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+e purpose of this paper is twofold. First, it introduces a new hybrid computational intelligence algorithm to the optimization
community. +is novel hybrid algorithm has hyperheuristic (HH) neighborhood search movements embedded into a recently
introduced migrating birds optimization (MBO) algorithm. +erefore, it is called HHMBO. Second, it gives the necessary
mathematical model for a shift scheduling problem of a manufacturing company defined by including the fairness perspective,
which is typically ignored especially in manufacturing industry. +erefore, we call this complex optimization problem fairness
oriented integrated shift scheduling problem (FOSSP). HHMBO is applied on FOSSP and is compared with the well-known
simulated annealing, hyperheuristics, and classical MBO algorithms through extended computational experiments on several
synthetic datasets. Experiments demonstrate that the new hybrid computational intelligence algorithm is promising especially for
large sized instances of the specific problem defined here. HHMBO has a high exploration capability and is a promising technique
for all optimization problems. To justify this assertion, we applied HHMBO to the well-known quadratic assignment problem
(QAP) instances from the QAPLIB. HHMBO was up to 14.6% better than MBO on converging to the best known solutions for
QAP benchmark instances with different densities. We believe that the novel hybrid method and the fairness oriented model
presented in this study will give new insights to the decision-makers in the industry as well as to the researchers from
several disciplines.

1. Introduction

Workforce scheduling has been a subject of continued re-
search and commercial interest in several disciplines due to
its important practical applications within the context of
intelligent systems. Workforce scheduling is a concept that
embraces a variety of scheduling problems, also referred to
as manpower scheduling and personnel scheduling in the
literature. Constructing efficient and equitable schedules is a
challenging issue requiring time and labor cost for the
companies with high number of employees.

+e real world problem we tackled aims to provide fair
personnel work schedules for a large-scale manufacturing
company that works 24 hours and seven days a week.
Personnel requirements for each day and shift differ and are
updated periodically. Employee requirement changes every
four weeks, regularly. On the other hand, there is a high rate

of employee circulation. Large numbers of new employees
are recruited and large numbers of employees leave at the
end of each period. +erefore, possible maximum level of
fairness within each planning period is sought.+ere are also
some essential legal regulations for employee schedules
which make the problem much more complicated. +e
problem is described in detail in Section 3.

+e presented problem has a sophisticated solution
space. We have envisioned that exploring the solution space
by more than one neighborhood search method could
contribute to finding promising results. Hyperheuristics is a
widely known way of applying multiple heuristic techniques.
On the other hand, recently proposed migrating birds op-
timization algorithm is receiving growing attention from the
researchers, due to the ability of providing good quality
solutions over a wide range of instances of a problem. As a
result, we wanted to integrate the exploitation capability of
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MBO with HH’s exploration capability for solving the
problem. Consequently, we introduce a novel technique that
has hyperheuristic movements embedded in the migrating
birds optimization algorithm (HHMBO). To the best of our
knowledge, there has been no investigation about hybrid-
izing hyperheuristics withMBO in the literature. HHMBO is
compared with the well-known algorithms, and it is shown
that the proposed hybrid algorithm is promising especially
for large sized instances of FOSSP.

HHMBO obtains very successful results on the FOSSP
model. Hence, we believe HHMBO is also promising for the
other combinatorial optimization problems. +erefore, we
aimed to measure its performance on a widely tackled
problem’s benchmark instances. Based on this idea, we have
implemented HHMBO on the quadratic assignment prob-
lem (QAP). As a result, HHMBO is again found to be very
successful on converging to the best known solutions for
QAP instances with different densities. We should note that
the data as well as the source codes of the programming
framework can be found at http://mimoza.marmara.edu.tr/
falkaya/research.htm.

+e contribution of this study is threefold: (i) defining
and validating the mathematical model of the fairness ori-
ented shift scheduling problem (FOSSP), (ii) proposing a
new hybrid metaheuristic algorithm that is composed of
hyperheuristic movements embedded in migrating birds
optimization (HHMBO), and (iii) showing the superiority of
HHMBO through computational experiments conducted on
both FOSSP dataset and well-known QAP benchmark
instances.

+e remainder of the manuscript is organized as follows:
Literature review is presented in Section 2, and problem
description details are presented in Section 3. Proposed
solution techniques are described in detail in Section 4.
Experimental setup is demonstrated in Section 5. Results are
presented and investigated in Section 6. Section 7 concludes
the paper and comprises suggestions for further research.

2. Literature Review

Many scientific studies have been examined in order to
locate the problem that we have dealt with. Ernst et al. [1]
offered a guide study that consisted of an annotated bibli-
ography of personnel scheduling. +ere are also many re-
view studies that extensively examine the workforce
scheduling literature [2–6]. Brucker et al. [7] categorized the
shift scheduling problems. Baker classified workforce
scheduling problems into three types [8]: shift scheduling
problem, days-off scheduling problem, and tour scheduling
problem. Shift scheduling involves selecting a set of the most
suitable shifts from a (large) pool of candidate shifts on a
single day by satisfying employee requirement in each time
slot. On the other hand, the main concern in days-off
scheduling is to determine the off-work days for each worker
over the rostering horizon rather than to assign the worker
particular shifts on working days. In contrast to days-off
scheduling, tour scheduling chooses off days for the workers
and decides shift types for each of their working days over
the planning horizon. Mathematical model of tour

scheduling problem is summarized and problem classifi-
cation is presented by Alfares [9]. Erhard et al. [4] presented
the first review study that focuses on quantitative methods
for physician scheduling literature. +ey indicated in their
study that it is more common to include fairness aspects for
physician scheduling domain than to ignore them.

Many different workforce scheduling problem models
are presented up to now. A new mathematical formulation
for mine shift scheduling is presented by Seifi et al. [10].
Brunner and Stolletz [11] prepared a schedule for the em-
ployees in check-in counters at airport. Atlason et al. [12]
presented a shift assignment study in which planning ho-
rizon is divided into short periods. Morris and Showalter
[13] presented a rewarding study that clarifies the usage of
set covering formulation for shift scheduling, days-off
scheduling, and tour scheduling problems ([14–16]). Alfares
[17] proposed a specific type of days-off scheduling, solved
by proposed solution technique. Altner et al. [18] presented a
days-off scheduling formulation. Lau [19] introduced a
special tour scheduling problem.

+e model we offer in this study associates tour
scheduling problem and employee assignment problem and
incarnates them as a single problem by overseeing the
fairness issue. We call this integrated problem fairness
oriented shift scheduling problem (FOSSP), in which
schedules are constructed for employees during the planning
period where the objective is providing fairness among all
workers. +e problem we are tackling is undertaken by
solving the tour scheduling and employee assignment
problems consecutively in [20]. However, obtaining solu-
tions to subproblems gives suboptimal results. +erefore, an
integrated solution approach is necessary. +e mathematical
model of FOSSP is built from scratch and then the model is
implemented with a solver. However, the solver finds the
optimum result but with an exponential growth in run time,
due to the NP-Hard nature of the problems. +erefore,
heuristics and/or metaheuristic approaches that provide
reasonable solutions for the problem are needed.

Manymetaheuristic based solution techniques have been
applied for solving the workforce scheduling problems so
far. +ey include artificial bee colony algorithm [21], particle
swarm optimization [22], migrating birds optimization [23],
genetic algorithm (GA) [24], an adaptive multiple crossover
GA [25], and a modified differential evolution (DE) algo-
rithm ( [26–29]). A tabu-search hyperheuristics solution for
nurse scheduling problem is presented in Burke et al.’s work
[30]. Pan et al. [31] proposed a hybrid heuristic, combining
tabu search and large neighborhood search techniques.
Hernández-Leandro et al. [32] presented a Lagrangian re-
laxation and a metaheuristic for the multiactivity shift
scheduling problem. A hybrid discrete water wave optimi-
zation algorithm is presented for scheduling problems [33].

Combinatorial optimization problems have a sophisti-
cated solution space and a single improvement technique is
insufficient to obtain promising results. More than one
neighborhood search method with different characteristics
may be promising to obtain more efficient exploration in the
solution space. One widely known way of applying multiple
heuristic techniques is hyperheuristics. Hyperheuristics
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(HH) is a metaheuristic technique formally defined as a
heuristic to select and manage a set of low level heuristics.
Many HH variations for optimization and scheduling
problems have been defined up to now, such as tensor based
hyperheuristic for nurse scheduling [34], column based
hyperheuristic for bus driver scheduling problem [35], tabu-
search hyperheuristics [30], and a simulated annealing
hyperheuristic [36]. Hyperheuristics are also integrated with
swarm based computational intelligence techniques such as
hybrid particle swarm optimization [37], ant colony opti-
mization based hyperheuristic [38], and hyperheuristic
based artificial bee colony algorithm [39]. On the other
hand, Duman et al. [40] recently proposed a new meta-
heuristic algorithm named migrating birds optimization
(MBO). +ey applied their algorithm to quadratic assign-
ment problems (QAP) and proved its efficiency.

3. Problem Description

In this section, we try to define and clarify the proposed and
tackled problem. Firstly, the properties and limitations of the
problem are explained. +en, cost measurement method is
described. Lastly, the mathematical model of FOSSP is
presented.+e terms time period, time slot, and working slot
are used interchangeably throughout this manuscript.

3.1. Properties and Limitations of the Problem. +e main
motivation behind defining this new problem is obtaining a
fair distribution of working slots (time periods) among fixed
number of employees during the specified planning period.
Production factory operates incessantly 24 hours a day,
seven days a week. +ere are totally three shifts in each day;
those are day shift, evening shift, and night shift. Employee
requirement list contains weekly employee demand for each
day of the week and each shift of a day.+e planning horizon
which is specified as four weeks in our case may consist of
several weeks. Employee requirement list is updated by
management department at the end of each period, and
same the requirement list is valid for all weeks in planning
horizon. Multiweek employee schedules are prepared sup-
plying personnel demand. +at is, the output schedule must
satisfy the number of workers needed for each day and shift,
besides ensuring a fair distribution between employees along
the given weeks.

Additionally, there are some essential legal regulations
for employee schedules. Some of those rules may be listed as
follows; if an employee has night shift on Sunday, (s)he
cannot be assigned to day shift on the following Monday; if
an employee has weekend off, he/she cannot be off on ad-
jacent Monday and an employee cannot work more than six
consecutive days. +ese additional legal constraints increase
the complexity of the problem. Under these constraints, the
aim is to provide a fair schedule distribution among em-
ployees throughout the planning period. Employees are
assigned to a specific stationary shift type during one week
and each employee has two off days. However, for each
worker, shift types and off days may change from one week
to another.

3.2. Determination of SchemaCosts. A tour or a schema may
be defined by a seven-lettered string containing D, E, N, or X
which mean day shift, evening shift, night shift, and off day,
respectively, and each letter corresponds to the days of the
week starting from Monday up to Sunday. An example
schema string is “XXEEEEE” which means Monday and
Tuesday are off and the week continues with five successive
evening shifts. +us, there occur exactly 63 different sche-
mata with three shift types and two days off rules.

+ree shifts in a day (namely, day, evening, and night)
and seven days of the week make a total of 21 time slots,
starting from Monday day shift and ending with Sunday
night shift. In the factory, day shift is between 07:00 and 15:
00, evening shift is between 15:00 and 23:00, and night shift
is between 23:00 and 07:00. Each employee is assigned to one
of those shifts each week; additionally each employee has
two off days during a week.

Taking individual employee preferences into account
while modeling the problem was not appropriate, as it would
make the already complex problem unsolvable. Hereby, the
preferability of time zones has been determined by a survey
conducted with the employees. We had classified the off days
according to their desirability.We have identified five off day
types: (i) weekend off, (ii) Friday-Saturday off, (iii) Sunday-
weekday off, (iv) consecutive weekday off, and (v) separate
weekday off. For determining the quality of a schema, we
assigned numerical values to off day types and shift types.
Based on the survey results obtained, enumerations for shift
types are determined as one, two, and three for day, evening,
and night shifts, respectively. Similarly, off day types,
weekend off, Friday-Saturday off, Sunday-weekday off,
consecutive weekday off, and separate weekday off, are
enumerated from one to five, respectively (Table 1).

Each schema (out of 63 schemata) has a predetermined
cost, obtained by the multiplication of its off day type
enumeration and shift type enumeration. An illustrative cost
calculation example for some of the schemata is given in
Table 2. One can easily recognize that more preferable
schemata have lower cost when the schema cost calculation
is examined. So, the objective of the problem turns out to be
minimizing the cost. As an example, “DDDDDXX” is the
most preferred and lowest cost tour.

A small sample requirement input for four employees is
illustrated in Table 3. Schema ID is schema identifier; a
schema may be identified by a number between one and 63.
FOSSP scheduling decides schema usage quantities by caring
for the employee requirements in each time period. +e
requirements for Monday day shift and evening shift are
zero and no employees are assigned to day shift on Monday.
+e requirement for Monday night shift is one and one
employee will be assigned to night shift on Monday with
schema ID 63. FOSSP output satisfies employee require-
ments by selecting the most suitable schema with the re-
quired usage quantity.

Since the requirements are the same for all weeks
during the planning period (four weeks in our case), the
same usage quantity of each schema must be used for each
week. +e sample output of FOSSP is given in Table 4;
schema ID 1 is assigned to employee one and employee
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three in week one, two other employees in week two, and so
on. Schema ID 2 is not assigned to anyone. Schema ID 25 is
assigned to one employee and schema ID 63 is assigned to
one employee in each week. +e problem assigns the same
schemas with same quantities to different employees for
given number of weeks.

3.3. Fairness Oriented Shift Scheduling Problem Model.
+e scheduling problem we handled in this study was
modeled as two consecutive problems in previous studies.
Tour scheduling problem and employee assignment prob-
lem [20] are jointly sufficient to define this particular
scheduling issue. Note that tour scheduling problem reduces

to set covering problem [13] which is NP-Hard. Similarly
employee assignment problem reduces to the generalized
assignment problem [14] which is also shown to be NP-
Hard. Since FOSSP corresponds to the combination of both
problems, it is also NP-Hard. Solving the problem as two
subproblems offers suboptimal solutions; however, whole
parts of the issue are significant and we need to find a so-
lution for an integrated single problem. FOSSP is the first
sample that put those problems together and solves them as a
unique problem in literature, to the best of our knowledge.
In the following, we provide the necessary notation and then
the mathematical formulation of FOSSP.

xws is the number of times schema s is used for each
week w,
S is the set of schemas (remember that a schema is a
seven-lettered string denoting the shift types and off
days; each schema is denoted by a number from 1 to
63),
T represents the time slots of week (there are totally 21
time slots in a week; each day contains three shifts
(planning time slot), and seven days comprise 21 time
slots similarly; each time slot is denoted by a number
from 1 to 21),
E is the set of employees,
W is the set of weeks,
cs is the cost of schema s,
rt is the requirement (number of required workers) at
time slot t,

Aews �
1, if employee e assigned to schema s in weekw,

0, otherwise,


(1)

Aews is the assignment variable and shows the as-
signments of each employee e for each week w and for
each schema s. A is equal to one if an employee e is
assigned to schema s in week w, and it is equal to zero
otherwise,

bst �
1, if schema s covers times lot t,

0, otherwise,
 (2)

bst indicates the time slot coverage of each schema. If
schema s comprises time slot t then b is equal to one
and it is equal to zero otherwise. M � sweAews

∗ cs/|E| is the average cost value for all employees,
calculated by total of schema assignment number and
schema cost multiplication, divided by the number of
employees,

Table 3: Sample requirement input.

Time slot ID Definition Requirement
1 Monday day shift 0
2 Monday evening shift 0
3 Monday night shift 1
4 Tuesday day shift 1
5 Tuesday evening shift 1
6 Tuesday night shift 1
7 Wednesday day shift 1
8 Wednesday evening shift 1
9 Wednesday night shift 1
10 +ursday day shift 2
11 +ursday evening shift 1
12 +ursday night shift 1
13 Friday day shift 2
14 Friday evening shift 0
15 Friday night shift 1
16 Saturday day shift 2
17 Saturday evening shift 1
18 Saturday night shift 0
19 Sunday day shift 2
20 Sunday evening shift 1
21 Sunday night shift 0

Table 1: Shift type and off day type enumeration.

Type Cost
Day shift 1
Evening shift 2
Night shift 3
Weekend off 1
Friday-Saturday off 2
Sunday-weekday off 3
Consecutive weekday off 4
Separate weekday off 5

Table 2: Some examples regarding schema cost computation.

Schema String c (s)
21 DDDDDXX 1 (1∗ 1)
42 EEEEEXX 2 (1∗ 2)
63 NNNNNXX 3 (1∗ 3)
8 DXDXDDD 5 (5∗1)
29 EXEXEEE 10 (5∗ 2)
50 NXNXNNN 15 (5∗ 3)

Table 4: Schema and employee assignments for four weeks.

Employee ID Week 1 Week 2 Week 3 Week 4
1 1 1 25 63
2 63 25 1 1
3 1 63 1 25
4 25 1 63 1
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Ne � wsAews ∗ c∗ cs is the all weeks’ total cost
value. +is value is calculated separately for each
employee. If employee e is assigned to schema s during
week w, Aews variable is equal to one and schema cost is
added to the total. +e sum of all weeks’ schema costs is
calculated and divided by total number of planning
week numberW. So average cost value is calculated for
each employee,
De � (M − Ne)

2 is the sum of squared distances of
each employee individual total Ne and the general
mean total M. +e sum of square deviations which
measures the pairwise differences is one of the in-
equality indices widely applied in the literature
[41, 42],

minimize
e

De, (3)


s

Aews � 1, for∀e, w, (4)


e

Aews � xws, for∀w, s, (5)


s

xwsbst ≥ rt, for∀w, t. (6)

+e objective is minimizing the squared distances of
each employee so that maximum fairness is sought. Con-
straint (4) means that each employee is assigned to only one
schema in each week. Constraint (5) ensures that the total
number of employees assigned to schema s for each week is
equal to xws (number of total employee assignments in each
week and for each schema). Constraint (6) ensures that
requirement in each time slot t (i.e., the required number of
employees) is satisfied.

Aews ∗ bs(21) + Ae(w+1) s1( )∗ b s1( )1≤ 1, for∀e, w, s, s1,

(7)



21

k�16
Aews ∗ bsk + 

3

k�1
Ae(w+1)(s1) ∗ b s1( )k≥ 1, for∀e, w, s, s1,

(8)



21

k�3q+1
Aews ∗ bsk + 

3q

k�1
Ae(w+1) s1( )∗ b s1( )k≤ 6,

for q � 0 . . . 6 for∀e, w, s, s1,

(9)

s, s1 ∈ S,

t, k ∈ T,

e ∈ E,

w, w + 1 ∈W.

(10)

Variables w + 1 and s1 are used in constraints five to
seven. w + 1 demonstrates the following week and s1 cor-
responds to the schema assignment of the following week.

Additional constraints (equations (7)–(9)) may be
explained as follows: Constraint five carries out the rule; if
employee has night shift on Sunday, (s)he cannot be
assigned to day shift on adjacent Monday. Time slot 21
corresponds to Sunday night shift and time slot 1 corre-
sponds to Monday day shift (Table 3). +is constraint
prevents assigning any two employees to adjacent shifts for
consecutive weeks w and w + 1. Another legal regulation is
that if an employee has weekend off, he/she cannot be off on
Monday (the first day of the next week), implemented by
constraint six. Time slot numbers from 16 to 21 embrace
weekend period, while time slots 1 to 3 correspond to three
shifts of Monday. Total assignment for those three days must
be greater than or equal to one. Hence, if someone had
weekend off, that person will work on Monday of the next
week (w + 1), or in other words an employee cannot be off
for three consecutive days. Constraint seven enforces the
rule; an employee cannot work for more than six days
consecutively. If q is equal to zero, it checks only the first
week; if q is equal to one, it calculates the total for six days of
first week starting fromTuesday and one day (Monday) from
second week and so on.

+e proposed model is implemented using GAMS
software. Tests are done in GAMS for small dataset and the
results are demonstrated in Section 6. However, for the
large-scale real-world requirements, we have implemented
heuristic based solution techniques and developed a novel
hybrid technique described in detail in the next section.

4. Proposed Solution Methods

In this section, the solution methods are clarified. Initial
individual generation process for FOSSP, hyperheuristics,
simulated annealing, migrating birds optimization algo-
rithms, and a novel hybrid algorithm, which is one of the
most important contributions of this study, are explained,
respectively.

4.1. Initial Individual Generation for FOSSP. Recall from the
small example that the ultimate output of FOSSP is a matrix
containing schema numbers assigned to employees for each
week. +erefore, a solution (also called an individual) to a
problem instance will refer to a feasible output in the re-
mainder of the manuscript. Again, recall that, due to the
nature of the problem, same set of schema numbers are used
in each week with different permutations. A sample FOSSP
individual is illustrated in Table 5 for ten employees and four
weeks. Employee number one is assigned to schema number
five in week one, employee number two is assigned to
schema twenty in week one, and so on.

We want to remind that requirement list is updated
periodically before preparing the schedules and the re-
quirements are the same for all weeks in planning horizon.
Initial individual creation progress of FOSSP is as follows:
Schemas are assigned to employees for the first week sat-
isfying the requirements in each time interval. +e schedules
of subsequent weeks (week two, week three, etc.) are con-
structed by shuffling assigned schema values in week one.

Mathematical Problems in Engineering 5



Additional controls for meeting the requirements and
controlling official rules are also taken into account.

4.2. Hyperheuristics. Hyperheuristics (HH) is a neighbor-
hood search technique used for selecting, applying, and
managing low-level heuristics and it is widely used in solving
combinatorial optimization problems [43]. Pseudocode of
the HH is presented in Algorithm 1. HH has two important
functionalities, one of which is heuristic selection mecha-
nism and the other is the move acceptance mechanism.
Heuristic selection mechanism is responsible for selecting a
low-level heuristic within the pool. Move acceptance
mechanism decides whether to accept new solutions or not.
In our implementation, simple random heuristic selection,
random permutation heuristic selection, and adaptive
searching heuristic selection strategies are used. Only Im-
provement and Monte Carlo acceptance strategies are
exploited as acceptance strategies. Now let us explain the
low-level heuristics applied for tackled problems,
respectively.

4.2.1. Low-Level Heuristics for FOSSP. +ere are totally four
low-level heuristics for FOSSP in this study. Each heuristic
checks the additional constraints specified in the model.

Heuristic 1 (H1): H1 selects a random schema among
the ones that are already assigned to an employee.
Another random schema is selected with tournament
selection with size five. Five schemas are selected
randomly among 63 schemas, and one of those five
schemas is chosen as second schema. Tournament
selection increases the possibility of choosing a lower
cost schema.
Heuristic 2 (H2): H2 randomly selects two employees
for each week and swaps their schema assignment
values.
Heuristic 3 (H3): H3 selects two employees randomly
for each week and inserts the schema value in subse-
quent location to the next place in prior employee
location.
Heuristic 4 (H4): H4 selects two employees randomly
for each week and inverts schema assignment values
between these employee locations.

4.2.2. Low-Level Heuristics for QAP. Four low-level heu-
ristics are implemented on QAP. +ose may be explained
basically as follows:

Swap: Swap heuristic simply selects two points in a
QAP individual and relocates their places.

Insert: Two random points are selected within an in-
dividual and the subsequent one is placed right after the
first random point. All points between selected points
move one step to the right.
Inverse: Two random points are selected within an
individual. All assignments between the selected points
are reversed.
Scramble: Two random points are selected on an in-
dividual. Assignments between the selected points are
scrambled.

4.2.3. Heuristic Selection Strategies. Selecting the low-level
heuristics requires a strategy. We applied three different
heuristic selection strategies. +ese are simple random (SR),
random permutation (RP), and adaptive searching (AS).

(i) SR randomly selects one of the low-level heuristics
and applies it only once.

(ii) RP firstly constructs a permutation of low-level
heuristics and applies each one once according to
the permutation.

(iii) AS is a smart selection mechanism that we designed
in this study. Each low-level heuristic has an equal
initial score (Ri) and those scores are updated
during the run. If heuristic improves the solution, its
score is increased as much as the change quantity
(Cq); if it worsens the solution, its score is decreased
as much as Cq. A successful heuristic’s score may
not exceed predefined upper boundary (Ub);
analogously an abortive heuristic’s score may not be
less than the predefined lower boundary (Lb). +e
heuristic with greater score has more probability to
be selected. It is applied once and the scores are
updated according to its performance.

4.2.4. Acceptance Strategies. Once a low-level heuristic is
selected and applied, the acceptance of new solution also
requires a strategy. We applied two strategies; these are Only
Improvement (OI) and Monte Carlo (MC).

(i) OI acceptance strategy only accepts better solutions.
(ii) MC acceptance strategy accepts better solutions

certainly. Additionally, it accepts worse solutions
with a small probability (Monte Carlo constant) in
order not to get stuck at the local optima.

4.3. Simulated Annealing. Simulated annealing (SA) is a
well-known local search algorithm proposed by Kirkpatrick
et al. [44], inspired from the annealing process of metal
work. A starting temperatureT is determined.+e larger this
value is, the more inferior solutions are encouraged. After a
predetermined number of iterations, T is set to T/a. When a

is large, the temperature decrease ratio is large and the
acceptance of inferior solutions become less likely at a
greater rate. When temperature becomes less than a pre-
defined value, SA stops (the stopping condition). +e
number of iterations at each temperature is limited by R and

Table 5: Sample four-week, ten-employee FOSSP individual.

Week e1 e2 e3 e4 e5 e6 e7 e8 e9 e10
1 5 20 30 35 40 53 58 8 18 27
2 8 18 27 30 35 40 53 58 5 20
3 8 18 27 53 58 40 30 35 5 20
4 40 53 27 30 35 8 18 58 5 20
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greater values of R correspond to slower cooling; that is,
more neighbor solution trial is occurring when there is a
greater likelihood of inferior exchanges being accepted. In
our implementation, R value changes and increases by an
initially specified b value. When a random neighbor is
generated, it is compared with the previous solution. If it is
better than the previous one, it is accepted. If it is worse than
the previous one, it may still be accepted with a small
probability. +is probability is calculated based on the
difference of old and new solution quality and the tem-
perature. +e pseudocode of SA is given in Algorithm 2.

4.4. Migrating Birds Optimization. Migrating birds optimi-
zation (MBO) is a neighborhood search technique proposed
by Duman et al. [40], inspired from the V formation flight of
the migrating birds. It has been recently proposed but
successfully applied in various research areas such as task
allocation problem [45], flow shop scheduling problem
[46–48], U-shaped assembly line balancing problems with
workers assignment [49], and continuous functions [50].

+e pseudocode of MBO is given in Algorithm 3. Similar
to birds of a V shape migration, some initial solutions or-
ganize a V formation including one leading solution and
some followers. In the flock of solutions, a limited number of
neighboring solutions for each main solution are generated.
+e neighboring solutions of each initial solution are
evaluated and if there are any improvements among them,
that initial solution is replaced by the solution provided by
the most improved neighbor. +en, each main solution is
tried to be improved further by the help of its neighbors.
+is means that each solution will share some of its
unused neighbors to the next (behind) main solution.
+erefore, except the leading solution, the other main
solutions of the flock have the chance to be improved by
one of the neighbors of the main solution in front of them.
+e procedure is repeated a number of times. +en, the
leading solution moves to the end of the flock and one of
its followers becomes the new leader. +e same procedure
is done and repeated for the new flock. +e algorithm
continues until a number of iterations are reached. Finally,
the best solution of the flock is introduced as the solution of
the MBO algorithm.

4.5. A New Hybrid Algorithm: HHMBO. Now, we present a
novel hybrid technique by integrating various hyperheuristic
techniques with the migrating birds optimization algorithm.
To the best of our knowledge, this work is the first attempt of
hybridizing MBO with hyperheuristics.

MBO is a metaheuristic algorithm that explores new
solutions by single step heuristics as illustrated in Figure 1.
Neighbor generation technique is fixed and does not change
throughout the execution of the algorithm. +erefore the
performance of classical MBO is much dependent on the
neighbor generation technique. However, giving chance
more than one heuristic with different characteristics to
discover search space may increase its exploration capability.
Based on this idea, we integrated the recently presented
MBO algorithm with the hyperheuristic principles. Instead
of a single discovery method, we took the advantage of
exploiting a set of low-level heuristics in order to construct
the neighbor solutions in the population.

Neighborhood generation process of hyperheuristics
embedded migrating bird optimization (HHMBO) is pre-
sented in Figure 2. +e neighbor solution generation part of
MBO is hybridized by HH characteristics, which is capable
of managing heuristic pool. A set of heuristic selection
strategies are handled for choosing the low-level heuristics.
In our implementation, we have applied simple random,
random permutation, and adaptive searching heuristic se-
lection strategies. +e new neighboring solution is accepted
or rejected according to the current move acceptance
specifications. We have implemented Only Improvement
and Monte Carlo move acceptance strategies. HHMBO
operates in different ways according to the adjusted heuristic
selection strategy and the move acceptance strategy. As a
result, the HHMBO types that emerged in the application
can be listed as follows: simple random Only Improvement
(SR_OI), simple random Monte Carlo (SR_MC), random
permutation Only Improvement (RP_OI), random per-
mutation Monte Carlo (RP_MC), adaptive searching Only
Improvement (AS_OI), and adaptive searching Monte Carlo
(AS_MC). HHMBO generates neighbor solutions by one of
those hyperheuristic variations. +e pseudocode of the al-
gorithm is given in Algorithm 4.

HHMBO offers a collaboration of hyperheuristics and
migrating birds optimization algorithm. HH provide an

Initialization i� 0
Initial candidate solution S0
Final solution Sf

sNew� S0, Sf � S0
while (i<maxIterations) Select heuristic according to heuristic selection strategy
sNew� applySelectedHeuristic (Sf)

if (sNew is accepted according to move acceptance strategy)
Sf � Snew

end if
i++

end while
return Sf

ALGORITHM 1: Pseudocode of HH.

Mathematical Problems in Engineering 7



extensive exploration capability due to their ability to
quickly adapt according to the problem instance at hand.
MBO exploits the leader solution more detailed each time
and the leader is updated in each generation. HHMBO takes
the advantage of exploring the solution space by the ex-
ploration talent of HH in addition to the exploitation skills of
MBO. +e properties of the HHMBO which distinguish it
from the other metaheuristic approaches are listed as
follows:

(i) A number of solutions running in parallel
(ii) +e benefit mechanism among the solutions
(iii) Exploiting the leader solution more than the others

in each generation
(iv) Exploring the search space by multiple operators

where the best strategy is determined by HH

5. Experimental Setup

In this section, we provide the details of computational
experiment settings. Firstly the dataset used in experiments
is described. +en the parameter settings of MBO, HH, SA,
and HHMBO are explained. Lastly, the benchmark dataset is
clarified.

GAMS is used to verify and test themathematicalmodel. All
algorithm implementations are done using Java programming
language on Eclipse IDE running on Intel i7-5500U CPU and
16GB memory computer operated by Windows 10 operating
system. Besides the basic constraints on the formulation pre-
sented, additional legal regulation constraints have also been
applied while implementing each solution technique.

5.1. Data Preparation. We had a limited amount of real data
provided by our collaborator company. However, we needed
a great amount of experimental data to achieve a fair
comparison among solution techniques we had imple-
mented. +erefore, a simple application is prepared, which
generates synthetic data, which have the general charac-
teristics of the real data. Requirements are selected randomly

Generate a random initial solution and indicate it as current solution, cs, initialize
temperature T
Best solution(bs)� cs
while termination condition is not satisfied

for R times
Obtain a neighbor solution, ns of cs
delta� cost of ns–cost of cs
if delta< 0
cs� ns

else if random()< e(|delta|/T)

cs� ns
if cost of ns< cost of bs
bs�ns

end for
T�T/a
R�R∗ b

end while

ALGORITHM 2: Pseudocode of SA.

Generate nob initial solutions randomly and place them on a hypothetical V formation arbitrarily
while termination condition is not satisfied

for nof times
Try to improve leading solution by generating and evaluating non neighbors of it
for each solution si in the flock (except leader)
Try to improve si by evaluating (non-olf) neighbors of it and olf unused best neighbors from the solution in the front
end for

end for
Move the leader solution to the end and forward one of the solutions following it to the leader position

end while

ALGORITHM 3: Pseudocode of MBO.

Solution Heuristic x Neighbor
Solution

Figure 1: Neighborhood generation in classical MBO.
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among a certain range, where lower and upper boundaries
are calculated based on employee number. A real input
dataset for 200 employees and sample synthetic requirement
data values are illustrated in Table 6. +e employee numbers
are shown in the top row and they vary from 30 to 500. +is
illustration comprises a sample requirement input for varied
number of employees. First column of the table contains the
time slot IDs; each one corresponds to a day and a shift type.
+e requirements in each time slot for a company with 200
(real), 30, 50, 100, 150, 200, and 500 employees are given in
the subsequent columns.

5.2. Parameter Settings. MBO and SA perform a unique
heuristic technique for improving solutions. Since we have
four different heuristic techniques, we have conducted an
experiment to understand which of the four operators in the
system is compatible with which algorithm. In order to
assess a fair comparison among all applied techniques, we set
the stopping criterion of the algorithms based on the
number of instances (noi) created while each algorithm is
running. +is experiment is done on each of the datasets,
while the number of instances (noi) is set to 10,000 and each
case is repeated 50 times. Heuristic operators are listed from
the best performing one to the least performing one in
Table 7. H1 through H4 correspond to heuristic one through
heuristic four, respectively, which are explained in Section
4.2.1. Swap, Insert, Inverse, and Scramble are applied on
QAP and explained in Section 4.2.2.

In order to get the best performance from the algorithms
for FOSSP, we need to use their best performing values.
+ese best performing values are discovered with fine-
tuning experiments. +e number of solutions that algorithm
can generate while surfing in the solution space is limited to
50,000 for each algorithm. +e experiments are repeated ten
times and the results acquired from the average perfor-
mances are represented in Tables 8 and 9. Best parameter
values are emphasized in bold font.

5.3. Experimental Setup of Benchmark Data. Apart from the
specific problem defined in this study, computational exper-
iments are also conducted with QAP to measure the success of
the HHMBO. Computational experiments presented have
been done using QAPLIB benchmark dataset, where QAP
instances are available together with their best known solu-
tions [51]. Fine-tuning experiments are handled to find out the
best performing values. +e number of solutions that the
algorithm can generate while navigating the solution space is
limited to 50,000. +e experiments were repeated ten times
and the results from the average performances are shown in
Table 10, with the best parameter values being in bold.

6. Results and Discussion

In this section, we present and analyze the results of
computational experiments. GAMS results are presented
firstly. +en, the results obtained by heuristic solution

Generate nob initial solutions randomly and place them V formation
Determine the heuristic selection strategy (Simple random, random permutation or adaptive searching)
Determine the move acceptance strategy (Only improvement or monte carlo)
while termination condition is not satisfied

for nof times
Try to improve leading solution by generating and evaluating non neighbors of it applying selected low level heuristic
for each solution si in the flock (except leader)
Try to improve si by evaluating (non-olf) neighbors of it and olf unused best neighbors from the solution in the front
Accept or reject the neighbor solution according to current move acceptance strategy.

end for
end for
Move the leader solution to the end and forward one of the solutions following it to the leader position

end while

ALGORITHM 4: Pseudocode of HHMBO.

Solution Neighbor
Solution

Monte
Carlo

Only
Improvement

Heuristic 2

Adaptive
Searching

Random
Permutation

Simple Random

Heuristic 3

Heuristic 4

Heuristic 1

Figure 2: Neighborhood generation mechanism in HHMBO.
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techniques on FOSSP are presented. Lastly, experimental
outcomes on QAPLIB are presented.

6.1. GAMS Results. +e GAMS utilizing CPLEX solver is
used to verify and test the mathematical model of FOSSP. If
the schedule is completely fair and all assignments are
scrupulous for each employee, then fitness is equal to zero.
+e result gets away from zero, while the solution wanders
away from fairness.

Solver tests are done for datasets with 10, 20, 30, and 60
employees and results are illustrated in Table 11 in terms of
cost and execution time. FOSSP is capable of finding optimal
value (zero) for employee numbers 10 to 30. FOSSP pro-
duces results closer to optimal for employee number 60. As
the size of the problem gets larger, complexity increases.
Obviously, execution time increases beyond linear behavior
as the number of employees increases. Model attains border
line of maximum iteration number in GAMS. Execution is
terminated on maximum iteration number; hence, the

Table 6: Sample real and synthetic inputs.

Real data Synthetic Data
ID Time slot meaning 200 30 50 100 150 200 500
1 Monday day shift 58 3 12 15 33 12 36
2 Monday evening shift 36 8 11 2 16 12 30
3 Monday night shift 50 8 7 23 9 42 76
4 Tuesday day shift 58 5 6 20 28 10 2
5 Tuesday evening shift 36 9 10 4 17 7 60
6 Tuesday night shift 50 9 7 1 1 34 41
7 Wednesday day shift 58 6 9 13 25 29 94
8 Wednesday evening shift 36 5 1 16 26 4 40
9 Wednesday night shift 5 3 4 14 15 40 3
10 +ursday day shift 58 6 8 6 28 40 88
11 +ursday evening shift 36 3 11 16 25 27 31
12 +ursday night shift 50 7 5 19 30 12 78
13 Friday day shift 58 8 7 5 33 2 103
14 Friday evening shift 36 1 4 14 16 17 89
15 Friday night shift 50 8 6 17 6 26 48
16 Saturday day shift 2 6 10 2 14 24 80
17 Saturday evening shift 5 3 11 1 24 1 96
18 Saturday night shift 5 2 2 5 15 10 79
19 Sunday day shift 5 1 13 1 1 39 55
20 Sunday evening shift 49 1 11 23 26 35 56
21 Sunday night shift 36 5 10 22 14 43 40

Table 7: Sample real and synthetic inputs.

FOSSP Low-level heuristics QAP Low-level heuristics
MBO H2, H4, H3, H1 MBO Swap, Insert, Inverse, Scramble
SA H1, H3, H4, H1 SA Swap, Insert, Inverse, Scramble

Table 8: Parameter fine-tuning experiment results for FOSSP.

Parameter MBO
HHMBO

SR_OI SR_MC RP_OI RP_MC AS_OI AS_MC
nob 5, 21, 51 5, 21, 51 5, 21, 51 5, 21, 51 5, 21, 51 5, 21, 51 5, 21, 51
non 3, 5, 7 3, 5, 7 3, 5, 7 3, 5, 7 3, 5, 7 3, 5, 7 3, 5, 7
nof 5, 10 5, 10 5, 10 5, 10 5, 10 5, 10 5, 10
olf 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3
Monte Carlo constant 0.0005, 0.001, 0.005 0.0005, 0.001, 0.005 0.0005, 0.001, 0.005

Table 9: Parameter fine-tuning experiment results for FOSSP.

Parameter SA Parameter Adaptive Searching
T 50.000, 75.000, 100.000 Ri 10, 15, 20
A 1.1, 1.2, 1.3 Cq 0.5, 0.8, 1
R 10, 20, 30 Ub 40,50,60,100
b 1.1, 1.2, 1.3 Lb 0, 5, 10
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execution time values are the total minutes required for
maximum iteration in each case.

GAMS is capable of solving the model, but it is poor in
terms of execution time, especially for large-scale problems.
+erefore, we needed to implement and use heuristic based
solution techniques for obtaining reasonable results within
acceptable run time.

6.2. Results Obtained by Utilizing Synthetic FOSSP Dataset.
In this subsection, results of heuristic based solution tech-
niques on FOSSP are presented. If N is the number of
employees, we limited the run time with N2 iterations in
order to assess a fair comparison among the applied tech-
niques. +is corresponded to 0.9 s for a problem of size 30
and to 34 s for a problem of size 100 on the specified
machine. Consequently, as the complexity of the problem
increases, the effort to be spent on its resolution also
increases.

Solution techniques are tested for numbers of employees
of 30, 50, 100, 150, 200, and 500. We have generated 100
sample synthetic inputs for each case. Average numerical
cost values gained from the ten runs are demonstrated in
Table 12. For all numbers of employees, HHMBO variants
discover the best results. For numbers of employees of 30
and 50, HHMBO SR_MC variant outperforms the others by
at least 5% on average. When the number of employees
increases to 100, 150, 200, and 500, HHMBO RP_OI variant
outperforms the other techniques.

When the performances are analyzed in accordance with
the increase of the number of employees, it is apparent that
MBO and HHMBO variants retain their accomplishment as
complexity rises. However, MBO is 66%, 90%, 30%, 9%, and
4% worse on average than the best performing HHMBO
variant for numbers of employees of 30, 50, 100, 150, and
200, respectively. It is clear that both algorithms are suc-
cessful in spite of increasing problem complexity. However,

Table 10: Parameter fine-tuning experiment results for QAP.

Parameter MBO
HHMBO

Parameter Adaptive
searchingSR_OI SR_MC RP_OI RP_MC AS_OI AS_MC

nob 5, 21,
51

5, 21,
51 5, 21, 51 5, 21, 51 5, 21, 51 5, 21, 51 5, 21, 51 Ri 10, 15, 20

non 3, 5, 7 3, 5, 7 3, 5, 7 3, 5, 7 3, 5, 7 3, 5, 7 3, 5, 7 Cq 0.5, 0.8, 1
nof 5, 10 5, 10 5, 10 5, 10 5, 10 5, 10 5, 10 Ub 40,50,60,100
olf 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 Lb 0, 5, 10
Monte Carlo
constant

0.0005, 0.001,
0.005

0.0005, 0.001,
0.005

0.0005, 0.001,
0.005

Table 11: GAMS results for FOSSP datasets.

Number of employees Cost values Execution time (minutes)
10 0 12.824
20 0 500.334
30 0 968.884
60 3.34 988.58

Table 12: Average results when noi is N2.

Employees
number MBO SA

HHMBO HH
SR_OI SR_MC RP_OI RP_MC AS_OI AS_MC SR_OI SR_MC RP_OI RP_MC AS_OI AS_MC

30 21.81 33.67 16.95 13.13 13.79 20.16 19.77 19.67 20.91 21.24 19.88 22.48 20.17 19.99
50 29.79 59.82 24.59 15.72 22.80 21.72 30.48 36.84 27.78 29.94 30.83 30.33 42.69 38.23
100 52.13 161.54 44.99 44.33 39.99 51.48 63.09 68.60 46.07 48.96 54.99 110.15 135.29 108.24
150 62.11 292.00 61.51 67.18 57.00 63.09 98.14 101.93 91.42 178.29 133.70 135.24 208.15 244.27
200 70.12 367.25 67.99 73.20 67.67 71.78 143.12 141.09 241.61 260.86 315.59 209.68 248.82 350.38
500 287.60 926.11 301.62 254.06 247.60 257.94 499.58 460.58 962.85 939.88 588.76 765.77 712.36 912.62

Table 13: Standard deviations of the experiment.

Employees
number MBO SA

HHMBO HH
SR_OI SR_MC RP_OI RP_MC AS_OI AS_MC SR_OI SR_MC RP_OI RP_MC AS_OI AS_MC

30 2.58 2.55 2.05 2.32 2.07 2.13 2.03 2.01 3.67 3.51 3.65 3.96 3.96 2.89
50 1.67 1.87 1.59 1.65 1.52 1.64 1.52 1.58 2.15 3.02 2.33 2.83 2.78 3.36
100 1.78 2.00 1.95 1.80 1.71 1.88 1.75 1.77 3.51 3.16 3.68 3.44 3.41 3.28
150 1.73 1.92 1.92 1.69 1.52 1.77 1.90 1.89 2.99 3.33 3.31 3.18 3.46 3.20
200 1.96 1.75 2.09 2.12 1.48 2.01 2.09 2.01 2.96 2.85 2.71 3.05 2.63 2.75
500 1.27 1.28 1.43 1.52 1.22 1.32 1.37 1.34 1.99 2.11 2.05 1.91 2.15 2.14
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Figure 3: +e performance of each algorithm for each number of employees.
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Table 14: +e t-test results of HHMBO-RP_OI and the state-of-the-art algorithms on FOSSP.

Algorithm 1↔Algorithm 2 30 50 100 150 200 500
HHMBO-RP_OI↔MBO 1.3E− 02 9.9E− 02 3.1E− 04 1.7E− 02 5.2E− 05 3.7E− 03
HHMBO-RP_OI↔ SA 1.6E− 05 3.8E− 04 5.7E− 05 6.9E− 06 4.1E− 08 4.9E− 04
HHMBO-RP_OI↔HH-SR_OI 2.4E− 06 7.4E− 05 1.1E− 08 3.4E− 12 2.2E− 11 2.7E− 22
HHMBO-RP_OI↔HH-SR_MC 9.7E− 06 1.5E− 04 2.4E− 10 3.3E− 11 4.0E− 15 2.2E− 19
HHMBO-RP_OI↔HH-RP_OI 2.6E− 05 1.3E− 02 1.9E− 11 1.4E− 11 5.8E− 14 2.7E− 23
HHMBO-RP_OI↔HH-RP_MC 2.8E− 04 1.9E− 02 6.4E− 10 7.7E− 09 3.9E− 12 1.4E− 21
HHMBO-RP_OI↔HH-AS_OI 4.1E− 03 3.8E− 02 1.7E− 05 4.9E− 12 7.8E− 16 1.4E− 17
HHMBO-RP_OI↔HH-AS_MC 6.7E− 04 1.2E− 03 2.9E− 06 6.0E− 12 2.2E− 15 6.1E− 18

Table 15: +e percentage deviations of heuristic results from the best solution.

Problem Density Size BKS MBO
HHMBO

SA_OI SR_MC RP_OI RP_MC AS_OI AS_MC
esc64a 3.17 64 116 0.0 0.0 0.0 58.6 58.6 0.0 0.0
tai64c 4.13 64 1,855,928 0.0 0.0 0.0 11.4 10.1 0.0 0.1
chr22a 8.68 22 6,156 9.6 16.8 13.3 41.2 45.8 8.1 7.1
esc16j 9.38 16 8 0.0 0.0 0.0 0.0 25.0 0.0 0.0
chr20a 9.50 20 2,192 31.3 55.3 56.6 147.7 132.6 27.9 20.1
chr20b 9.50 20 2,298 25.7 35.9 47.5 67.6 119.4 17.8 36.3
chr18a 10.49 18 11,098 54.2 71.0 81.6 197.2 190.1 53.8 55.2
esc16i 11.72 16 14 0.0 0.0 0.0 28.6 14.3 0.0 0.0
chr15a 12.44 15 9,896 22.6 12.7 40.4 76.2 116.9 35.8 30.1
chr15b 12.44 15 7,990 38.2 70.5 37.7 193.3 168.5 33.4 51.4
chr15c 12.44 15 9,504 53.8 39.2 62.9 95.4 96.6 39.2 42.0
chr12c 15.28 12 11,156 14.9 28.1 14.3 60.4 46.0 18.8 8.5
chr12a 15.28 12 9,552 20.5 37.5 19.7 60.2 58.5 19.8 5.7
esc16d 16.41 16 16 0.0 0.0 0.0 12.5 0.0 0.0 0.0
esc16e 16.41 16 28 0.0 0.0 0.0 14.3 14.3 0.0 0.0
esc16g 16.41 16 26 0.0 0.0 0.0 15.4 23.1 0.0 0.0
esc32d 17.58 32 200 0.0 3.0 4.0 37.0 35.0 0.0 0.0
esc32c 25.59 32 642 0.0 0.0 0.0 13.7 14.0 0.0 0.0
esc32h 27.54 32 438 0.0 2.3 2.3 26.5 21.0 0.0 0.0
esc16a 29.69 16 68 0.0 0.0 0.0 8.8 8.8 0.0 0.0
scr15 37.33 15 51,140 7.0 11.3 7.0 29.4 28.1 6.9 9.2
esc16c 39.84 16 160 0.0 0.0 0.0 5.0 8.8 0.0 0.0
esc16b 71.88 16 292 0.0 0.0 0.0 0.0 0.0 0.0 0.0
lipa20b 89.25 20 27,076 11.2 14.8 17.2 22.0 21.9 9.8 11.0
esc16h 89.84 16 996 0.0 0.0 0.0 1.6 0.0 0.0 0.0
lipa20a 90.25 20 3,683 2.2 3.0 3.0 4.5 4.5 2.4 2.7
had12 91.67 12 1,652 0.4 0.7 0.1 3.4 2.4 1.0 0.8
rou12 91.67 12 235,528 3.0 4.7 2.8 9.8 9.0 5.7 4.9
rou15 93.33 15 354,210 5.1 7.7 6.8 13.7 13.4 5.0 4.8
nug16b 93.75 16 1,240 3.9 6.9 3.4 12.9 13.7 4.5 4.4
els19 94.74 19 17,212,548 4.7 8.7 5.5 39.7 47.3 1.8 2.7
lipa40b 94.81 40 476,581 5.3 21.0 19.6 26.0 26.3 3.5 6.5
lipa40a 95.06 40 31,538 1.3 2.0 2.0 2.9 2.8 1.6 1.6
lipa50b 95.88 50 1,210,244 17.9 21.8 21.7 25.3 25.5 8.3 11.2
tai60b 98.33 60 608,215,054 1.1 2.2 2.7 40.2 41.0 0.6 1.1
sko100a 99.00 100 152,002 0.7 5.9 5.7 13.9 13.9 0.7 2.6
bur26b 100.00 26 3,817,852 0.1 0.5 0.3 2.5 3.0 0.0 0.1
bur26a 100.00 26 5,426,670 0.1 0.4 0.4 2.8 1.8 0.1 0.2
bur26c 100.00 26 5,426,795 0.0 0.2 0.2 3.1 3.1 0.0 0.1
bur26e 100.00 26 5,386,879 0.0 0.3 0.4 3.4 3.6 0.0 0.1
bur26g 100.00 26 10,117,172 0.0 0.1 0.4 2.6 3.0 0.1 0.0
Average 8.2 11.8 11.7 34.9 35.9 7.5 7.8
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HHMBO variants obtain slightly better results than MBO in
each condition.

+e best performing HHMBO variant is 156%, 281%,
304%, 412%, and 443% better than SA for numbers of
employees of 30, 50, 100, 150, and 200, respectively. As the
complexity of the problem increases, the performance of SA
decreases and the difference between the two algorithms
increases exponentially. Best performing HHMBO variant is
51%, 77%, 15%, 60%, and 210% better than the best per-
formingHH variant for numbers of employees of 30, 50, 100,
150, and 200, respectively. +e performance of HH is ad-
missible for numbers of employees of 30 to 150, whereas
when the number of employees increases to 200, HH per-
forms exponentially worse.

For the experiment in which the number of employees is
500, the total iteration number determined with N2 cor-
responds to 250,000. +at is a reasonably big number of
chances to search through the solution space. For this
challenging case, the best performing HHMBO variant
(RP_OI) is 274% better than SA, 138% better than HH, and
16% better than MBO.

HHMBO (RP_OI) obtained significantly better results in
complex FOSSP instances. RP_OI applies each of the four
problem specific heuristics consecutively due to the per-
mutation order. Each heuristic is applied to an equal number
of instances. Each heuristic has a particular ability to dis-
cover search space. Accomplishment of HHMBO (RP_OI)
exposes that when the algorithm is given a great search
ability, using heuristics equal numbers of times helps us to
find the best results. HHMBO is successful on catching
values close to global optimum. HHMBO provides diver-
sification along the search space by applying a variety of
heuristics alternately; that is why it is promising for solving
combinatorial optimization problems.

+e standard deviation results gained by FOSSP ex-
periments are presented in Table 13 to demonstrate the
robustness of the algorithms. It is observed that HHMBO-
RP_OI is more robust than its rivals. We can say that the
HHMBO variants produce slightly better standard deviation
results than their HH variants. +is can be explained by the
design of the algorithms as follows. +e HHMBO variants
wander within the solution space by exploiting some pri-
oritized (leader) solutions more than HH do, which in-
herently makes them more robust.

+e average results of each algorithm are illustrated in
Figure 3 for each number of employees.When the number of
employees is equal to 30, all algorithms produce close results
to each other. As the number of employees increases, the
distinction between the algorithms involved in the experi-
ment becomes more prominent. HHMBO-RP_OI produced
the best results for the most challenging experiment, when
the number of employees is equal to 500. HHMBO versions
figure out lower (better) results when they are compared
with their HH versions.

We have also applied t-test to check if the differences are
statistically significant. +e best performing HHMBO-
RP_OI and all other algorithms in the experiment are tested
and the statistical results obtained by two-tailed t-test are
given in Table 14. We observed that the p value for pairwise

t-tests among the best performing proposed variant
HHMBO-RP_OI and the state-of-the-art algorithms is
0.004% on average. +e results imply that HHMBO-RP_OI
is indeed statistically different from other algorithms.

6.3. Results on Benchmark Problems in QAPLIB. After ob-
serving that HHMBO variants get very successful results for
the FOSSP instances, we wanted to see their ability in
converging optimal solutions on a widely used problem. We
applied HHMBO on QAP, where MBO is firstly applied and
tested. If N is the size of a QAP instance, we limited the run
time with N3 iterations. +is corresponded to 0.01 s for a
problem of size 12 and to 48 s for a problem of size 100 on
the specified machine.

We have utilized 41 QAPLIB instances with different
densities. Density corresponds to the percentage of nonzero
entries in the flowmatrix.+e instance names, densities, size
of the instances, best known solutions (BKS), and the
percentage deviations of heuristic results from BKS are given
in Table 15. Problem instances are listed from the sparse one
to the dense one. Only the minimum costs obtained in 10
runs are considered, since the aim is to check the ability of
HHMBO in finding BKS.

+e results indicate that AS_IO variant of HHMBO is
accomplished on catching promising solutions. HHMBO
(AS_OI) is up to 14.6% better than MBO on converging to
the BKS. According to the average percentage deviation
gained from 41 instances, HHMBO (AS_OI) converges 7.5%
to BKS, while MBO is 8.2% close to it. HHMBO (AS_OI)
performs 0.7% better thanMBO on average. Best performing
variant of this experiment is adaptive searching Only Im-
provement HHMBO. Adaptive searching strategy exploits
low-level heuristics depending on their performances. +is
adaptive feature ensures choosing the most beneficial low-
level heuristic for each specific case during the run. It has
been observed from the experiments conducted on QAPLIB
benchmark problems that HHMBO consistently allows
finding better results, albeit slightly.

7. Conclusion

In this study, we introduced a novel hybrid computational
intelligence algorithm to the literature and the mathematical
model of a shift scheduling problem of a manufacturing
company defined by including the fairness perspective,
which is typically ignored especially in manufacturing in-
dustry. +e novel algorithm is designed by embedding
hyperheuristic (HH) improvements in the migrating bird
optimization (MBO) algorithm, called HHMBO. In this way,
the exploitation capability of MBO is improved and the
solution space is explored in a more diversified manner.

+e problem that we tackled is called fairness oriented
shift scheduling problem (FOSSP). +e model of FOSSP is
firstly verified with a solver, where the solver is capable of
catching global optima with large execution time even for
small instances. +erefore, exploitation of heuristic based
techniques was an apparent need. In line with this need, we
applied HHMBO together with simulated annealing (SA),
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hyperheuristics (HH), and classical migrating bird optimi-
zation (MBO). We have conducted computational experi-
ments in order to assess the performance of the algorithms
on synthetic data. Results show the superiority of HHMBO-
RP_OI and it is observed that it outperforms its rivals by 40%
on average for FOSSP. Besides, it is seen that HHMBO-
RP_OI definitely offers better solutions in large problem
instances, which is a desired property in practice and gap in
the literature. We believe that this good performance is due
to integrating the exploitation capability of HH with MBO’s
exploration capability.

To justify the superiority of HHMBO over the other
algorithms, we used QAP instances from the QAPLIB. +is
experiment was significant to understand whether the
achievement of the algorithm is specific to the particular
problem. We conducted computational experiments on 41
QAPLIB instances with assorted densities. According to the
results of this experiment, AS_OI variant of the new hybrid
algorithm could achieve up to 14.6% better results than
MBO.

+ere are several interesting directions for future re-
search. +e approach may be applied on different types of
optimization problems to highlight its wide applicability and
generality. An example may be the test suites given in [52].
Furthermore, a comparative study may be conducted on
swarm based hybrid algorithms. A multiobjective variation
of HHMBOmay be developed andmay be applied on a set of
multiobjective problems. Another research direction is to
help solve employee transportation issues while constructing
weekly schedules.
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