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LetΛ be a numerical semigroup and I ⊂ Λ be an irreducible ideal of Λ. )e graph GI(Λ) assigned to an ideal I of Λ is a graph with
elements of (Λ\I)∗ as vertices, and any two vertices x andy are adjacent if and only if x + y ∈ I. In this work, we give a complete
characterization (up to isomorphism) of the graph GI(Λ) having metric dimension 2.

1. Introduction

In algebraic combinatorics, the study of graphs associated
with algebraic objects is one of the most important and
fascinating fields of research. During the last couple of
decades, a lot of research is carried out in this field.)ere are
many papers on assigning graphs to rings, groups, and
semigroups [1–6]. Several authors [7–13] studied different
properties of these graphs including diameter, girth, dom-
ination, metric dimension, central sets, and planarity.

We start by defining some basic concept related to graph
theory. A graphG � (V(G), E(G)) has a vertex set V(G) and
the edge set E(G). )e cardinality of the vertex set and edge
set is called the order and size of G, respectively. A path in G

is a sequence of edges u1u2, u2u3, . . . , uk−1uk. A graph G is
connected if every pair of vertices x, y ∈ V(G) is connected
by a path. )e distance between two vertices x, y ∈ V(G) is
denoted by d(x, y) and is the length of the shortest path
between them. )e diameter of G is denoted by d(G) and is
defined as the largest distance between the vertices of G. Let
U � u1, u2, . . . , ur􏼈 􏼉 be an ordered subset of V(G). )en, the
r−tuple (d(u, u1), d(u, u2), . . . , d(u, ur)) is the representa-
tion u with respect to U. )e vertex u is said to be resolved by
U if (d(u,u1),d(u,u2), . . . ,d(u,ur)≠(d(v,u1), d(v,u2), . . . ,

d(v,ur))) for any vertex v ∈V(G). )e set U is called re-
solving set of G if distinct vertices of G have distinct rep-
resentations with respect to U, and it is called basis of G if it
is a resolving set with minimal cardinality. )e metric di-
mension of G, denoted by μ(G), is the cardinality of basis.
)e concept of metric dimension was introduced by Slater
[14] and later studied by Harary andMelter [15]. It has many
applications, for example, robot navigation [16], pharma-
ceutical chemistry [17, 18], sonar and coast guard long range
navigation [14], and combinatorial optimization [19].

Let N be set of nonnegative integers. A subset Λ ⊂ N is
said to be numerical semigroup if the following holds:

(1) 0 ∈ Λ
(2) x + y ∈ Λ for all x, y ∈ Λ
(3) N\Λ is finite

It is easy to observe that the numerical semigroup is a
commutative monoid.)us, the set of numerical semigroups
classifies the set of all submonoids of (N, +). )e elements of
the set N\Λ are called gaps of Λ, and the largest element of
this set is known as Frobenius number. Note that every
numerical semigroup is finitely generated; that is, there exist
a set A � a1, a2, . . . , at􏼈 􏼉 such that Λ � 〈A〉 � n1a1 + . . .􏼈

Hindawi
Mathematical Problems in Engineering
Volume 2021, Article ID 6697980, 6 pages
https://doi.org/10.1155/2021/6697980

mailto:ahsanbanyamin@gmail.com
https://orcid.org/0000-0003-0717-7557
https://orcid.org/0000-0003-4523-8023
https://orcid.org/0000-0001-9615-3658
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6697980


ntat: n1, . . . nt ∈ N}. Moreover, every numerical semigroup
has a unique minimal system of generators. )e cardinality
of the minimal system of generators is called embedding
dimension of Λ. It is denoted by eΛ. A subset I of numerical
semigroup Λ is ideal (integral ideal) of Λ if for all x ∈ I and
s ∈ Λ and the element x + s ∈ I. An ideal I is called irre-
ducibly ideal if it cannot be written as intersections of two or
more than two ideals which contained it properly. For more
details on theory of numerical semigroup, the interested
readers can refer to [20].

Recently, several authors studied the metric dimension
of the graphs associated with the algebraic objects. Sol-
eymanivarniab et al. [21] gave some metric dimension
formula for annihilator graphs. Bailey et al. [22] studied the
constructions of resolving sets of Kneser and Johnson graphs
and provided bounds on their metric dimension. Faisal et al.
[23] studied the metric dimension of the commuting graph
of a dihedral group. )e metric dimension of a zero-divisor
graph of a commutative ring was studied in [13], while the
metric dimension of a total graph of a finite commutative
ring was studied in [24]. For more results on the metric
dimension, we refer the readers to [25–30].

2. Notation and Preliminaries

Let Λ � 〈A〉 be a numerical semigroup, where
A � a1, a2, . . . , an􏼈 􏼉 is the minimal system of generators of
Λ. )en, every x ∈ Λ has a representation of the form
u1a1 + u2a2 + · · · + unan, where u1, u2, . . . , un are nonnega-
tive integers. Let 1≤p≤ n be a fixed integer. We say that an
element x ∈ Λ has a p-representation if there exist
ai1

, ai2
, . . . , aip

∈ A and ui1
, ui2

, . . . , uip
positive integers such

that x � ui1
ai1

+ ui2
ai2

+ · · · + uip
aip

; that is, x can be written
as linear combination of exactly p generator of Λ. Let Λp

denote the set containing all the elements x ∈ Λ, which have
a p representation. It is easy to see that

Λ � ∪ n

p�1 Λp. (1)

Note that an element x ∈ Λ may have more than one p

representations. For an element x ∈ Λp, we use the notation
Σp if it has a unique p representation and Σp,1,Σp,2, . . . ,Σp,r

if it has r number of p representations. Let Σp ∈ Λp, then
there exist two p-tuples, the coefficients p tuple
(ui1

, ui2
, . . . , uip

) ∈ Zp
> 0, and the generators p-tuple

(ai1
, ai2

, . . . , aip
) ∈ Zp

> 0 such that Σp � ui1
ai1

+ ui2
ai2

+ · · · +

uip
aip

. We denote the coefficient and generators p tuple of an
element Σp by c(Σp) and g(Σp), respectively. Also, the j-th
component of c(Σp) and g(Σp) is denoted by cj(Σp) and
gj(Σp), respectively. By using the above notations, for any
x ∈ Λ, we define

Λp(x) � Σp: Σp � x􏽮 􏽯,

Λ(x) � ∪ n

p�1Λp(x).
(2)

For a p-representation Σp � ui1
ai1

+ ui2
ai2

+ · · · + uip
aip

,
we set

B Σp􏼐 􏼑 � vi1
ai1

+ vi2
ai2

+ · · · + vip
aip

: 0≤vij
≤uij

, 1≤j≤p􏼚 􏼛.

(3)

Lemma 1. With the notations defined above, we have

B(x) � ∪
Σp∈Λ(x)

B Σp􏼐 􏼑. (4)

Proof. )e proof of this lemma follows from the definition
of B(x).

Let Λ be a numerical semigroup and I ⊂ Λ be irreducible
ideal ofΛ. Binyamin et al. [31] assigned a graph to numerical
semigroup Λ and studied its properties. Peng Xu et al. [32]
assign a graphGI(Λ) to the ideal I of numerical semigroupΛ
with vertex set V(GI(Λ)) � (Λ\I)∗ and two vertices x, y are
adjacent if and only if x + y ∈ I. Barucci [33] showed that
every irreducible ideal I of numerical semigroup Λ can be
expressed in the form Λ\B(x), where B(x) � y ∈ Λ:􏼈

x − y ∈ Λ}, for some x ∈ Λ. Hence, the vertex set of the
graph GI(Λ) is the set vi: i ∈ B∗(x)􏼈 􏼉 for some x ∈ Λ. Peng
Xu et al. [32] proved that the graph GI(Λ) is always con-
nected and diameter 2. )e aim of this paper is to find all the
graphs GI(Λ) having metric dimension 2. )e following
result by Chartrand et al. [18] gives bound on the order of
graph with given metric dimension k and diameter d. □

Theorem 1. Let G be a graph with metric dimension k and
|V(G)| � n. Let d be the diameter of G. 6en, |V(G)|≤ dk + k.

Hence, to find graphs GI(Λ) with metric dimension 2, it
is enough to classify all graphs GI(Λ) of order less than or
equal to 6. In the next section, we give bounds for the graphs
GI(Λ) of orders 4 and 5.

2.1. Bounds for the Graphs GI(Λ) of Orders 4 and 5

Lemma 2. Let Λ � 〈A〉 be a numerical semigroup of em-
bedding dimension n≥ 2. 6en, |GI(Λ)|≠ 4, if one of the
following holds:

(1) Λp(x)≠∅ for some p≥ 3.
(2) |Λ1(x)|≥ 3.
(3) |Λ2(x)|≥ 2.
(4) Λ1(x) � ∅ and |Λ2(x)| � 1.
(5) |Λ1(x)| � 2 and |Λ2(x)| � 1.

Proof

(1) If Λp(x)≠∅ for some p≥ 3, then there is a
p-representation Σp of x in Λp(x). )is gives
g1(Σp), g2(Σp), g3(Σp), g1(Σp) + g2(Σp), g1(Σp) +

g3(Σp), g2 (Σp) + g3(Σp), x ∈B∗ (Σp)⊆B∗(x).
)is implies |GI(Λ)|≠ 4.
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(2) If |Λ1(x)|≥ 3, then there are Σ1,1,Σ1,2, . . . ,

Σ1,r ∈ Λ1(x) with r≥ 3. We assume that g(Σ1,1)<
g(Σ1,2)< · · · <g(Σ1,r) and then c(Σ1,1)≥ 5. )is
gives g(Σ1,1), 2g(Σ1,1), 3g(Σ1,1), 4g(Σ1,1), 5g(Σ1,1)

∈B∗(Σ1,1), and therefore, |GI(Λ)|≠ 4.
(3) If |Λ2(x)|≥ 2, then we have Σ2,1,Σ2,2, . . . ,

Σ2,s ∈ Λ2(x) with s≥ 2. One can easily see that
B∗(Σ2,1)∪B

∗(Σ2,2)∪ . . . ∪B∗(Σ2,s) must contain
g1(Σ2,1), g2(Σ2,1), g1(Σ2,2), g2(Σ2,2), g1(Σ2,1)+

g2(Σ2,1) and g1(Σ2,2) + g2(Σ2,2). )erefore,
|GI(Λ)|≠ 4.

(4) Lemma 1: If Λ1(x) � ∅ and |Λ2(x)| � 1 then there
is the unique 2-representation Σ2 of x. Now if
Λp(x)≠∅ for some p≥ 3 then from (1), it follows
that |GI(Λ)|≠ 4, and if Λp(x) � ∅ for all p≥ 3, then
gives B∗(x) � B∗(Σ2). So if c(Σ2) � (1, 1), then
|GI(Λ)| � 3; otherwise, |GI(Λ)|> 4. Consequently,
|GI(Λ)|≠ 4.

(5) If |Λ1(x)| � 2 and |Λ2(x)| � 1, then we can assume
Σ1,1,Σ1,2 ∈ Λ1(x) and Σ2 ∈ Λ2(x). )is gives
g(Σ1,1), g(Σ1,2), g1(Σ2), g2(Σ2), g1(Σ2) + g2(Σ2) are
in B∗(x), and therefore, |GI(Λ)|≠ 4. □

Lemma 3. Let Λ � 〈A〉 be a numerical semigroup of em-
bedding dimension n≥ 2. 6en, |GI(Λ)|≠ 5, if one of the
following holds:

(1) Λp(x)≠∅ for some p≥ 3.
(2) |Λ1(x)|≥ 2.
(3) |Λ2(x)|≥ 3.
(4) |Λ1(x)| � 1 and |Λ2(x)| � 2.

Proof. )is lemma can be proved in a similar way as we
proved Lemma 2. □

2.2. Computation of Irreducible Ideals for the GraphsGI(Λ) of
Orders 4 and 5

Lemma 4. Let Λ � 〈A〉 be a numerical semigroup of em-
bedding dimension n≥ 2. If |GI(Λ)| � 4, then x is one of the
following:

(1) x � 4g(Σ1).
(2) x � 3g(Σ1,1) and x � 2g(Σ1,2).
(3) x � 2g(Σ1) and x � g1(Σ2) + g2(Σ2).

Proof. If |GI(Λ)| � 4, then from Lemma 2, it follows that
x ∈ Λ satisfies one of the following conditions:

|Λ1(x)|≤ 2 and Λp(x) � ∅, ∀p≥ 2.
|Λ1(x)| � 1, |Λ2(x)| � 1 and Λp(x) � ∅, ∀p≥ 3.

If |Λ1(x)| � 1 and Λp(x) � ∅, ∀p≥ 2, then x has a
unique 1-representation Σ1. By Lemma 1, we get
B∗(x) � B∗(Σ1) � g(Σ1), 2g(Σ1), . . . , c(Σ1).g(Σ1)􏼈 􏼉. As
∣GI(Λ) ∣ � 4, it follows that c(Σ1) � 4. )is gives case (1).

Now if |Λ1(x)| � 2 and Λp(x) � ∅, ∀p≥ 2, then there
are exactly two 1-representations, say Σ1,1 and Σ1,2 of x.
Assume that g(Σ1,1)<g(Σ1,2), then c(Σ1,2)< c(Σ1,1) and
c(Σ1,1) is not a multiple of c(Σ1,2). )en, it follows from
Lemma 1 that

B
∗
(x) � B

∗ Σ1,1􏼐 􏼑∪B∗ Σ1,2􏼐 􏼑 � g Σ1,1􏼐 􏼑, 2g Σ1,1􏼐 􏼑, . . . , c Σ1,1􏼐 􏼑.g Σ1,1􏼐 􏼑􏽮 􏽯∪ g Σ1,2􏼐 􏼑, 2g Σ1,2􏼐 􏼑 . . . , c Σ1,2􏼐 􏼑.g Σ1,2􏼐 􏼑􏽮 􏽯

� g Σ1,1􏼐 􏼑, 2g Σ1,1􏼐 􏼑, . . . , c Σ1,1􏼐 􏼑.g Σ1,1􏼐 􏼑, g Σ1,2􏼐 􏼑, 2g Σ1,2􏼐 􏼑, . . . , c Σ1,2􏼐 􏼑.g Σ1,2􏼐 􏼑􏽮 􏽯.
(5)

We show that B∗(Σ1,1)∩B
∗(Σ1,2)􏽮 􏽯\ c(Σ1,2).g􏽮

(Σ1,2)} � ∅. Let p.g(Σ1,1) � q.g(Σ1,2) for some q<
p< c(Σ1,1) with q � 2, 3, . . . , c(Σ1,2) − 1. )en, p.g(Σ1,1)

+(c(Σ1,1) − p).g(Σ1,1) � c(Σ1,1).g(Σ1,1), and we get
q.g(Σ1,2) + (c(Σ1,1) − p).g(Σ1,1) � x. )is gives Λ2(x)≠∅,
a contradiction. )erefore, we have
|B∗(x)| � c(Σ1,1) + c(Σ1,2) − 1. As |GI(Λ)| � 4, c(Σ1,1) � 3
and g(Σ1,2) � 2 is the only possibility. )is gives case (2).

Let |Λ1(x)| � 1 � |Λ2(x)| and Λp(x) � ∅, ∀p≥ 3. )en,
we can assume Σ1 ∈ Λ1(x) and Σ2 ∈ Λ2(x) are the only
possible 1-representation and 2-representation of x, re-
spectively. By (2) in Lemma 2, we have c(Σ2) � (1, 1). In this
case, it is easy to see that B∗(x) � g(Σ1), 2g(Σ1), . . . ,􏼈

c(Σ1).g(Σ1), g1(Σ2), g2(Σ2)}. )en, |B∗(x)| � 4 gives
c(Σ1) � 2 and we get case (3). □

Lemma 5. Let Λ � 〈A〉 be a numerical semigroup of em-
bedding dimension n≥ 2. If | GI(Λ)| � 5, then x is one of the
following:

(1) x � 5g(Σ1).
(2) x � 2g1(Σ2) + g2(Σ2).
(3) x � g1(Σ2,1) + g2(Σ2,1) and x � g1(Σ2,2) + g2(Σ2,2).
(4) x � 3g(Σ1) and x � g1(Σ2) + g2(Σ2).

Proof. Given that |GI(Λ)| � 5, then from Lemma 5, it
follows that x ∈ Λ satisfies one of the following conditions:

|Λ1(x)| � 1 and Λp(x) � ∅, ∀p≥ 2.
|Λ2(x)|≤ 2 and Λp(x) � ∅, ∀p≠ 2.
|Λ1(x)| � 1, |Λ2(x)| � 1 and Λp(x) � ∅, ∀p≥ 3.
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)ese possibilities can be checked in a similar way as we
did in Lemma 4 to get the required result. □

3. Graphs GI(Λ) with Metric Dimension 2

Theorem 2. 6ere are exactly 5 nonisomorphic graphs
GI(Λ) with metric dimension 2.

We prove)eorem 2 in a sequence of following lemmas.

Lemma 6. 6ere are exactly 2 nonisomorphic graphs GI(Λ)
with 4 or less vertices and metric dimension 2.

Proof. It is trivial to note that no such graph exists for
|GI(Λ)| � 2, 3.

Now if |GI(Λ)| � 4, then from Lemma 4, we have the
following possibilities:

(1) x � 4g(Σ1) with Λp(x) � ∅, ∀p≥ 2.
(2) x � 3g(Σ1,1) � 2g(Σ1,2) with Λp(x) � ∅, ∀p≥ 2.
(3) x � 2g(Σ1) � g1(Σ2) + g2(Σ2) with Λp(x) � ∅,
∀p≥ 3.

If (1) holds, then I � Λ\B∗(4g(Σ1)), and therefore,
GI(Λ) is isomorphic to the graph given in Figure 1. So
metric dimension of GI(Λ) is 2.

Now if (2) or (3) holds, then either I � Λ\B∗(3g(Σ1,1))

or I � Λ\B∗(2g(Σ1)). In both cases, GI(Λ) is isomorphic to
the graph given in Figure 2, and therefore, metric dimension
of GI(Λ) is 2. □

Lemma 7. 6ere are exactly 3 nonisomorphic graphs GI(Λ)
with 5 vertices and metric dimension 2.

Proof. If |GI(Λ)| � 5, then from Lemma 5, we have the
following possibilities:

(1) x � 5g(Σ1) with Λp(x) � ∅, ∀p≥ 2.
(2) x � 2g1(Σ2) + g2(Σ2) with Λp(x) � ∅, ∀p≠ 2.
(3) x � g1(Σ2,1) + g2(Σ2,1) � g1(Σ2,2) + g2(Σ2,2) with
Λp(x) � ∅, ∀p≠ 2.

(4) x � 3g(Σ1) and x � g1(Σ2) + g2(Σ2) with
Λp(x) � ∅, ∀p≥ 3.

If (1) holds, then I � Λ\B∗(5g(Σ1)), and therefore,
GI(Λ) is isomorphic to the graph given in Figure 3.

Now, if (2) holds, then I � Λ\B∗(2g1(Σ2) + g2(Σ2)),
and therefore, GI(Λ) is isomorphic to the graph given in
Figure 4.

If (3) or (4) holds, then I � Λ\B∗(g1(Σ2,1) + g2(Σ2,1))

or I � Λ\B∗(3g(Σ1)). In both cases, GI(Λ) is isomorphic to
the graph given in Figure 5.

For all these 3 cases, one can easily show that metric
dimension of GI(Λ) is 2.

Finally, it is required to check all the graphs GI(Λ) of
order six having metric dimension 2. Binyamin et al. [34]
proved that if |GI(Λ)| � 6, then GI(Λ) is isomorphic to one
of the graphs given in Table 1. Now, it is easy to see that all
the graphs given in Table 1 have metric dimension 3. □

Figure 1: Graphs GI(Λ) When x � 4g(Σ1) with Λp(x) � 0,
∀p≥ 2.

Figure 2: Graph GI(Λ) for the remaining two cases.

Figure 3: Graphs GI(Λ) When x � 5g(Σ1) with Λp(x) � 0,
∀p≥ 2.

Figure 4: Graphs GI(Λ) When x � 2g(Σ2) with Λp(x) � 0,
∀p≠ q2.

Figure 5: Graph GI(Λ) for the remaining two cases.
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