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A fault-tolerant control algorithm based on sliding modes is proposed to ensure the tracking of the desired trajectory for time-
varying systems even in the presence of actuator faults. /e proposed algorithm uses a continuous integral sliding mode and a
linear quadratic regulator, together with control allocation and system inversion techniques, resulting in both a finite-time exact
compensation of the faults and the exponential tracking of the reference.

1. Introduction

In general, linear and nonlinear systems are vulnerable or
susceptible to failure. A fault changes the behavior of a system
so that the system can no longer fulfill its objective. Faults are
usually classified as system parameter faults, sensor faults, and
actuator faults [1]. As airplanes or aerospace systems, there are
many applications that for safety require fault-tolerant control
(FTC) schemes that guarantee the fulfillment of the control
objective in the presence of faults.

/is work only considers actuator faults, which can be
partial or total, and it is assumed that the system has re-
dundancy in the actuators. /is redundancy allows the
control signal in the actuators to be reconfigured to the fault.
/erefore, satisfactory performance can be maintained even
with critical main actuator faults.

Fault tolerance cannot be achieved by typical state
feedback control [1]. However, this problem can be
addressed in several ways, such as robust control (passive
fault tolerance) [2, 3], adaptive control (active fault toler-
ance) [4], detection and isolation of faults, or by combi-
nations of these techniques [5]. Furthermore, faults may be

seen as a disturbance, so if a robust closed-loop control is
designed, the effects of any of these disturbances can be
minimized.

One way to make the system robust is through sliding
mode control [6, 7]. Methodologies based on sliding modes
make the system insensitive to the matched effects of faults
during the sliding phase, allowing fault detection and iso-
lation [8–10].

If the faults are present from the initial time, the con-
ventional integral sliding modes (ISMs) [11, 12] can be used
due to the absence of the reaching phase. In [13], a fault
control strategy for linear time-invariant (LTI) systems is
proposed. It uses an ISM control law to compensate for the
matched effects of the faults right after the initial time. For
nonlinear systems, the ISM is used for a flexible spacecraft in
[14]. However, in [15], an FTC approach based on ISM is
given for linear parameter-varying (LPV) systems. In [16],
this scheme is extended for linear time-varying (LTV)
systems. Unfortunately, the ISM has the disadvantage of
producing a high level of chattering, limiting its application.

To decrease the chattering, for relative degree one sys-
tems, the continuous sliding modes based on the
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supertwisting algorithm (STA) [17, 18] are a good option
since they generate a continuous control law. On the con-
trary, the continuous integral sliding modes (CISM) com-
bine the ISM with the STA [19, 20], ensuring the system’s
nominal behavior using a continuous control signal, thus
reducing the chattering. In [21], an FTC scheme based on
CISM for LTI systems is proposed, guaranteeing conver-
gence right after the initial time by assuming the absence of
faults until the controller has converged. However, this
assumption is quite restrictive since the system may present
faults at the initial time.

/is paper aims to design a fault-tolerant control al-
gorithm against actuator faults, based on continuous integral
sliding modes with online control allocation for time-
varying linear systems, with redundancy in the actuators.
/is algorithm can be applied to nonlinear systems if
tracking linearization is used, turning the tracking problem
into a stabilization one. /e designed algorithm ensures the
theoretically exact compensation of actuator faults in finite
time and ensures that the system affected by the failures
behaves as the nominal system in finite time using a con-
tinuous control signal. /e effectiveness of the proposed
algorithm is shown by simulating the longitudinal move-
ment of an airplane in MATLAB.

/is paper is organized as follows. Some preliminary
results and the problem formulation are described in Section
2. /e controller design that stabilizes in finite time the
tracking error is given in Section 3. Section 4 gives the
simulation results and the performed analysis. Finally,
Section 5 contains the conclusions of the paper.

2. Preliminaries and Problem Formulation

In this section, we introduce some preliminary results used
throughout the paper and establish the formulation of the
problem.

2.1. SupertwistingAlgorithm. Consider a relative degree one-
scalar system:

_s(t) � u(t) + ψ(t), (1)

where ψ(t) is a Lipschitz uncertainty/perturbation, i.e.,
‖ _ψ(t)‖≤ L. /e STA [15] is a second-order sliding mode
control that drives the sliding variable s and its derivatives to
zero in finite time. It generates a continuous control and
attenuates the chattering effect by hiding the switching term
under an integral. In general, the STA controller is given by

u(t) � − k1⌊s(t)⌉
1/2

+ w(t),

_w(t) � − k2⌊s(t)⌉
0
,

(2)

where ⌊·⌉p � |·|psign(·) and k1 and k2 are designed to
guarantee the finite-time convergence of s and _s to the origin
in finite time. /is controller compensates in finite-time
Lipschitz uncertainties/perturbations.

Theorem 1 (see [17, 18]). System (1) is finite-time stable if
the parameters of the system (2) satisfy

k2 > L;

k1 >
�����

k2 + L



.
(3)

2.2. Problem Formulation. Consider a nonlinear system:

_x(t) � f(t, x(t)) + g(t, x(t))u(t);

x t0(  � xo,
(4)

where f(t, x(t)), g(t, x(t)) are smooth vector fields, defined
on an open set D ⊂ Rn, u(t) ∈ Rm is the control input, and
x(t) ∈ Rn is the state vector, and it is fully known. For
simplicity, assume that the previous system has been
transformed to its normal form and linearized around a
trajectory so that the dynamics of the error are represented
by the following LTV system, which is subject to actuator
fault:

_z(t) � A(t)z(t) + Bu(t)W(t)u(t);

z t0(  � zo,
(5)

where A(t) ∈ Rn×n and Bu(t) ∈ Rn×m are known matrices,
W(t) � diag(w1(t), . . . , wm(t)) ∈ Rm×m is the fault matrix,
and z(t) ∈ Rn is the tracking error. Assume that the range of
the matrix Bu(t) � l<m for all t; i.e., there is redundancy in
the actuators. So, the matrix Bu(t) can be factorized using
the range factorization [22] as

Bu(t) � B](t)B(t), (6)

where B](t) ∈ Rn×l and B(t) ∈ Rl×m, both with rank l. Hence,
the faulty system (5) has been transformed into

_z(t) � A(t)z(t) + B](t)B(t)W(t)u(t). (7)

/e fault matrix W(t) denotes the possible actuators
faults; if wi(t) � 1 for i � 1, . . . , m, there is no fault in the i-
actuator, while wi(t) � 0 denotes its complete failure. If
0<wi(t)< 1, there is a partial fault in the actuator. Note that
if wi(t) � 0 for all t, the system loses controllability, so it is
required to establish the characteristics of the faults that the
system can withstand without losing controllability.

A strategy that takes the system to a free-redundancy
form is presented, where the faults are seen as disturbances.
Such a strategy allows designing a control law that com-
pensates the matched faults’ effects in finite time and ex-
ponentially stabilizes the error.

3. Control Design

Consider the LTV system subject to actuator fault (7), and
assume the following:

(1) System (1) is controllable.
(2) /e matrix B](t) is a function that can be differ-

entiated at least once. Also, both B](t) and _Bv(t) are
bounded and known.

Since system (7) has redundancy in the actuators, it is
necessary to distribute the full control signal in the actuators.
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A strategy to achieve this is through the control allocation
allowing to calculate the control input u(t). To carry out the
control allocation, assume that no fault is affecting the
system (5), that is, W(t) � Im. /en,

_z(t) � A(t)z(t) + B](t)B(t)u(t). (8)

Let ](t) � B(t)u(t), then u(t) can be reconstructed,
solving the minimization problem:

min u
T
(t)u(t)

subject toB(t)u(t) � ](t).
(9)

/e solution to this optimization problem [23] is

u(t) � B
+
(t)](t), (10)

where B+(t) � BT(t)(B(t)BT(t))− 1.
Now that the u(t) control has been calculated, system (8)

is rewritten, and the actuator faults can be considered as
follows:

_z(t) � A(t)z(t) + B](t)B(t)W(t)B
+
(t)](t). (11)

/e set of possible actuator faults is defined as

W � W(t) � diag w1(t), w2(t), . . . , wm(t) |det(Γ(t))

≠ 0∧ ‖W(t)‖≥wmin > 0,

(12)

where Γ(t) � B(t)W(t)B+(t).
Because l<m, the det (Γ(t))≠ 0 even if m − l actuators

have a total failure. If more than m − l actuators fail, system
stability cannot be ensured [13].

In the case of a fault-free system, that is, W(t) � I, the
system (11) reduces to

_zn(t) � A(t)zn(t) + B](t)]n(t). (13)

/is nominal fault-free system is used to design the
nominal control. Hence, assume that the pair (A(t), B](t))

is controllable. /erefore, it is possible to design a state
feedback control law ]n(t) � − K(t)zn(t) such that the
closed-loop system is exponentially stable.

To compensate for the effects of the actuator faults, let us
define a time-varying integral sliding surface:

s(z(t)) � G(t) z(t) − z t0( (  − 
t

t0

G(τ) A(τ)z(τ) + B](τ)vn(τ)(  + _G(τ) z(τ) − z t0( (  dτ, (14)

where z(t0) � zo and G(t) is a design matrix such that det
(G(t)B](t))≠ 0.

/e derivative of the sliding surface along the trajectories
of (8) is given by

_s(z(t)) � G(t)B](t)Γ(t)](t) − G(t)B](t)]n(t). (15)

Assume that ](t) � ]n(t) + ]I(t) and G(t) � B+
](t),

where B+
](t) � (BT

] (t)B](t))− 1BT
] (t), then

_s(z(t)) � Γ(t)]I(t) + Γ(t) − Il( ]n(t). (16)

/e equivalent control that maintains the trajectories of
system (11) in the sliding mode is

veq(t) � − (Γ(t))
− 1 Γ(t) − Il( ]n(t). (17)

During the sliding phase, the system (11) takes the
following form:

_z(t) � A(t)z(t) + B](t)]n(t). (18)

Observe that, on the sliding mode, system (18) is
equivalent to system (13).

Remark 1. Note that the proposed sliding variable (14)
contains the nominal dynamics of the LTV system. Hence, if
the sliding mode is guaranteed, the actuator faults’ matched
effects are wholly compensated.

/e controller is designed, so system (11) in the sliding
mode reaches and remains on the origin. /erefore, the
proposed controller has the following form:

]I(t) � (Γ(t))
− 1

− k1⌊s(z(t))⌉
1/2

− k2 
t

t0

⌊s(z(t))⌉
0dτ 

√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√
]b(t)

,

(19)
where Γ(t) is a numerical approximation of the matrix Γ(t).
/e computation procedure to obtain this approximation is
given in the next section, k1, k2 are designed constants, and
the function ⌊s(z(t))⌉q is defined as

⌊s(z(t))⌉
q

�

s1(z(t))



qsign s1(z(t))( 

⋮

sl(z(t))



qsign sl(z(t))( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (20)

/erefore, equation (16) can be rewritten as

_s(z(t)) � − k1⌊s(z(t))⌉
1/2

+Ω(t),

_Ω(t) � − k2⌊s(z(t))⌉
0

+ _W(t),
(21)

where W(t) � (Γ(t) − Il)]n(t) and || _W(t)||≤L.
According to the previous construction development and

if we choose k1 � 1.5
��
L

√
and k2 � 1.1L as in [17], it can be

seen that the system (21) complies with/eorem 1, so stability
can be ensured, and it can be concluded that the sliding
variable s(z(t)) converges to zero in finite time, and there-
fore, system (11) in sliding mode will behave like system (13).

Remark 2. /e convergence velocity of the proposed ap-
proach can be improved by increasing the parameters k1 and
k2. Moreover, a specific reaching time can be guarantee by
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following the scheme proposed in [24]. However, the greater
the parameters, the bigger the chattering.

3.1. Fault Matrix Approximation. /e proposed controller
(19) uses Γ(t), so an approximation is necessary. Let Γ(t) be
an approximation of Γ(t) obtained by a fault-identification
algorithm as in [13]. Consider the nonlinear system (4); for
simplicity, assume that the system (4) has been transformed
to its normal form. Hence, it can be represented as

_z(t) � f(z(t), t) + B](t)Γ(t)](t), (22)

where ](t) � ]n(t) + ]I(t). Since the state z(t) is completely
known, _z(t) can be calculated in finite time by using the
Levant differentiator [25]. To obtain Γ(t), the following
residual is defined: r � _z(t) − _zn(t), where _zn(t) is the
nominal system; therefore,

r � B](t)Γ(t) ]I(t) + ]n(t)(  − B](t)]n(t). (23)

Let ]I(t) � Γ− 1(t)]b(t), then

Γ(t) � B
+
](t)r + ]n(t)(  Γ− 1(t)]b(t) + ]n(t) 

− 1
. (24)

Note that, with this method, it is not possible to know the
value of the faults wi; i � 1, . . . , m. Moreover, the proposed
approach may be affected by the used identification
algorithm.

4. Simulation Results

Some MATLAB simulations are presented to validate the
above results. Consider the longitudinal motion of an air-
craft [26]:

_c

_θ

_q

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

1
mVt

qSCL(x) + Tn sin α + σt(  − mg cos(c)( 

q

1
Iy

qScCm(x) + Tnιtz cos σt( ( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

0 0

0 0

1
Iy

qSc
dCm

dδe

1
Iy

qSc
dCm

dδih

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

δe

δih

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦, (25)

where θ, q, c, δe, and δih represent pitch angle, pitch rate,
flight path angle, elevator, and horizontal stabilizer, re-
spectively. /e other parameters are Vt, α, m, g, Iy, Tn, ιtz,
and σt which represent true airspeed, angle of attack, mass,
gravity, the body axis moment of inertia, total engine thrust,
the distance from the engine centerline to the fuselage
reference line, and engine inclination angle, respectively.
/ese parameters are available in [27].

/e desired trajectory is shown in Figure 1, and the
simulations were made considering that the plane is at
6100meters above sea level and with a speed of 0.8 Mach.
/e system is linearized along the desired trajectory to
obtain an LTV model. /e nominal controller is composed
of an auxiliary control that maintains the system on the
desired trajectory and a linear quadratic regulator (LQR).
/e auxiliary control law is obtained by using a typical
inversion technique. In the following sections, the following
2 cases will be analyzed:

(i) In the first case, the simulation begins considering
that there are no faults in the actuators, and after
some time, it introduces a partial fault in the hori-
zontal stabilizer, which will become a total fault over
time and finally add a partial failure in the elevator.

(ii) In the second case, a time-varying fault is simulated
in the horizontal stabilizer.

In both cases, the CISM controller is designed following
the proposed approach and considering a perturbation
bound L � 3.

4.1. Piecewise Continuous Fault. For this simulation, in the
initial moment, neither the elevator nor the horizontal
stabilizer has failures. After 300s, a partial failure of 50% is
introduced in the horizontal stabilizer. From the second 600,
the partial failure of the horizontal stabilizer becomes a total
failure. Finally, after 900s, a partial failure of 70% is added to
the elevator, i.e.,

w1 �
1, if t ∈ [0, 900),

0.7, if t ∈ [900, 1200],


w2 �

1, if t ∈ [0, 300),

0.5, if t ∈ [300, 600),

0, if t ∈ [600, 1200],

⎧⎪⎪⎨

⎪⎪⎩

(26)

where t is the simulation time.
In Figure 2, we can see that, from the first moment, the

value of Γ(t) is known, i.e., Γ(t) � Γ(t). Observe that, with
the considered faults, the inverse of Γ(t) always exists.

In Figure 3, it can be noted that the error is zero in all
state variables. /e proposed fault is not Lipschitz in all t,
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which causes the controller to lose its convergence in the
points where the faults are non-Lipschitz. /is effect can be
seen as peaks in the pitch rate error in the seconds 300 s,
600 s, and 900 s.

Figure 4 shows the control signal made up of the LQR
and the CISM, introduced into the elevator and the hori-
zontal stabilizer, respectively. Observe how the control
signal increases in the seconds where the fault is introduced.
/e sliding variable remains at zero, but as expected, the
variable ceases to be zero in the seconds where the fault is not
Lipschitz and re-converges in finite time.

4.2. Time-Varying Fault. For simulation purposes, a time-
varying fault in the horizontal stabilizer is considered, i.e.,

w1 � 1, w2 � (1/2)cos((π/21)t) + 0.5, where t is the simu-
lation time.

In Figure 5, we can see that, as in Figure 2, from the first
moment, Γ(t) � Γ(t). Note that, with the considered fault,
Γ(t) is always invertible.

As shown in Figure 6, the error converges to zero in finite
time in all the state variables, so it can be concluded that the
desired trajectory is followed in the same manner. Note that,
in comparison with the first case, since the considered faults
fulfill the Lipschitz condition for all t, the controller never
loses its convergence.

As seen in Figure 7, the elevator control signal and the
horizontal stabilizer have several peaks. /is behavior is
caused by the shape of Γ(t). At those times, Γ(t) is close to
zero; i.e., the failure is near to be total. /e value of the faults
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Figure 1: Desired trajectory: (a) pitch angle; (b) pitch rate; (c) flight path angle.
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Figure 2: (a) Γ(t) and (b) Γ(t) of the case 1.
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may increase the control signal necessary to maintain the
system on the surface. Hence, the more severe the fault is, the
bigger the necessary control signal will be.

/e simulations show that, in the presence of actuator
faults in both cases, the trajectory tracking is assured ex-
ponentially by compensating the faults’ effects in finite time.
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Figure 4: Control signal and the sliding surface of case 1: (a) elevator; (b) horizontal stabilizer; (c) sliding surface.
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Figure 3: Tracking error case 1: (a) pitch angle error; (b) pitch rate error; (c) flight path angle error.
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Figure 6: Tracking error case 2: (a) pitch angle error; (b) pitch rate error; (c) flight path angle error.
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5. Conclusions

A fault-tolerant control scheme for time-varying linear
systems is presented. /e proposed scheme uses the LQR to
stabilize the nominal system so that when an actuator fault
occurs, the integral sliding mode makes the faulty system
behave as the nominal system in finite time. On the contrary,
the control allocation is responsible for distributing the
control signal, ensuring that the faulty system performs like
the nominal system in finite time. An application to the
longitudinal motion of an aircraft is included. Simulations
are included showing the effectiveness of the proposed fault-
tolerant control scheme.
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