
Research Article
Developing a Multi-GPU-Enabled Preconditioned GMRES with
Inexact Triangular Solves for Block Sparse Matrices

Wenpeng Ma ,1 Yiwen Hu,1 Wu Yuan,2 and Xiazhen Liu2

1College of Computer and Information Technology, Xinyang Normal University, Xinyang, Henan 464000, China
2Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, China

Correspondence should be addressed to Wenpeng Ma; mawp@xynu.edu.cn

Received 22 August 2020; Revised 1 November 2020; Accepted 19 January 2021; Published 28 February 2021

Academic Editor: Hua Fan

Copyright © 2021WenpengMa et al.)is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Solving triangular systems is the building block for preconditioned GMRES algorithm. Inexact preconditioning becomes at-
tractive because of the feature of high parallelism on accelerators. In this paper, we propose and implement an iterative, inexact
block triangular solve on multi-GPUs based on PETSc’s framework. In addition, by developing a distributed block sparse matrix-
vector multiplication procedure and investigating the optimized vector operations, we form the multi-GPU-enabled pre-
conditioned GMRES with the block Jacobi preconditioner. In the implementation, the GPU-Direct technique is employed to
avoid host-device memory copies.)e preconditioning step used by PETSc’s structure and the cuSPARSE library are also
investigated for performance comparisons.)e experiments show that the developed GMRES with inexact preconditioning on 8
GPUs can achieve up to 4.4x speedup over the CPU-only implementation with exact preconditioning using 8 MPI processes.

1. Introduction

Solving a large sparse linear system of equations is always
necessary in scientific applications. For unsymmetric ma-
trices, the Krylov subspace-based Generalized Minimal
Residual (GMRES) algorithm [1] is widely used as an ef-
fective linear solver. Since the general purpose computing on
GPUs was introduced in 2007 by NVIDIA, various GPU-
enabled GMRES algorithms were designed using NVIDIA’s
CUDA (Compute Unified Device Architecture). Li and Saad
[2] investigated preconditioned Conjugate Gradient (CG)
and GMRES methods on TESLA C1060, and 4.0x speedup
can be obtained for GMRES algorithm. Khodja et al. [3]
implemented the GMRES algorithm on a GPU cluster by
exploiting Message Passing Interface (MPI) and CUDA, and
they also focused on minimizing the communication be-
tween processes using the compressed storage and hyper-
graph partitioning techniques. Yamazaki et al. [4, 5]
developed various procedures to perform the orthogonali-
zation steps of GMRES efficiently and introduced a serial of
preconditioners within domain decomposition methods for
communication avoiding GMRES (CA-GMRES) on a

hybrid CPU+GPU cluster.)eir CPU+GPU imple-
mentation could obtain a speedup of 7.4x and 1.7x over CA-
GMRES without preconditioning and with preconditioning,
respectively. Yang [6, 7] developed the preconditioned
GMRES algorithm by parallelizing the ILU(0), ILUT, block
ILU(k), and triangular solves on GPUs. Gao et al. [8]
proposed an efficient GPU kernel on the sparse matrix-
vector multiplication (SpMV) in GMRES and applied the
optimized GMRES to solving the two-dimensional Max-
well’s equations. He et al. [9] presented an efficient GPU
implementation of the GMRES with ILU preconditioners for
solving large linear dynamic systems.)ey obtained 3.0-
12.0x speedup over the CPU implementation. Other studies
on the Krylov subspace methods on GPUs can be found in
[10–19].

Preconditioning techniques are effective for accelerating
the convergence of GMRES algorithm. ILU factorization-
based preconditioning scheme [20] is one of the most widely
used methods. In this method, the ILU factorizations and
triangular solves need to be performed. However, they are
inherently sequential procedures and have strong data de-
pendency. Many parallel approaches have been studied, for

Hindawi
Mathematical Problems in Engineering
Volume 2021, Article ID 6804723, 17 pages
https://doi.org/10.1155/2021/6804723

mailto:mawp@xynu.edu.cn
https://orcid.org/0000-0002-5874-8164
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6804723

example, the level-scheduling algorithms [2, 6, 21] and in-
exact methods [22–27].)e level-scheduling schemes offer
limited parallelism on GPU, and the performance highly
depends on the sparsity of the matrix. In contrast, inexact
methods can offer sufficient parallelism and become at-
tractive on accelerators. Chow et al. [23, 24] presented an
iterative, fine-grained strategy for computing ILU factor-
izations, and their GPU implementation achieved up to 27x
over the level-scheduling approach. Anzt et al. [26] used the
iterative and inexact idea to solve triangular systems on
GPUs, and they showed an advantage over exact triangular
solves in terms of total computing time of GMRES although
inexact implementation resulted in more GMRES iterations.

Block sparse matrices are very common in scientific
computing areas, especially in multiphysics simulations.
Most of the existing parallel GMRES and preconditioning
algorithms mentioned above were designed for pointwise
matrices. Motivated by the block matrix applications and the
highly parallelized inexact preconditioning technique, in this
paper, we focus on developing a multi-GPU-enabled pre-
conditioned GMRES with the inexact block preconditioning
algorithm for block sparse matrices. Our contributions are as
follows:

(1) Based on PETSc’s framework, we develop the dis-
tributed block sparse matrix-vector multiplication
for GMRES on multi-GPUs using the cuSPARSE
library [28] and the GPU-Direct technique. And two
optimization strategies are investigated for vector
operations in the GMRES method.

(2) We proposed a strategy that implements the itera-
tive, inexact sparse triangular solves for block ma-
trices on GPUs and integrated it into PETSc. In order
to make performance comparisons, we also develop
other two versions of the preconditioning technique
for block sparse matrices.

(3) By employing the block Jacobi method, we investi-
gate the preconditioned GMRES with various block
preconditioning methods on a multi-GPU system.
Our experiments show that the developed multi-
GPU-based GMRES can achieve a speedup of up to
4.4x using 8 GPUs over the CPU-only imple-
mentations using 8 MPI processes.

)e remainder of this paper is structured as follows.
Section 2 introduces the definition of the block sparse matrix
with the storage format and describes a block-based right-
preconditioned GMRES algorithm.)e optimization
strategies, iterative inexact block sparse triangular solves,
and three implementations for the preconditioning step are
presented and discussed in Section 3. In Section 4, we
conduct many experiments to make detailed performance
comparisons between different strategies and implementa-
tions. Section 5 gives a summary of this work.

2. Background

2.1. Block Sparse Matrix. Given a sparsity pattern Sp, we
consider a general n × n block sparse matrix with block size s

as

A
(r,s)
n×n � Ai,j, i, j � 1, 2, 3, . . . , r , (1)

where r is the number of block rows and columns, Ai,j is a
s × s dense block for (i, j) ∈ Sp, and Ai,j � 0 for (i, j) ∉ Sp.

To conduct numerical operations on block sparse ma-
trices, an effective and efficient storage algorithm is required.
)e well-known method for storing a block sparse matrix is
the Block Compressed Sparse Row (BCSR) format [28, 29].
Currently, the popular numerical libraries such as Intel MKL
[30], NVIDIA’s cuSPARSE [28], and PETSc [31] support
BCSR format. In this format, the block sparse matrix A(r,s)

n×n

with nnzb nonzero blocks is represented by block rows using
three arrays rowptr, colval, and blkval. We assume the
indexing starts from 0 in C programming language:

(1) rowptr is of size r + 1, and all the column indices for
the ith(i< r) block row is recorded from rowptr(i) to
rowptr(i + 1) (not including) in colval array.

(2) colval is of size nnzb, and stores all column indices by
block rows.

(3) blkval is of size nnzb × s2, and stores all the values of
nonzero blocks by block rows.)e values within a
s × s block are stored consecutively.

However, the BCSR format cloud be specified in row-
major or column-major order depending on which index is
firstly ordered within a block.)e following matrix:

14 15 1 3 0 0

17 11 5 7 0 0

0 0 5 20 27 20

0 0 33 15 10 15

36 0 32 7 12 16

4 31 6 13 19 11

⎡⎢⎢⎣

⎤⎥⎥⎦

(3,2)

6×6

, (2)

rowptr: 0 2 4 7, colval: 0 1 1 2 0 1 2, blkval: {14, 17, 15, 11}, {1,
5, 3, 7}, {5, 33, 20, 15}, {27, 10, 20, 15}, {36, 4, 0, 31}, {32, 6, 7,
13}, {12, 19, 16, 11} illustrates an example of the column-
major BCSR format where four values within blocks are
stored by columns. In this paper, we employ column-major
BCSR format in accordance with PETSc.

2.2.PreconditionedGMRESAlgorithm.)eGMRESmethod,
proposed by Saad and Schultz [1] for solving linear systems,
is an iterative process where the residual vector of a linear
system is minimized over a Krylov subspace at every

2 Mathematical Problems in Engineering

iteration. In this paper, we consider the computation of a
block sparse linear system as

AB x
→

� b
→

, (3)

where B � (n, r, s) represents the number of rows and
columns, the number of block rows and columns, and block
size of the block sparse matrix, respectively.

To accelerate the convergence of GMRES, we apply
right-preconditioning technique to the linear system as

ABM
−1
B x

→
d � b

→
,

x
→

� M
−1
B x

→
d,

(4)

where MB is the block preconditioning matrix.
Similar to the GMRES for pointwise matrices, it is

straightforward to write the preconditioned GMRES algo-
rithm in the block format.)e process is shown in Algo-
rithm 1. Compared to the pointwise case, the algorithm
performs block sparse vector multiplication (line 7 in Al-
gorithm 1) and block preconditioning steps (line 6 and line
21 in Algorithm 1) instead.

When equation (4) is solved in a whole domain, the
preconditioning step can be realized by conducting the
incomplete LU (ILU) factorization [6, 20, 23] of AB and
performing two triangular solves [20, 21, 26] as

AB ≈ LBUB � MB, (5)

M
−1
B v

→
� z

→⟶ LB f
→

� v
→

,

UB z
→

� f
→

,
(6)

where LB is the lower triangular factor and UB is the upper
triangular factor. However, the ILU factorizations are used
as subdomain preconditioners within the domain de-
composition methods such as the Additive Schwarz
method (ASM) [32] which becomes the block Jacobi
method without overlaps. And, the block Jacobi pre-
conditioner is used for the GMRES solver on a distributed
system in this work.

3. Multi-GPU Implementations

3.1. Chart of Development. PETSc [31] offers a wide range of
Application Programming Interfaces (APIs) for users to
manipulate low-level data structures. Furthermore, it uses
function pointers in standard C language instead of an
Object-Oriented language such as C++ to achieve data
encapsulation and polymorphism [33]. We take advantage
of function pointers and structures in C language to develop
a user friendly multi-GPU version of the preconditioned
GMRES algorithm.

)e chart of our code development is shown in Figure 1.
Data structure GMRESInfo is designed to store all necessary
data fields on the GPU.)e memory spaces of the fields are
allocated when an instance of GMRESInfo is created. Before
the GMRES solver is executed, the fields in GMRESInfo are
initialized on GPUs by launching the memory copy

operations provided by the basic CUDA library from the
host to device.)e encapsulated data on the host that needs
to be transferred to GPUs can be accessed using the low-level
APIs in PETSc. To make full use of the existing numerical
toolkits, we employ the efficient functions in cuBLAS and
cuSPARSE libraries to perform the local sparse matrix and
vector operations in Algorithm 1. On a multi-GPU platform,
a portion of the computation inevitably requires data ex-
change among GPUs.)is is implemented and optimized
using the CUDA-aware MPI library that supports the GPU-
Direct technology and transfers data directly among GPU
memories through network adapters.

To adopt the multi-GPU version of GMRES solver in an
application, a user needs to call three additional functions.
Two of them creates and destroys a GMRESInfo instance,
respectively, while the other (SetUserDefinedGMRES) sets
the function pointer of GMRES to our developed procedure.

To implement Algorithm 1 on a multi-GPU system, the
workload for the host and device should be proper
assigned.)e matrix-vector operations (line 3 and line 7)
and the basic vector operations such as inner product (line
9 and line 12) and the linear combinations (line 10 and line
17) are of high parallelism, so they are fully performed on
the GPUs. To conduct convergence monitoring, the con-
ditional statements (line 14–16) are inevitable. And, this
part is executed on the host. Because cuSPARSE library
allows users to pass a reference on the host when an API is
executed on the GPU, the scalar parameter normw is de-
clared on the host to receive the result of ‖w

→
‖2 and can be

directly used in line 14.)e size of the Hessenberg matrix is
(m + 1) ×m, where m (m is set to 30 in PETSc by default) is
usually much smaller than the matrix size, so the updating
of Hessenberg matrix (line 13) and solving of the least
square problem (line 20) are performed on the host.

To distributedly store the data on a multi-GPU system,
block matrices and vectors are partitioned by rows. On a
GPU cluster with N GPUs, the ith GPU stores ri block rows
of AB which is represented in BCSR format. In addition,
there are several vectors that need to be allocated on the ith

GPU. r
→i

0, z
→i, x

→i, and w
→i are allocated with the size of ri × s,

and Vt stores up to m vectors each of which is of size ri × s.
In the preconditioning step (line 6), the preconditioning
matrix on the ith GPU, denoted as M

(i)
B , is stored in separate

factors, i.e., L
(i)
B and U

(i)
B , and the size of memory require-

ments for ILU(0) level equals to the size of A
(i)
B , where A

(i)
B is

the main diagonal part of the partitioned matrix on the ith

GPU.

3.2. Implementation and Optimization.)e major compu-
tation in Algorithm 1 consists of block sparse matrix-vector
multiplication (BSpMV), the preconditioning step, and the
vector operations. For a block sparse matrix on a distributed
system, PETSc partitions the matrix by consecutive block
rows and stores each partition in two separate structures.
One structure is for the main diagonal of the partitioned
matrix, the other is for the off diagonals. Figure 2 shows the
strategy of partitioning and storing a 18 s × 18 s (s is the
block size) block sparse matrix obtained by the 5-point finite

Mathematical Problems in Engineering 3

differencing scheme in PETSc. Each partition is responsible
for storing 6 block rows and assigned to a MPI process. Take
the second partition (dashed box in red) as an example,
PETSc stores the 6 s × 6 s square block sparse matrix in the
main diagonal as the BCSR format by renumbering the block
rows and columns starting from zero.)e two off-diagonal
parts are merged and renumbered as a local 6 s × 12 s block
sparse matrix in the BCSR format.)e main advantage of
this strategy is that it separates themain diagonal part (MDP,
communication-free) from the off-diagonal part (ODP,
communication-required), which can be used for over-
lapping the computation and communication.)erefore,
each partition needs three steps to perform the

multiplication between a block sparse matrix and a vector.
)e MDP firstly multiplies the local part of the vector and
stores the result temporarily. All partitions then launch MPI
sending and receiving calls to exchange data of the vector
globally. Lastly, the ODP in each partition multiplies the
received vector and accumulates the results to the former
temporary vector.

On a multi-GPU system, we consider using a MPI
process to control a GPU card. In each MPI process, the
arrays expressing the MDP and ODP in the BCSR format for
the partitioned matrix are copied to the corresponding GPU
memories whose data pointers are encapsulated in a
GMRESInfo instance.)is makes theMDP andODP capable

PETSc lib
VEC lib MAT lib
KSP lib SNES lib

GPU version
KSPSolve_GMRES_GPU.h
KSPSolve_GMRES_GPU.cu

User's Codes

#include”KSPSolve_GMRES_GPU.h”
......
1:MatCreate(…...);
2:VecCreate(…...);
3:KSPCreate(PETSC_COMM,&ksp);
4:KSPSetOperaters(ksp,Amat,Amat);
5:KSPSetUp(ksp);
6:CreateGMRES_INFO(&info);
7:SetUserDefinedGMRES(ksp,...);
8:KSPSolve(ksp,b,x);
9:DestroyGMRES_INFO(info);
10:PetscFinalize();

#ifdef__cplusplus
extern “C”
{
#endif
typedef struct
{
PetscInt ∗d_idata;
PetscReal ∗d_rdata;
……
} GMRESInfo;
#ifdef__cplusplus
}

CUDA-aware
MPI lib

cuSPARSE lib
cuBLAS lib

Figure 1:)e development chart of the multi-GPU version of GMRES algorithm based on PETSc.

Input: (1) a block sparse matrix, AB; (2) the preconditioning matrix, MB; (3) the right-hand side, b
→
; (4) the initial guess, x

→
0; (5) the

relative tolerance, ϵ; (6) the maximum number of iterations, maxit; (7) the restart number, m.
Output: the solution vector x

→.
(1) continue� 1; it� 0; allocate Hm � Hp,q, 0≤p≤m, 0≤ q<m ;
(2) while continue do
(3) r

→
0 � b

→
− AB x

→
0; β � ‖ r

→
0‖2; v

→
0 � (r

→
0/β);

(4) if (it�� 0) then norm0 � β;
(5) for i � 0 to (m − 1) do
(6) z

→
� M−1

B v
→

i;
(7) w

→
� AB z

→;
(8) for k � 0 to i do
(9) Hk,i � (w

→
, v
→

k);
(10) w

→
� w

→
− Hk,i v

→
k;

(11) end
(12) normw � ‖w

→
‖2; Hi+1,i � normw; t � i;

(13) updateHessenberg(H,norm);
(14) if normw �� 0 or log10(norm/norm0)< log10 ε or + + it �� maxit then
(15) continue � 0; break;
(16) end
(17) v

→
i+1 � (w

→/normw);
(18) end
(19) t � t + 1;
(20) solve y

→ from argmin
y

→‖β e
→

1 − Ht y
→

‖2, where Ht � Hp,q, 0≤p≤ t, 0≤ q< t

(21) x
→

0 � x
→

0 + M−1
B Vt y

→, where Vt � [v
→

0, v
→

1, . . . , v
→

t−1];
(22) end
(23) x � x0

ALGORITHM 1: GMRES algorithm with right preconditioning for block sparse matrices.

4 Mathematical Problems in Engineering

of conducting the local BSpMV on GPUs by using cus-
parseDbsrmv from the cuSPARSE library [28]. However, the
multiplication between the ODP and the received vector
cannot be proceeded until the MPI communication has
completed. In our implementation, we perform the MPI
communication from GPUs to GPUs directly using the
GPU-Direct technique. Note that although in the latest
version of PETSc, the GPU-Direct communication is sup-
ported in the VecScatter object, the VecScatterBegin, and
VecScatterEnd functions that manage the data exchange
between vectors (with either ViennaCL or CUDA type in
PETSc) cannot be applied directly because the GPU vectors
in our implementation are designed in the GMRESInfo
structure. Efforts are made to extract the low-level com-
munication map from the VectorScatter object that is used
for distributed BSpMV on CPUs, and additional kernels are
developed.)e BSpMV with GPU-Direct communication is
summarized in Algorithm 2.

According to the indices in the VecScatter object that
record the partial data required to be sent to remote GPUs,
the GPU kernel SetGPUSendbuffer is developed to move the
data from the local vector to the GPU buffer. cus-
parseDbsrmv is called asynchronously to perform the MDP
BSpMV in a separate CUDA stream, which makes the
computation overlap with the following MPI communica-
tion.)en, the CUDA-aware MPI can automatically identify
all GPU buffers that are requested to send and receive and
transfer data between GPUs directly. Once the data is re-
ceived successfully in each GPU’s memory, the BSpMV can
be conducted between the ODP and the received buffer on
GPUs.

)e vector operations in Algorithm 1 including vector
inner products (lines 3 and 12), scaling (lines 3 and 17), and
linear operations (line 21) are implemented using efficient
subroutines from the cuBLAS [34] library. When these
functions are called, scalar values are passed by reference on
the host instead of the device to receive the computing
results from GPUs because some of the results are used by

the calculations on CPUs. For example, lines 13–16 and 20
are assigned to CPUs due to very light workload, and they
need normw and H for computing and logic judgements on
CPUs.)erefore, passing host reference in the call of
cuBLAS functions avoids manually copying data back to the
host memories.

)e vector operations in lines 9-10 are time consuming
because they are in a nested loop. For each i(0≤ i<m), they
require i + 1 times of MPIAllreduce communication in total
because each computation of Hk,i requires one MPIAllre-
duce call and Hk,i has to be used to update w

→ immediately.
In fact, since v

→
k(0≤ k≤ i) are orthogonal with each other,

PETSc splits the single loop into two separate ones each of
which is applied to one line of lines 9-10.)erefore, the
communication in obtaining all Hk,i can be reduced by
launching only one call of MPIAllreduce. Furthermore,
PETSc optimized the loop of computing (w

→
, v
→

k)(0≤ k≤ i)

by using batch computing. For example, the method con-
ducts 8 inner products from (w

→
, v
→

0) to (w
→

, v
→

7) by
launching two CUDA kernels each of which performs 4
inner products in a batch. In each batch, w

→ is fetched from
global memory only once and reused for all four inner
products.)is technique reduces the visiting of global
memory for w

→ repeatedly. Another method where the inner
product is transformed to the multiplication between a
dense matrix (constructed by all v

→
k) and a vector (w

→
) was

studied in [4]. However, this method is not covered in this
paper since all of our implementations and optimizations are
based on PETSc’s framework.

)e classical inner product on GPUs [35] employed by
PETSc requires the host to copy the reductions of thread
blocks from the GPU and conduct a final reduction over all
thread blocks on the CPU. In the case of batch computing,
the memory copy from the GPU to the host and the final
reduction on the host for one batch can be overlapped with
the GPU computing for another batch. Figure 3(b) illustrates
the idea of asynchronization on different batches, whereas
Figure 3(a) shows the synchronized case. To implement this

0 1 0
0 1 2 1

1 2 3 2
2 3 4 3

3 4 5 4
4 5 5

0 0 1 6
1 0 1 2 7

2 1 2 3 8
3 2 3 4 9

4 3 4 5 10
5 4 5 11

0 0 1
1 0 1 2

2 1 2 3
3 2 3 4

4 3 4 5
5 4 5

0
1
2
3
4
5
0
1
2
3
4
5
0
1
2
3
4
5

0
1
2
3
4
5
6
7
8
9

10
11

Receive from
GPU0

Receive from
GPU2

Local vector

Received vector

main-diagonal part(solid green box)
off-diagonal part(solid blue box)

AB:

MPI process0
GPU0

MPI process2
GPU2

MPI process1
GPU1

Se
nd

 to

Send to

Figure 2: Strategy of partitioning, storing a block sparse matrix, and performing BSpMV on a multi-GPU system based on PETSc.

Mathematical Problems in Engineering 5

idea, batches are assigned to two CUDA streams alternately
so that the overhead of memory copies and reductions on the
CPU can be reduced.

)e method of batch computing can also be applied to the
updating of w

→ in the loop. In PETSc’s implementation, it calls
cublasDaxpy one by one to update w

→ for the CUDA vector
type or updates w

→ with a batch size of 2 for the ViennaCL [36]
vector type. We develop several CUDA kernels to use a large
batch size instead of calling cublasDaxpy in our imple-
mentation.)e template of the kernel is shown in Algorithm 3.
VecAXPYKernelj is developed to compute a linear combi-
nation of xj using coefficients aj. Compared to visiting w

→ once
using cublasDaxpy at a time, calling VecAXPYKernelj in a
batch reduces the number of times of fetching w

→ from the
global memory. For a given number of loops, the kernels need
to be called in a sequential order since w

→ that is updated in one
batch has to be used in the following batch.

3.3. Preconditioning. To implement equations (5) and (6) on
a parallel system with distributed GPUs, we consider the
block Jacobi preconditioner as

A
(i)
B ≈ L

(i)
B U

(i)
B � M

(i)
B , i � 0, 1, 2, . . . , l − 1, (7)

M
(i)
B

− 1
v
→(i)

� z
→(i)⟶ L

(i)
B f

→(i)

� v
→(i)

,

U
(i)
B z

→(i)
� f

→(i)

, i � 0, 1, 2, . . . , l − 1,

(8)

where A
(i)
B and M

(i)
B represents the main diagonal part of the

partitioned matrix and the preconditioning matrix in the ith

process, respectively, z
→(i), f

→(i)

, and v
→(i) are the partitioned

vectors in the ith process, and l is the total number of
processes.

For pointwise matrices, the level-scheduling-based
parallel methods [2, 21] for the preconditioning step depend
heavily on the matrix pattern.)erefore, some cases failed to
gain speedups on GPUs over the CPU implementation. To
keep a flexible choice of computing the preconditioning step,
we investigate three implementations of computing equa-
tion (8) for block sparse matrix based on PETSc in this
section and make performance comparisons in Section 5.

PETSc implements several efficient subroutines to
conduct the ILU factorizations and preconditioning oper-
ations for block sparse matrices with various block sizes. In
the first implementation, we consider performing (8) using
PETSc’s API on CPUs and copying the preconditioned
vector to the device memory at every iteration of Algo-
rithm 1.)e developed function is listed in Algorithm 4.)e
function accepts four input variables as ksp, vecv, vecz, and
dv, where ksp is an instance of the PETSc’s KSP structure,
vecv and vecz, encapsulated by the PETSc’s Vec structure in
the host memory, are the left- and right-side vectors in
equation (8), and dv is the device pointer to the left side
vector on the GPU.)e function outputs the pointer to the
right-side vector. To obtain an explicit pointer to the low-
level array data of the Vec object in PETSc, we employ two

(1) SetGPUSendbuffer(. . .);⟵ from the local vector to the ith GPU sending buffer.
(2) cusparseDbsrmv(. . .);⟵MDP BSpMV on the ith GPU in a CUDA stream.
(3) SpMVGPUDirectComm(. . .);⟵ exchange data between GPUs and wait until completed.
(4) cusparseDbsrmv(. . .);⟵ODP BSpMV on the ith GPU.

ALGORITHM 2: BSpMV on multi-GPUs with GPU-Direct communication.

Inner products in batch(0)
GPU

Memcpy &
reduction
CPU(0)

Inner products in batch(1)
GPU

Memcpy &
reduction
CPU(1)

…...

(a)

Inner products in batch(0)
GPU

Inner products in batch(1)
GPU

Memcpy &
reduction
CPU(0)

Inner products in batch(2)
GPU

Memcpy &
reduction
CPU(1)

Inner products in batch(3)
GPU

Memcpy &
reduction
CPU(2)

Memcpy &
reduction
CPU(3)

(b)

Figure 3: Asynchronous batch computing for inner products on GPUs.

6 Mathematical Problems in Engineering

APIs, VecGetArray and VecRetoreArray, before and after
using the object.)en, the preconditioning procedure can be
divided into three steps.)e data transfer is firstly launched
to copy the left-side vector from the device to host using
cudaMempcy from the CUDA library.)is is followed by a
call of PCApply in PETSc to apply the declared precondi-
tioner to vecv. Inside PCApply, it performs two block sparse
triangular solves in which the calculations are conducted in
blockwise. Figure 4 shows the pattern of solving a lower
block sparse triangular system with block size s in PETSc.
)e preconditioned vector, vecz, is then copied to the device
space which dz points to.

In the second implementation, we utilize the efficient
triangular solvers in the BCSR format provided by the
cuSPARSE library. Algorithm 5 lists the main steps of the
function (cuSPARSEPrecond) which we develop and inte-
grate into PETSc.)e first step (lines 2–7), also called the
preprocessing phase, is to estimate thememory requirement,
allocate adequate spaces and extract possible parallelism for
the subsequent solve phase.)e preprocessing step is re-
quired to be executed only once on the local GPUs because
the lower (L

(i)
B) and upper (U

(i)
B) factors remain unchanged

during the iterative process of GMRES once the factors has
been constructed by the ILU factorization.)e second step is
to perform two block sparse triangular systems by calling
cusparseDbsrsv2_solve twice with the parameters of (L

(i)
B)

and (U
(i)
B).

Since the ILU factorization of A
(i)
B equation (7) is

conducted outside Algorithm 1, the structure compatibility
between the ILU factorization and triangular solves has to be
studied. Specifically, when the block ILU factorization using
PETSc on CPUs is preferred, the solving of the upper tri-
angular system has to be transformed into

U
(i)

B z
→(i)

� diag U
(i)
B

− 1
f
→(i)

, (9)

where U
(i)

B � (diag(U
(i)
B))− 1U

(i)
B .)is is because cus-

parseDbsrsv2_solve ignores all the values in the lower part of
the input matrix according to the pointwise diagonal. And,

U
(i)
B z

→(i)
� f

→(i)

is equivalent to the modified system above
with all identity matrices in the diagonal blocks.)e process
can be illustrated by Figure 5(a).

By contrast, the block-based ILU factorization using
cuSPARSE can accept A

(i)
B in the BCSR format as the input

matrix and replace A
(i)
B with the lower and upper factors. In

this case, it conducts a pointwise ILU factorization by
treating s2 values in each block as independent scalars, even
though A

(i)
B is expressed in the BCSR format.)erefore, the

replaced A
(i)
B can be directly used as the input matrix for the

two calls of cusparseDbsrsv2_solve (lines 9-10 in Algo-
rithm 5) where the pointwise lower and upper factors can be
automatically extracted.)is strategy is shown in
Figure 5(b).

)e asynchronous techniques [22, 23, 25–27] where the
ILU factorizations and triangular solves are calculated it-
eratively and inexactly have been attractive. In these

L0,0
s×s

L2,0
s×s

L3,1
s×s

L1,1
s×s

L2,2
s×s

L3,3
s×s

f0
s

f1
s

f2
s

f3
s

v0s

v1s

v3s

v2s
=

Figure 4: Pattern of the lower block sparse triangular solver in
PETSc.

(1) int tid� threadIdx.x+ blockDim.x × blockI dx .x;
(2) while tid< len do
(3) w[tid]+ � a1x1[tid] + · · · + aixj[tid];

(4) tid+ � gridDim.x × blockDim.x;

(5) end

ALGORITHM 3: __global__ void VecAXPYKernelj (w, len, a1, ..., aj , x1, x2, ..., xj).

(1) VecGetArray(vecv, & hv);
(2) cudaMemcpy(hv, dv, sizeof(vecv), cudaMemcpyDeviceToHost);
(3) VecRestoreArray(vecv, & hv);
(4) PCApply(ksp⟶ pc, vecv, vecz);
(5) VecGetArray(vecz, & hz);
(6) cudaMemcpy(dz, hz, sizeof(vecz), cudaMemcpyHostToDevice);
(7) VecRestoreArray(vecz, & hz);

ALGORITHM 4: PETScPrecond(in: ksp, vecv, vecz, dv, out: dz).

Mathematical Problems in Engineering 7

methods, although a linear system may need more iterations
to converge, the overall performance can be improved be-
cause the overhead of the preconditioning step at every step
is reduced. In the last implementation, we investigate the
inexact triangular solves for block sparse systems on a multi-
GPU system.

In the ith process, by considering the upper block tri-

angular system U
(i)
B z

→(i)
� f

→(i)

, we explicitly express the
block vector z

→(i)

j in an iterative way as

z
→(i)

j
it+1

� U
(i)
B

−1
j,j

f
→(i)

j −
k> j

U
(i)
B

−1
j,k

z
→(i)

k
it

⎛⎝ ⎞⎠,

(k, j) ∈ Sp, j � r − 1, r − 2, . . . , 0,

(10)

where [z
→(i)

j]it+1 represents the jth block vector at the
(it + 1)th iteration. And the lower block triangular system
can be written in a similar way. By removing the data de-
pendencies in the r constraints, we can update z

→(i)

j itera-
tively without the synchronization of data to approximate
the exact solutions. Compared to the scalar version for

pointwise matrices, equation (10) contains totally different
computations.)e scalar multiplication is changed to the
small dense matrix(s × s) vector multiplication, and the
inverse of a scalar is replaced with the inverse of a s × s

matrix.
It is straightforward to implement the scalar version of

equation (10) on GPUs since each thread can be assigned to the
calculation of a scalar solution. However, assigning the com-
putation of z

→(i)

j to a single CUDA thread is not preferred on
GPUs because the global memory accesses are far from coa-
lesced when a dense blockmatrixmultiplies a block vector [29].
Inspired by the fine-grained idea for the block sparse matrix-
vector multiplication on GPUs [29], we develop a CUDA
kernel shown in Algorithm 6 to update z

→(i)

j in an iteration.
As illustrated in Figure 6, we use 32 threads within a

warp to accumulate [U
(i)
B]j,k[z

→(i)

k]itover all blocks at the jth

row of U
(i)
B that satisfy k> j and (j, k) ∈ Sp. Specifically, each

thread in the warp computes the multiplication of only one
element in [U

(i)
B]j,k and the corresponding element in the

block vector [z
→(i)

k]it (lines 18–20 in Algorithm 6) and stores
the scalar result in a register variable. However, 32 threads in

0

0

0

0

0

0

0

0

U0,2
s×s~

U2,3
s×s~

(a)

U0,2
s×s

U2,1
s×s

U3,0
s×s

U2,3
s×s

(b)

Figure 5: Two different patterns of the upper block sparse triangular solver using cusparseDbsrsv2_solve: (a) U
(i)

B ; (b) the upper part of (b)
A

(i)
B after the cuSPARSE’s ILU factorization.

(1) if firstcall then
(2) cusparseDbsrsv2_bufferSize(. . ., Ldescr, Ablkval, Arowptr, Acolval, s, . . ., & Lbufsz);
(3) cusparseDbsrsv2_bufferSize(. . ., Udescr, Ablkval, Arowptr, Acolval, s, . . ., & U bufsz);
(4) cudaMalloc(& pLbuf, Lbufsz);
(5) cudaMalloc(& pUbuf, Ubufsz);
(6) cusparseDbsrsv2_analysis(. . ., Ldescr, Ablkval, Arowptr, Acolval, s, . . ., pLbuf);
(7) cusparseDbsrsv2_analysis(. . ., Udescr, Ablkval, Arowptr, Acolval, s, . . ., pUbuf);
(8) end
(9) cusparseDbsrsv2_solve(. . ., Ldescr, Ablkval, Arowptr, Acolval, s, . . ., dv, df, . . ., pLbuf);
(10) cusparseDbsrsv2_solve(. . ., Udescr, Ablkval, Arowptr, Acolval, s, . . ., df, dz, . . ., pUbuf);

ALGORITHM 5: cuSPARSEPrecond(in: dv, df, firstcall, out: dz).

8 Mathematical Problems in Engineering

(1) tid � blockDim.x × blockIdx.x + threadIdx.x;
(2) __shared__ double sh[warps per block][warp size];
(3) __shared__ double dg[warps per block][s2];
(4) irow forward � (tid/warp_size);
(5) if irow forward< r then
(6) irow � (r − 1) − irow forward;
(7) sidx � rowptr[irow]; eidx � rowptr[irow + 1];
(8) rpos � threadIdx.x%warp size; warp id � (threadIdx.x/warp_size);
(9) cl � (rpos/s)%s; rw � rpos% s;
(10) range � (warp size/s2 × s2);
(11) idx � sidx + 1 + (rpos/s2);
(12) sum � 0.0; tmp � 0.0; sh[warp_id][rpos] � 0.0;
(13) if rpos < range then
(14) if rpos< s2 then
(15) dg[warp id][rpos] � blkval[sidx × s2 + rpos];
(16) end
(17) while idx < eidx do
(18) col � col_val[idx];
(19) sum � sum − blkval[idx × s2 + cl × s + rw] × z[col × s + cl];

(20) idx � idx + (warp_size/s2);
(21) end
(22) s[warp_id][rpos] � sum;
(23) for step≥ 1; step/ � 2 do
(24) if rpos< step × s and rpos + step × s<warp_size then
(25) sh[warp_id][rpos]+ � sh[warp_id][rpos + step × s];
(26) end
(27) end
(28) if rpos< s then
(29) tmp � 0.0; sh[warp_id][rpos]+ � df[irow × s + rpos];
(30) for i � 0; i< s; i + + do
(31) tmp+ � dg[warp_id][rpos + i × s] × sh[warp_id][i];

(32) end
(33) dz[irow × s + rpos] � tmp;
(34) end
(35) end
(36) end

ALGORITHM 6: KernelBtrisvUpper(urowptr, ucolval, ublkval, df, dz, r, stride).

............

............

............

0 4 8 12
1 5 9 13
2 6 10 14
3 7 11 15

16 20 24 28
17 21 25 29
18 22 26 30
19 23 27 31

0 4 8 12
1 5 9 13
2 6 10 14
3 7 11 15

16 20 24 28
17 21 25 29
18 22 26 30
19 23 27 31

0 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031
[warp_size]

[s∗s]

warp threads:

dg[warp_id]:
sh[warp_id]:

Bottom

Top

block0 block1

block2 block3z(i)

2 nd cycle

1 st cycle

UB
(i)

z(i)

warp3
warp2

warp1
warp0
warp3
warp2

warp0

warp1

thread_block1

thread_block0

Figure 6: Illustration of the CUDA kernel.

Mathematical Problems in Engineering 9

a warp may be unable to cover all blocks simultaneously;
then, each thread accumulates the results one by one via
performing several cycles on the remaining blocks. To make
the thread private variable visible to each other, the threads
in each warp share a space which is declared as the type of
shared memory (line 2 in Algorithm 6). After that, the scalar
result in each thread is copied into the shared memory, and a
serial of reduction operations (lines 23–27 in Algorithm 6)
are launched to summarize the results for the corresponding
rows of the resulting block vector of k>j[U

(i)
B]j,k[z

→(i)

k]it.
)is is followed by the operation of vector addition on
f
→(i)

and sh with the first s elements.)e last task of a warp is
to conduct a matrix-vector multiplication using the inverse
of [U

(i)
B]j,j and the resulting vector in the shared memory

from the last step.)e inverse of [U
(i)
B]j,j can be obtained

from the block ILU factorization in PETSc because PETSc
replaces all diagonal blocks of U

(i)
B with their inversions to

prepare for the subsequent block triangular solves. We take
advantage of this fact by copying the lower and upper factors
in PETSc from the host to device before the kernel is exe-
cuted. And, the first s2 threads in a warp load the diagonal
block into the shared memory for the matrix-vector mul-
tiplication at line 31 in Algorithm 6.

For the lower block triangular system, the iterative
process is written as

f
→(i)

j
it+1

� v
→(i)

j −
k< j

L
(i)
B

j,k
f
→(i)

k
it

,

(k, j) ∈ Sp, j � 0, 1, 2, . . . , r − 1,

(11)

and the kernel to iterate equation (11) for one step is de-
veloped in a similar way. Slightly different from the upper
one, the kernel maps r rows of L

(i)
B from top to bottom. In

addition, the matrix-vector multiplication can be discarded
because the diagonal blocks of L

(i)
B are set to identity matrices

in PETSc. We summarize the preconditioning step in Al-
gorithm 7 by performing the two kernels several times.

4. Experiments

4.1. Test Platform. In our experiments, the tests were con-
ducted on a heterogeneous cluster at Computer Network
Information Center, Chinese Academy of Sciences.)e
cluster consists of 270 blades nodes, 30 GPGPU nodes, and
40 MIC nodes. Each GPGPU node is configured with 2 Intel
E5-2680 V2 (Ivy Bridge | 10C | 2.8GHz) CPUs, 128GB
DDR3 ECC 1866MHzmemory, and two NVIDIA Tesla K20
GPGPU cards. Each card is configured by 320 bit GDDR5
5GB memory with a clock rate of 2.6GHz and a bandwidth
of 208GB/sec. In each card, there are 14 stream multi-
processors (SMs) containing 2496 processors in total.)e
peak single and double precision floating point performance
is 3.52 and 1.17 TFLOPS, respectively.

All algorithms introduced in the present paper were
developed and tested based on PETSc-3.10.2 that was
compiled with “- -with-debugging� 0” option by GCC-4.4.7
and CUDA-aware OpenMPI-3.1.4 [37]. As the optimized
PETSc is generally 2 times faster than the debug version of

PETSc, we use the optimized PETSc on CPUs as reference
when we analyze speedups between CPUs and GPUs.)e
developed CUDA kernels are compiled by nvcc from CUDA
6.5.14. And, all the floating point operations were performed
in double precision.

4.2. Test Matrices.)e test matrices were selected from the
SuiteSparse Matrix Collection [38], which are shown in
Figure 7. Each pointwise sparse matrix was transformed into
the block sparse matrix with the BCSR format using cus-
parseDcsr2bsr routine from the NVIDIA’s cuSPARSE li-
brary [28] with a given block size. Table 1 shows the
descriptions before and after the transformation.)e
strategy we use to partition a matrix is

nrowsi �

r

l
 + 1 mod(r, l)≠ 0, 0≤ i≤mod(r, l),

r

l
, mod(r, l)≤ i≤ l,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(12)

where r is the total number of block rows and columns of the
matrix, l is the number of MPI processes (GPUs), and rowsi

is the number of block rows of the partitioned matrix
assigned to the ith process (GPU). All processes call Mat-
CreateMPIAIJWithArrays simultaneously to construct a
parallel object of the PETSc matrix using their local parts.

4.3. Results. We use 4 matrices from G3_circuit to atmos-
modl in Table 1 to investigate the performance of GPU-
Direct communication in BSpMV and batch computing on
vector operations in GMRES restarted with 30.

Figure 8 shows a comparison between the synchronized
and asynchronized inner products with two batch sizes. All
cases are conducted using 8 MPI processes and GPUs. Each
MPI process is associated with a CPU core and controls a
GPU card. Each process accumulates the wall clock time of
computing the local inner products (line 9 in Algorithm 1)
on the GPU until the case has converged. And, the wall clock
times are averaged over all processes and shown in the y-axis
of Figure 8. In both the synchronized and asynchronized
cases, results using a batch size of 4 outperform that using a
batch size of 2.)is is to be expected because the larger batch
size can reduce the global memory accesses in the loop. We
notice that the asynchronized inner products with batch size
2 perform better than the synchronized ones using batch size
4.)is demonstrates that overlapping the frequent memory
copies and the computing on the host is effective for a
smaller batch size. And, around 2.0x speedup can be ob-
tained using asynchronized inner products with batch size 4
compared to using the synchronized method with batch size
2.

For updating w
→ at line 10 of Algorithm 1, Figure 9 shows

the wall clock comparison between the implementation
using cublasDaxpy from the cuSPARSE library and that
using VecAXPYKernelj(j≤ 8). Since the operations are
memory bound, reducing the number of global access to w

→

10 Mathematical Problems in Engineering

improves the performance. We see from Figure 9 that over
2.5x speedup can be obtained for all four cases.

Figure 10 shows the performance for the BSpMV on the
multi-GPUs. For each matrix, two strategies are studied and
compared. One is using the BSpMV on the MDP to overlap
with the GPU-Direct communication that is prepared for the
BSpMV on the ODP.)e other is to perform the BSpMV on
the MDP, the communication, and the BSpMV on the ODP

in a sequential order.)e wall clock time for each config-
uration is estimated as the maximum value over all GPUs
within 30 GMRES iterations (line 7 during the nested loop
(lines 5–18) with m� 30) because the performance is de-
termined by the slowest one. We observe that the over-
lapping strategy has shown a significant improvement in
wall clock times for G3_circuit and thermal2.)is is because
these two matrices have much larger bandwidth that leads to

(1) for it� 0; it< itmax; it++ do
(2) KernelBtrisvLower <<< nblocksl, nthreadsl >>> (lrowptr, lcolval, lblkval, dv, df, r, stride);
(3) end
(4) for it� 0; it< itmax; it++ do
(5) KernelBtrisvUpper <<< nblocksu, nthreadsu >>> (urowptr, ucolval, ublkval, df, dz, r, stide);
(6) end

ALGORITHM 7: IterativePrecond(in: lrowptr, lcolval, lblkval, urowptr, ucolval, ublkval, dv, df, r, stride, itmax out: dz).

0

1

2

3

4

5

6

0 2 4 6
venkat25 ×104

×104

0 5 10

0

5

10

thermal2 ×105

×105
0

0 5

10

10

5

15

15
G3_circuit ×105

×105

0 5 10

0

5

10

atmosmodl ×105

×105

0 5 10

0

5

10

atmosmodd ×105

×105

Figure 7:)e patterns of the selected matrices.

Table 1: Descriptions of the test matrices.

Matrix n nnz r nnzb s
G3_circuit 1585478 7660826 792739 5230049 2
thermal2 1228045 8580313 245609 3791545 5
atmosmodd 1270432 8814880 317608 2190844 4
atmosmodl 1489752 10319760 496584 3429888 3
venkat25 62424 1717763 15606 107362 4

Mathematical Problems in Engineering 11

more overhead in MPI communication than the other two
matrices. Especially, when the number of GPUs increases to
8, the MPI overhead accounts for the major proportion of
the overall time for these two cases and the decreasing
computational workload is unable to overlap the overhead
effectively.)is is why we observe that 8 GPUs costs more
time than 6 GPUs in the two cases. When less than 6 GPUs

are used for atmosmodd and atmosmodl, the communication
accounts for around 20% of the total GPU time due to the
small bandwidth; therefore, we see relatively small gaps
between the overlap bars and the nonoverlap bars. However,
the proportions of the communication increase to nearly
30% and 40% when 6 GPUs and 8 GPUs are used, which
makes the overlapping strategy has an obvious advantage
over the nonoverlapping method.

By employing the optimization techniques discussed
above, we report the strong scalability for all the four cases in
Figure 11.)e wall clock times are estimated from lines 3 to
21 (without the preconditioning step) in Algorithm 1 and
averaged over three runs. For G3_circuit and thermal2 cases,
we observe that only 33.3% and 35.8% parallel efficiencies
can be obtained on 16 GPUs compared to 2 GPUs, re-
spectively.)is can be explained by the fact that the two
matrices have large bandwidths and irregular sparsity pat-
terns which results in unbalanced workload of matrix-vector
multiplication and unbalanced MPI communication. Al-
though the overlapping strategy is employed, the decreasing
computational workload fails to hide the increasing com-
munication overhead.)e parallel efficiency for both
atmosmodd and atmosmodl cases is over 50% on 16GPUs,
which benefits from the smaller bandwidth and structured
sparsity pattern.

)en, we investigate the performance of preconditioned
GMRES with different preconditioning algorithms. Since the
existing works of preconditioned GMRES focused either on
scalar matrices or on single-GPU implementation, we
compare our algorithm to the implementations based on
PETSc and cuSPARSE libraries where block matrices are
efficiently structured. =ermal2, mosmodd, atmosmodl, and
venkat25 are selected for the experiments, and the results for
the first three matrices are shown from Tables 2–4 and the
result for venkat25 is shown in Figure 12. In each table, the
first two row sections show the performance results for
Algorithms 4 and 5. And, the remaining sections are the
results for Algorithm 7 with different choices of the maxi-
mum number of iterations (itmax) used in Algorithm 7. In
each section, the first three rows list the minimum, maxi-
mum, and average wall clock times spent on performing the
preconditioning step in a restarted loop (lines 5–18 in Al-
gorithm 1).)e fourth row shows the total wall clock times
spent on executing GMRES until the given relative tolerance
is satisfied. And, the fifth row shows the total number of
iterations required for the convergence tolerance.

In Table 2, the thermal2 case shows that the pre-
conditioning step using cuSPARSEPrecond is much slower
than PETScPrecond.)is demonstrates that the matrix
pattern of thermal2 is not suitable for level-scheduling-based
algorithms. To estimate the degree of load balance for the
preconditioning step, we introduce the load balance factor as

LBF �
Tprecond_max

Tprecond_avg
. (13)

We observe that the LBFs for cuSPARSEPrecond in-
creases from 1.09 to 1.58 as the number of GPUs increases,
which is larger than that for PETScPrecond.)is can be

G3_circuit thermal2 atmosmodd atmosmodl
0

50

100

150

200

250

300

W
al

l c
lo

ck
 ti

m
e (

m
s)

Synchronized
(batch size = 2)
Asynchronized
(batch size = 2)

Synchronized
(batch size = 4)
Asynchronized
(batch size = 4)

Figure 8: Comparison between the synchronized and
asynchronized inner products with different batch sizes.

G3_circuit thermal2 atmosmodd atmosmodl
0

50
100
150
200
250
300
350
400

W
al

l c
lo

ck
 ti

m
e (

m
s)

cublasDaxpy

VecAXPYKernelj

Figure 9: Comparison between cublasDaxpy and VecAXPYKernel
j(j≤ 8).

G3_circuit thermal2 atmosmodd atmosmodl
0

50

100

150

W
al

l c
lo

ck
 ti

m
e (

m
s)

Non–overlap
2GPUs
Overlap
2GPUs
Non–overlap
4GPUs

Overlap
4GPUs
Non–overlap
6GPUs
Overlap
6GPUs

Non–overlap
8GPUs
Overlap
8GPUs

Figure 10: Performance of BSpMV with and without overlapping
strategies.

12 Mathematical Problems in Engineering

explained by the fact that the level-scheduling algorithm
extracts much different levels of parallelism from the par-
titioned matrices A

(i)
B with different matrix patterns.)e

LBFs for IterativePrecond do not exceed 1.1, which is better
than that for both PETscPrecond and cuSPARSEPrecond.
)is is due to the fully parallelized feature of Iter-
ativePrecond. In all three implementations, the total number
of GMRES iterations used to converge to the given tolerance
increases with increasing the number of GPUs.)is is to be
expected because the number of iterations usually increases
when the block Jacobi method is applied to increasing
partitions. Compared to the exact triangular solver using

PETScPrecond and cuSPARSEPrecond, the iterative, inexact
solver using IterativePrecond makes GMRES(30) require
more iterations to converge to the same tolerance. And, the
number of iterations for GMRES(30) can be reduced by
increasing the number of times the iterative process is ex-
ecuted. Despite more GMRES (30) iterations are required,
IterativePrecond shows an advantage over the other two
methods in terms of wall clock times. When Iter-
ativePrecond with itmax � 3 is used for comparisons, we
obtain 1.81x and 6.23x on 8 GPUs over the implementations
of GMRES using PETScPrecond and cuSPARSEPrecond,
respectively.

2 4 8 16
0

50

100

150

200

250

Number of GPUs

W
al

l c
lo

ck
 ti

m
e (

m
s)

G3_circuit
thermal2

atmosmodd
atmosmodl

Figure 11: Strong scaling for all the four cases.

Table 2: thermal2: comparisons among three implementations on the preconditioning step of GMRES(30) with the relative tolerance,
ϵ � 10− 3.

Algorithms 2GPUs 4GPUs 6GPUs 8GPUs

PETScPrecond

Tprecond_min(ms) 1085 523 327 196
Tprecond_max(ms) 1125 569 408 295
Tprecon_avg(ms) 1105 550 358 260

Tgmres(ms) 2760 2031 1524 1168
GMRES iterations 58 83 86 86

cuSPARSEPrecond

Tprecond_min(ms) 2839 1081 689 490
Tprecond_max(ms) 3429 1966 1431 1254
Tprecon_avg(ms) 3134 1569 1053 789

Tgmres(ms) 7378 6036 4564 4012
GMRES iterations 58 83 86 86

IterativePrecond (itmax � 3)

Tprecond_min(ms) 356 172 110 72
Tprecond_max(ms) 365 185 128 93
Tprecon_avg(ms) 361 177 118 87

Tgmres(ms) 1385 1080 800 644
GMRES iterations 66 96 99 100

IterativePrecond (itmax � 4)

Tprecond_min(ms) 474 229 146 96
Tprecond_max(ms) 485 246 170 124
Tprecon_avg(ms) 480 236 157 116

Tgmres(ms) 1505 1192 883 705
GMRES iterations 60 88 92 94

IterativePrecond (itmax � 5)

Tprecond_min(ms) 572 286 188 120
Tprecond_max(ms) 586 308 212 155
Tprecon_avg(ms) 579 294 196 145

Tgmres(ms) 1727 1329 996 760
GMRES iterations 59 86 89 89

Mathematical Problems in Engineering 13

Table 3: atmosmodd: comparisons among three implementations on the preconditioning step of GMRES(30) with the relative tolerance,
ϵ � 10− 5.

Algorithms 2GPUs 4GPUs 6GPUs 8GPUs

PETScPrecond

Tprecond_min(ms) 526 262 180 127
Tprecond_max(ms) 580 293 203 142
Tprecon_avg(ms) 553 282 191 135

Tgmres(ms) 3311 1453 1085 765
GMRES iterations 136 116 124 120

cuSPARSEPrecond

Tprecond_min(ms) 285.3 173 148.3 135.7
Tprecond_max(ms) 285.5 173.4 149 137.3
Tprecon_avg(ms) 285.4 173.2 148.5 136.7

Tgmres(ms) 1886 969 854 741
GMRES iterations 136 116 124 120

IterativePrecond (itmax � 3)

Tprecond_min(ms) 215.2 108.3 72.4 55
Tprecond_max(ms) 216.7 108.8 73 55.4
Tprecon_avg(ms) 216 108.6 72.7 55.2

Tgmres(ms) 1814 824 661 469
GMRES iterations 160 137 157 143

IterativePrecond (itmax � 4)

Tprecond_min(ms) 286 143.9 146 96
Tprecond_max(ms) 286.4 144.6 170 124
Tprecon_avg(ms) 286.2 144.2 157 116

Tgmres(ms) 1900 934.3 883 705
GMRES iterations 138 128 92 94

IterativePrecond (itmax � 5)

Tprecond_min(ms) 356.9 179.5 120.5 91
Tprecond_max(ms) 357.4 180.2 121.2 91.4
Tprecon_avg(ms) 357.2 179.9 120.8 91.2

Tgmres(ms) 2043 1056 897 646
GMRES iterations 125 124 154 148

Table 4: atmosmodl: comparisons among three implementations on the preconditioning step of GMRES (30) with the relative tolerance,
ϵ � 10− 5.

Algorithms 2GPUs 4GPUs 6GPUs 8GPUs

PETScPrecond

Tprecond_min(ms) 539 276 183 132
Tprecond_max(ms) 583 293 199 146
Tprecon_avg(ms) 561 283 193 141

Tgmres(ms) 1628 944 690 559
GMRES iterations 63 70 74 79

cuSPARSEPrecond

Tprecond_min(ms) 408.8 230.8 191.2 175.0
Tprecond_max(ms) 409 231.4 192.5 176.2
Tprecon_avg(ms) 408.9 231.1 191.8 175.7

Tgmres(ms) 1236 768 656 621
GMRES iterations 63 70 74 79

IterativePrecond (itmax � 2)

Tprecond_min(ms) 182.2 92.1 62.1 47.1
Tprecond_max(ms) 182.9 92.6 62.5 47.6
Tprecon_avg(ms) 182.5 92.3 62.2 47.4

Tgmres(ms) 887 497 382 327
GMRES iterations 77 82 87 94

IterativePrecond (itmax � 3)

Tprecond_min(ms) 272.1 137.4 92.4 70.8
Tprecond_max(ms) 272.5 138.3 92.8 70.4
Tprecon_avg(ms) 272.3 137.7 92.7 70.3

Tgmres(ms) 1001 580 422 355
GMRES iterations 68 75 78 82

IterativePrecond (itmax � 4)

Tprecond_min(ms) 361.5 182.8 123.1 93.3
Tprecond_max(ms) 362.6 183.4 123.4 93.6
Tprecon_avg(ms) 362.1 183.1 123.3 93.4

Tgmres(ms) 1172 667 494 402
GMRES iterations 65 72 76 80

14 Mathematical Problems in Engineering

We also compare our CPU+GPU-based GMRES (30)
with IterativePrecond to the corresponding CPU only
implementation in PETSc, which is shown in Figure 13. For
a number of N in the x-axis of Figure 13, the baseline bar in
blue is obtained by running the PETSc’s CPU-only (pure
MPI) implementation on N CPU cores each of which is
associated with a MPI process, while the other bar is ob-
tained by running the CPU+GPU implementation on N
GPUs each of which is controlled by a MPI process. By using
8 GPUs, we obtain over 4.4x speedups compared to 8 CPU
cores, which greatly reduces the computing time of
GMRES(30) algorithm for the problem with a fixed size.

For the atmosmodd case, the right-hand vector comes
from the accompanying data of the case. In Table 3, the
atmosmodd case shows that both cuSPARSEPrecond and
IterativePrecond are faster than PETScPrecond.)e point-
wise matrix pattern of atmosmodd has been reported to be
suitable for level-scheduling algorithms [2], and we notice in
this experiment that the benefit of the pattern is still kept
when atmosmodd is transformed into the BCSR format. We
observe that Tgmres using cuSPARSEPrecond is about 1.76x
faster than that using PETScPrecond when 2 GPUs are used.
However, the speedup reduces as the number of GPUs in-
creases, and Tgmres with cuSPARSEPrecond does not show
persuasive advantage over Tgmres with PETScPrecond when 8
GPUs are used. By contrast, although IterativePrecond results
in more GMRES iterations, Tgmres using IterativePrecond
with itmax � 3 maintains more than 1.6x speedups compared
to Tgmres using PETScPrecond when the number of GPUs
increases from 2 to 8. In terms of LBFs for the preconditioning
step, both cuSPARSEPrecond and IterativePrecond performs
better than PETScPrecond because of the parallelism and the
relatively balanced partitions. As we expected, the number of
GMRES iterations is gradually reduced with the increasing

value of itmax, but leading to more overhead in every 30
preconditioning steps, and thus makes the total wall clock
time of GMRES increase. Due to the stochastic feature of
updating solutions in IterativePrecond, the GMRES iterations
could be less than that using the exact preconditioners. In this
case, for example, when IterativePrecond with itmax � 5 is
employed, only 125 iterations are required to make
GMRES(30) converge, which is 11 less than that using
PETScPrecond. Figure 14 shows the speedups obtained by the
CPU+GPU implementation over the PETSc implementation
on CPUs. And, above 3.0 x speedup can be obtained for all
configurations.

)e right-hand vector for the atmosmodl case also comes
with the matrix.)e results are shown in Table 4. We find
that IterativePrecond using itmax � 4 is sufficient for GMRES
(30) to converge with nearly the same number of iterations
as that obtained by the exact preconditioners.)e scalability

2 4 6 8
0

2000

4000

6000

Number of CPUs/GPUs

W
al

l c
lo

ck
 ti

m
es

 o
f

G
M

RE
S(

30
) (

m
s)

4.45x 4.48x 4.83x 4.44x

CPU−only PETsc
CPU+GPU IterativePrecond(itmax = 3)

Figure 13: thermal2: comparisons of the wall clock times of
GMRES(30) between the CPU-only implementation using PETSc
and out CPU+GPU implementation.

4 5 6 7 8
200

300

400

500

600

700

800

900

1000

1100

1200

1300

itmax

T g
m

re
s (

m
s)

IterativePrecond
cuSPARSEPrecond

290 iterations 248 iterations 228 iterations 205 iterations209 iterations

159 iterations

Figure 12: venkat25: comparison of Tgmres with increasing itmax (relative tolerance: 10− 5).

Mathematical Problems in Engineering 15

of IterativePrecond is much better than cuSPARSEPrecond
because there is no data dependencies when Iter-
ativePrecond is applied, and cuSPARSEPrecond is slower
than PETScPrecond when 8 GPUs are used. Tgmres using
IterativePrecond with itmax � 2 shows a speedup of 1.71x and
1.90x over that using PETScPrecond and cuSPARSEPre-
cond, respectively. Compared to the CPU-only imple-
mentation using 8 MPI processes, 2.97x speedup can be
obtained using 8 GPUs, which is shown in Figure 15.

Since the scale of venkat25 is not large enough to gain
speedups on GPUs over the pure MPI implementation, we
use this case only to demonstrate the advantage of the in-
exact triangular solve over the cuSPARSE-based triangular
solve. Figure 12 shows a comparison of Tgmres with in-
creasing itmax. We observe a optimal value of 6 for itmax
because Tgmres attains the minimum value at itmax � 6. Al-
though IterativePrecond results in 69 more GMRES itera-
tions to converge, it still outperforms cuSPARSEPrecond.
When 4 GPUs are used, GMRES with IterativePrecond
performs 4.37x faster than that with cuSPARSEPrecond.

5. Conclusion and Future Work

In this work, focusing on the block sparse matrices, we
present the development of a PETSc-enabled GMRES al-
gorithm with various optimizations and preconditioning
implementations on a GPU cluster. Motivated by the fined-
grained feature of the inexact preconditioners in recent
years, we propose a GPU algorithm to conduct a blockwise
triangular solve inexactly and iteratively. On the block
matrices selected from the SuiteSparse matrix collection, our
experiments have shown that the preconditioned GMRES
with inexact triangular solves outperform that with exact
ones implemented by the cuSPARSE library and achieve up
to 4.4x speedup using 8 GPUs over the CPU-only imple-
mentation using 8 MPI processes. Efforts are undergoing to
study the preconditioned GMRES algorithm using the
Additive Schwarz Method with the proposed inexact tri-
angular solves on multi-GPUs.

Data Availability

)ematrix data used to support the findings of this study are
available from the SuiteSparse Matrix Collection (https://
sparse.tamu.edu/).

Conflicts of Interest

)e authors declare no conflicts of interest.

Acknowledgments

)is work was supported by a grant from the National Key
R&D Program of China (no. 2019YFB1704202), National
Natural Science Foundation of China (no. 61702438),
Nanhu Scholar Program of XYNU, and Innovation Team
Support Plan of University Science and Technology of
Henan Province (19IRTSTHN014).

References

[1] Y. Saad and M. H. Schultz, “GMRES: a generalized minimal
residual algorithm for solving nonsymmetric linear systems,”
SIAM Journal on Scientific and Statistical Computing, vol. 7,
no. 3, pp. 856–869, 1986.

[2] R. Li and Y. Saad, “GPU-accelerated preconditioned iterative
linear solvers,” =e Journal of Supercomputing, vol. 63, no. 2,
pp. 443–466, 2013.

[3] L. Z. Khodja, R. Couturier, A. Giersch et al., “Parallel sparse
linear solver with GMRES method using minimization
techniques of communications for GPU clusters,” Journal of
Supercomputing, vol. 69, no. 1, pp. 200–224, 2014.

[4] I. Yamazaki, H. Anzt, S. Tomov et al., “Improving the per-
formance of CA-GMRES on multicores with multiple GPUs,”
in Proceedings of the IEEE International Parallel & Distributed
Processing Symposium, IEEE, Phoenix, AZ, USA, May 2014.

[5] I. Yamazaki, S. Rajamanickam, E. G. Boman, M. Hoemmen,
M. A. Heroux, and S. Tomov, “Domain decomposition pre-
conditioners for communication-avoiding krylov methods on
a hybrid CPU/GPU cluster,” in Proceedings of the SC14: In-
ternational Conference for High Performance Computing,

2 4 6 8
0

1000

2000

3000

4000

5000

6000

Number of CPUs/GPUs

W
al

l c
lo

ck
 ti

m
es

 o
f

G
M

RE
S(

30
) (

m
s)

3.15x 3.13x

3.30x

3.09x

CPU−only PETsc
CPU+GPU IterativePrecond(itmax = 3)

Figure 14: atmosmodd: comparisons of the wall clock times of
GMRES (30) between the CPU-only implementation using PETSc
and out CPU+GPU implementation.

2 4 6 8
0

500

1000

1500

2000

2500

3000

Number of CPUs/GPUs

W
al

l c
lo

ck
 ti

m
e (

m
s)

3.22x

3.00x3.20x
2.97x

CPU−only PETsc
CPU+GPU IterativePrecond(itmax = 2)

Figure 15: atmosmodl: comparisons of the wall clock times of
GMRES(30) between the CPU-only implementation using PETSc
and out CPU+GPU implementation.

16 Mathematical Problems in Engineering

https://sparse.tamu.edu/
https://sparse.tamu.edu/

Networking, Storage and Analysis, p. 933944, New Orleans,
LA, USA, November 2014.

[6] B. Yang and H. Liu, “Accelerating the GMRES solver with
block ILU (K) preconditioner on GPUs in reservoir simu-
lation,” Journal of Geology & Geophysics, vol. 4, no. 2, pp. 1–7,
2015.

[7] B. Yang, H. Liu, Z. Chen et al., “GPU-accelerated pre-
conditioned GMRES solver,” in Proceedings of the IEEE In-
ternational Conference on High Performance & Smart
Computing & Big Data Security on Cloud, IEEE, New York,
NY, USA, April 2016.

[8] J. Gao, K. Wu, Y. Wang et al., “GPU-accelerated precondi-
tioned GMRES method for two-dimensional Maxwell’s
equations,” International Journal of Computer Mathematics,
vol. 94, no. 912, pp. 2122–2144, 2017.

[9] K. He, S. X.-D. Tan, H. Zhao, X.-X. Liu, H. Wang, and G. Shi,
“Parallel GMRES solver for fast analysis of large linear dy-
namic systems on GPU platforms,” Integration, vol. 52,
pp. 10–22, 2016.

[10] L. Chen, S. G. Petiton, L. A. Drummond, and M. Hugues, “A
communication optimization scheme for basis computation
of krylov subspace methods on multi-GPUs,” in Proceedings
of the 11th International Conference on High Performance
Computing for Computational Science, pp. 31–36, Eugene, OR,
USA, June 2014.

[11] J. Gao, Y. Zhou, G. He, and Y. Xia, “A multi-GPU parallel
optimization model for the preconditioned conjugate gradi-
ent algorithm,” Parallel Computing, vol. 63, pp. 1–16, 2017.

[12] M. Ament, G. Knittel, D. Weiskopf et al., “A parallel pre-
conditioned conjugate gradient solver for the Poisson
problem on a multi-GPU platform,” in Proceedings of the 18th
Euromicro Conference on Parallel, Distributed and Network-
Based Processing, PDP 2010, IEEE Computer Society, Pisa,
Italy, February 2010.

[13] H. Ji, M. Sosonkina, and Y. Li, “An implementation of block
conjugate gradient algorithm on CPU-GPU processors,” in
Proceedings of the Hardware-software Co-design for High
Performance Computing, IEEE, New Orleans, LA, USA,
November 2014.

[14] A. Hartwig, S. Tomov, P. Luszczek, I. Yamazaki, D. Jack, and
W. Sawyer, “Optimizing krylov subspace solvers on graphics
processing units,” in Proceedings of the 2014 IEEE 28th In-
ternational Parallel & Distributed Processing Symposium
Workshops, pp. 941–949, Phoenix, AZ, USA, May 2014.

[15] R. Helfenstein and J. Koko, “Parallel preconditioned conju-
gate gradient algorithm on GPU,” Journal of Computational
and Applied Mathematics, vol. 236, no. 15, pp. 3584–3590,
2012.

[16] A. F. P. D. Camargos and V. C. Silva, “Performance analysis of
multi-GPU implementations of krylov-subspace methods
applied to FEA of electromagnetic phenomena,” IEEE
Transactions on Magnetics, vol. 51, no. 3, pp. 1–4, 2015.

[17] X. X. Liu, H. Wang, and X. D. Tan, “Parallel power grid
analysis using preconditioned GMRES solver on CPU-GPU
platforms,” in Proceedings of the 2013 IEEE/ACM Interna-
tional Conference on Computer Aided Design, San Jose, CA,
USA, November 2013.

[18] J. I. Aliaga, E. Dufrechou, P. Ezzatti et al., “An efficient GPU
version of the preconditioned GMRES method,” =e Journal
of Supercomputing, vol. 75, no. 3, pp. 1455–1469, 2018.

[19] V. Minden, B. F. Smith, and M. G. Knepley, “Preliminary
implementation of PETSc using GPUs,” in Proceedings of the
2010 Workshop of GPU Solutions to Multiscale Problems in
Science and Engineering, Harbin, China, July 2010.

[20] Y. Saad, Iterative Methods for Sparse Linear systems, PWS Pub.
Co., Boston, MA, USA, 2009.

[21] M. Naumov, “Parallel solution of sparse triangular linear
systems in the preconditioned iterative methods on the GPU,”
NVIDIA Technical Report NVR-2011-001, June 2011.

[22] A. Kashi and S. Nadarajah, “Fine-grain parallel smoothing by
asynchronous iterations and incomplete sparse approximate
inverses for computational fluid dynamics,” in Proceedings of
the AIAA Scitech 2020 Forum, Orlando, FL, USA, January
2020.

[23] E. Chow and A. Patel, “Fine-grained parallel incomplete LU
factorization,” SIAM Journal on Scientific Computing, vol. 37,
no. 2, pp. C169–C193, 2015.

[24] E. Chow, H. Anzt, and J. Dongarra, “Asynchronous iterative
algorithm for computing incomplete factorizations on
GPUs,” High Performance Computing, Springer International
Publishing, Berlin, Germany, 2015.

[25] M. Dessole and F. Marcuzzi, “Fully iterative ILU pre-
conditioning of the unsteady Navier-Stokes equations for
GPGPU,” Computers & Mathematics with Applications,
vol. 77, no. 4, pp. 907–927, 2019.

[26] H. Anzt, E. Chow, and J. Dongarra, “Iterative sparse triangular
solves for preconditioning,” in Proceedings of the European
Conference on Parallel Processing, Springer, Vienna, Austria,
August 2015.

[27] H. Anzt, E. Chow, D. B. Szyld et al., “Domain overlap for
iterative sparse triangular solves on GPUs,” Software for
Exascale Computing-SPPEXA 2013-2015, Springer Interna-
tional Publishing, Berlin, Germany, 2016.

[28] CUDA Toolkit Documentation for cuSPARSE, 2020, https://
docs.nvidia.com/cuda/cusparse/.

[29] R. Eberhardt and M. Hoemmen, “Optimization of block
sparse matrix-vector multiplication on shared-memory par-
allel architectures,” in Proceedings of the IEEE 2016 Inter-
national Parallel and Distributed Processing Symposium
Workshops (IPDPSW), IEEE, Chicago, IL, USA, May 2016.

[30] Developer Reference for Intel oneAPIMath Kernel Library-C,
2020, https://software.intel.com/en-us/onemkldeveloper-
reference-c.

[31] S. Balay, S. Abhyankar, M. F. Adams et al., “PETSc web page,”
2019, https://www.mcs.anl.gov/PETSc.

[32] X. C. Cai and Y. Saad, “Overlapping domain decomposition
algorithms for general sparse matrices,” Numerical Linear
Algebra with Applications, vol. 3, no. 3, pp. 221–237, 1994.

[33] PETSc Documentation: FAQ, 2020, https://www.mcs.anl.gov/
petsc/documentation/faq.html.

[34] CUDA Toolkit Documentation for cuBLAS, 2020, https://
docs.nvidia.com/cuda/cublas/.

[35] J. Sanders and E. Kandrot, CUDA by Example—An Intro-
duction to General-Purpose GPU Programming, Addison-
Wesley Professional, Boston, MA, USA, 2010.

[36] K. Rupp, P. Tillet, F. Rudolf et al., “ViennaCL—linear algebra
library for multi- andmany-core architectures,” SIAM Journal
on Scientific Computing, vol. 38, no. 5, pp. S412–S439, 2016.

[37] OpenMPI: Open Source High Performance Computing, 2010,
https://www.openmpi.org/doc/v3.1/.

[38] T. A. Davis and Y. Hu, “)e university of Florida sparse
matrix collection,” ACM Transactions on Mathematical
Software, vol. 38, no. 1, pp. 1–25, 2011.

Mathematical Problems in Engineering 17

https://docs.nvidia.com/cuda/cusparse/
https://docs.nvidia.com/cuda/cusparse/
https://software.intel.com/en-us/onemkldeveloper-reference-c
https://software.intel.com/en-us/onemkldeveloper-reference-c
https://www.mcs.anl.gov/PETSc
https://www.mcs.anl.gov/petsc/documentation/faq.html
https://www.mcs.anl.gov/petsc/documentation/faq.html
https://docs.nvidia.com/cuda/cublas/
https://docs.nvidia.com/cuda/cublas/
https://www.openmpi.org/doc/v3.1/

