥Rk � CkP
x
k|k−1C

T
k + Rk,

Fk � CkGk−1,

Mk � F
T
k

􏽥R
− 1
k Fk􏼐 􏼑

− 1
F

T
k

􏽥R
−1
k ,

􏽢
dk−1|k � Mk yk − Ck􏽢xk|k−1􏼐 􏼑,

P
d
k−1|k � F

T
k

􏽥R
− 1
k Fk􏼐 􏼑

− 1
.

(52)

4.4.3. Measurement Update. Calculate the state estimate 􏽢xk|k

and corresponding variance matrix at time instant k:

Kk � P
x
k|k−1C

T
k

􏽥R
−1
k ,

Lk � Kk + I − KkCk( 􏼁Gk−1Mk,

􏽢xk|k � 􏽢xk|k−1 + Lk yk − Ck􏽢xk|k−1􏼐 􏼑,

P
x
k|k � P

x
k|k−1 − Kk

􏽥RkK
T
k + I − KkCk( 􏼁Gk−1P

d
k−1|kG

T

k−1 I − KkCk( 􏼁
T
,

􏽢dk−1|k � T
+
k−1

􏽢
dk−1|k.

(53)

5. Example

In this section, we consider the state and unknown input
estimation problem when the system is interfered by dk as
well as zero-mean Gaussian white noise. Specifically, the
estimation problem we consider were given in Du [23]. ,e
parameters for the linear system are given by

A �

0.5 2 0 0 0

0 0.2 1 0 1

0 0 0.3 0 1

0 0 0 0.7 1

0 0 0 0 0.1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

G �

1 0 0

0 0 0

0 1 0

0 0 0

0 0 0.1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

C � I5,

H �

0 0 1

0 0 0

0 1 0

0 0 0

0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

R � 10− 2
×

1 0 0 0.5 0

0 1 0 0 0.3

0 0 1 0 0

0.5 0 0 1 0

0 0.3 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Q � 10− 4
×

1 0 0 0 0

0 1 0.5 0 0

0 0.5 1 0 0

0 0 0 1 0

0 0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(54)

,e unknown input dk � [d1kd2kd3k]T used in this ex-
ample is given in Figure 1.

,e results of using NRTSF-DF to estimate the unknown
input are presented in Figure 2. From Figure 2, NERTSF-DF
can estimate the unknown inputs d2k, d3k but has no effect
on d1k.,e reason is that the direct feedthroughmatrix Hk is
not of full column rank and, therefore, there is no infor-
mation about the unknown input d1k in the measurement.

Since the unknown input only affects the first three
elements of the system state, we only plot the true value and
estimated value of the first, second, and third element of state
vector xk in Figure 3. And the estimation errors of x1k, x2k,
and x3k are shown in Figure 4. It can be seen from the figure
that the state estimation value can track the true value.
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Figure 2: Estimation values of the unknown input dk.

–2

0

2

4

6

8

10

12

14

x 1
k, 
x 1

k

Actual value of state
Estimation value of state by NRTSF-DF

0 50 100 150 200 250 300 350 400 450 500
t (step)

(a)

x 2
k, 
x 2

k

–0.5

0

0.5

1

1.5

2

2.5

3

3.5

Actual value of state
Estimation value of state by NRTSF-DF

0 50 100 150 200 250 300 350 400 450 500
t (step)

(b)

Figure 3: Continued.
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For the linear system without direct feedthrough of

unknown input to output, let H �

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

G �

1 0 0
0 0 0
0 1 0
0 0 0
0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; then, the system is transformed into a linear

discrete system without direct feedthrough.
,e results of using NRTSF to estimate the unknown

input are shown in Figure 5. ,e NRTSF has no effect on d3k

because Gk−1 is not of full column rank. And there is no
information about the unknown input d3k in the system
state. Furthermore, there is no information about the d3k in
measurement.

Figures 6 and 7 show the true value, estimation value,
and the estimation error of the first three elements of the
state vector, respectively. From the figure, NRTSF is
effective.

6. Conclusion

,is paper discusses the problem of joint state and unknown
input estimation for linear systems with an unknown input
and proposes two novel filters, respectively, in accordance
with the linear minimum-variance unbiased estimation
criterion. For systems with direct feedthrough, a novel re-
cursive three-step filter with direct feedthrough is proposed.
,is filter can solve the problem that the classical recursive
three-step filter cannot be used when the unknown input
distribution matrix is not of full column rank. For the sit-
uation that unknown input only affects system equation and
the distribution matrix is not of full column rank, a novel
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Figure 3: States and their estimations. (a) Estimation of state x1k. (b) Estimation of state x2k. (c) Estimation of state x3k.

–0.5

0

0.5

x~ 1k

–0.1

0

0.1

x~ 2k
x~ 3k

–0.05

0

0.05

0 50 100 150 200 250 300 350 400 450 500
t (step)

0 50 100 150 200 250 300 350 400 450 500
t (step)

0 50 100 150 200 250 300 350 400 450 500
t (step)

Figure 4: State estimation error.

8 Mathematical Problems in Engineering



–2

0

2

–2

0

2

–2

0

2

0 50 100 150 200 250 300 350 400 450 500
t (step)

Actual values of the unknown input
Estimation values of the unknown input

0 50 100 150 200 250 300 350 400 450 500
t (step)

Actual values of the unknown input
Estimation values of the unknown input

0 50 100 150 200 250 300 350 400 450 500
t (step)

Actual values of the unknown input
Estimation values of the unknown input

d 1
k, 
d 1k

d 2
k, 
d 2k

d 3
k, 
d 3k

Figure 5: Estimation values of the unknown input dk.

–2

0

2

4

6

8

10

12

14

Actual value of state
Estimation value of state by NRTSF

0 50 100 150 200 250 300 350 400 450 500
t (step)

x 1
k, 
x 1

k

(a)

–0.5

0

0.5

1

1.5

2

2.5

3

3.5

Actual value of state
Estimation value of state by NRTSF

0 50 100 150 200 250 300 350 400 450 500
t (step)

x 2
k, 
x 2

k

(b)

Figure 6: Continued.

Mathematical Problems in Engineering 9



recursive three-step filter is proposed.,e simulation results
show that both of the proposed filters can effectively estimate
the unknown input and system state.

Appendix

,ere is a known matrix Hk ∈ Rp×m. If rank(Hk) � rk <m,
then there is rk order subformula inHk, and the determinant
of the subformula is nonzero. By swapping rows and col-
umns of the matrix Hk, the subformula is located at the

subblock 􏽥H11 of 􏽥Hk �
􏽥H11

􏽥H12
􏽥H21

􏽥H22
􏼢 􏼣, while the rank of 􏽥Hk is

equal to the rank of Hk. Since the rk order subblock is
nonsingular, the matrix 􏽥Hk can be expressed as

􏽥Hk �
􏽥H11

􏽥H21

⎡⎣ ⎤⎦ I 􏽥H
−1
11

􏽥H12􏽨 􏽩. (A.1)

In other words, there are nonsingular matrices
Dk ∈ Rp×p and Fk ∈ Rm×m satisfying

DkHkFk �
􏽥H11

􏽥H21

⎡⎣ ⎤⎦ I 􏽥H
−1
11

􏽥H12􏽨 􏽩. (A.2)

And then,

Hk � D
−1
k

􏽥H11

􏽥H21

⎡⎣ ⎤⎦ I 􏽥H
−1
11

􏽥H12􏽨 􏽩F
−1
k � HkTk, (A.3)

where Hk � D−1
k

􏽥H11
􏽥H21

􏼢 􏼣 and Tk � I 􏽥H
−1
11

􏽥H12􏽨 􏽩F−1
k are

nonsingular matrices of rank rk.
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