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Performing shape optimization of blended-wing-body underwater glider (BWBUG) can significantly improve its gliding per-
formance. However, high-fidelity CFD analysis and geometric constraint calculation in traditional surrogate-based optimization
methods are expensive. An efficient surrogate-based optimization method based on the multifidelity model and geometric
constraint gradient information is proposed. By establishing a shape parameterized model, deriving analytical expression of
geometric constraint gradient, constructing multifidelity surrogate model, the calculation times of high-fidelity CFD model and
geometric constraints are reduced during the shape optimization process of BWBUG, which greatly improve the optimization
efficiency. Finally, the effectiveness and efficiency of the proposed method are verified by performing the shape optimization of a
BWBUG and comparing with traditional surrogate-based optimization methods.

1. Introduction

With the development of human society, the resources on
land are exhausted. Because the ocean has unique advan-
tages in resources, environment, and space, countries in the
world are gradually paying attention to the development and
utilization of marine resources. As a new type of underwater
vehicle, Autonomous Underwater Glider (AUG) [1–4] has
the advantages of long endurance, low manufacturing cost,
and high reuse. It can sail in the ocean for a long time with
high efficiency. At present, it has been widely used in marine
environmental investigation and monitoring [5], such as sea
temperature, salinity, ocean current speed, and marine
environmental pollution. It can also be used to observe
submarine volcanic eruptions, detect glaciers, and serve as
data transmission nodes.

*e basic principle of the underwater glider is to convert
the hydrodynamic lift generated by the wing into the driving
force through adjusting its net buoyancy. *erefore, the
hydrodynamic shape has an important impact on the overall
performance and navigation distance of the underwater
glider.*e blended-wing-body underwater glider (BWBUG)
[6–8] has a fuselage with a flat airfoil profile, and the

hydrofoil and the fuselage are smoothly fused together.
Compared with the traditional underwater glider composed
of revolving body, hydrofoil, and control surface [9, 10], its
outstanding feature is that it has a larger lift-drag ratio
[11, 12], which leads to a longer distance in the horizontal
direction when it descends the same depth in the water. In
recent years, it has received more and more attention and
research.

To further improve the lift-drag ratio of the underwater
glider, the optimization design method is widely applied in
the shape design of the underwater glider. It is the top-level
structure of the shape optimization design, which controls
the operation of the whole optimization design and deter-
mines the development direction of the optimization.
Generally, the optimization method can be divided into
gradient-based optimization method [13], gradient-free
optimization method [14], and surrogate-based optimiza-
tion (SBO) method [15].

*e gradient-based optimization method mainly de-
termines the search direction of the next iteration by the
gradient information of objective function and constraint
conditions. It is efficient in finding local minima for high-
dimensional nonlinear problems defined by continuous
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smooth functions. *e typical gradient-based optimization
methods include the interior point method, trust region
method, and sequence quadratic programming (SQP). *e
tests show that the computation complexity of the gradient-
based optimization method is linearly proportional to the
number of variables [16, 17]. However, these optimization
algorithms require the user to provide the gradient infor-
mation and to guarantee the function smoothness of con-
straints and objectives. For the optimization problems of
BWBUG, gradients might not be available when the lift-drag
ratio is calculated by the CFD method which is a black box
for most users. Although gradients can always be approx-
imated with finite differences, these approximations suffer
from potentially significant inaccuracies (a truncation error
of O(h) or O(h2) when second-order). *erefore, the gra-
dient-based optimization method is rarely found to be ap-
plied in the shape optimization design of BWBUG at this
stage.

Different from the gradient-based optimization
methods, the gradient-free optimization method does not
need gradient information. *erefore, it is useful when
gradients are not available, such as when dealing with black-
box functions [18]. Another major advantage of gradient-
free methods is that they tend to be robust to numerical
noise and discontinuity, making them easier to use than
gradient-based methods. *ere is a wide variety of gradient-
free methods which can perform a local or global search, use
mathematical or heuristic criteria, and be deterministic or
stochastic [19]. *e gradient-free optimization methods
mainly include the Nelder–Mead algorithm which is a local
search algorithm based on heuristics, the generalized pattern
search (GPS) which is based on mathematical criteria, and
the evolutionary algorithms (such as the genetic algorithms
and particle swarm optimization algorithms) which are
based on the evolution of a population of designs. For the
shape optimization design of BWBUG, Fu et al. [20] used
NSGA2 (Nondominated Sorting Genetic Algorithm) to
optimize the shape of the autonomous underwater glider.
Tang et al. [21] used BESO (Bidirectional Evolutionary
Structural Optimization) to optimize the shape of the un-
derwater glider. However, the overall cost of gradient-free
optimization is sensitive to the cost of the function evalu-
ations because they require many iterations for convergence,
and the number of iterations scales poorly with the number
of design variables. It is found that the computational
complexity of the gradient-free optimization methods in-
creases exponentially with the number of variables [16, 17].
*erefore, the gradient-free optimization method is very
time-consuming when it is applied to the shape optimization
of BWBUG with a large number of variables.

To reduce the computational cost in the optimization
while maintaining the advantages of the gradient-free op-
timization method, the surrogate-based optimization
method [15, 22] has been widely developed in recent years. It
mainly uses the surrogate model to replace the time-con-
suming numerical simulation analysis and adds new sample
points according to certain criteria in the optimization
process to update the surrogate model cyclically. *ere are
many methods to build the surrogate model such as

polynomials, radial basis functions, and kriging. For the
shape optimization design of BWBUG, Wang et al. [23]
established the hydrodynamic surrogate model of flying
wing underwater glider using Gaussian kernel function and
optimized it by particle swarm optimization algorithm. Sun
and Li et al. [24, 25] used the Kriging model to realize the
hydrodynamic shape optimization of the underwater glider.
Zhang and Li et al. [26, 27] applied the surrogate-based
optimization method into the shape design of BWBUG and
obtained an optimal shape design. *ese results show that
the SBO method can effectively reduce the call times of
computationally expensive functions in the optimization
process, but one potential issue with the surrogate model is
the curse of dimensionality [28]. With the increase of design
variables, the CFD evaluations are significantly increasing to
build the surrogate model. Considering the high-fidelity
CFD evaluation is time-consuming for BWBUG, the SBO
method still needs to be improved to reduce the compu-
tational cost when it is applied to the shape optimization
design of BWBUG.

To further improve the optimization efficiency of the
surrogate model and explore the high lift-drag ratio char-
acteristics of BWBUG, an efficient surrogate-based opti-
mization method based on the multifidelity model and
geometric constraint gradient information is proposed to
reduce the calculation times of high-fidelity model and
geometric constraints in the shape optimization process of
BWBUG. Section 2 describes the optimization model of
BWBUG, and Section 3 introduces the problems existing in
the traditional surrogate-based optimization method for the
shape optimization design of BWBUG. Section 4 describes
the proposed efficient surrogate-based method in detail. In
Section 4, firstly, the parametric modeling of BWBUG is
carried out, and the gradient analytical expression of geo-
metric constraints is given. Secondly, the high-fidelity and
low-fidelity CFDmodels of BWBUG are established, and the
nested Kriging surrogate model is constructed. Finally,
based on the criteria for infilling sample points, the shape
optimization framework of BWBUG is built. Section 5
performs the shape optimization design of a BWBUG and
compares the optimization results to demonstrate the ef-
fectiveness and efficiency of the proposed method. Section 6
summarizes the whole paper.

2. Optimization Model of BWBUG

For the BWBUG, its fuselage and wing are connected
smoothly, and the cross section at each spanwise position is
the airfoil section, which leads to a high lift-drag ratio.
Figure 1 describes the geometric shape of BWBUG, and the
blue curves show the airfoil profiles at nine spanwise
locations.

*e main content of the shape optimization design for
the BWBUG above is to carry out parametric modeling of
geometric shape and to use the efficient optimization al-
gorithm to obtain the optimal hydrodynamic performance
on the premise of meeting certain geometric constraints.*e
specific mathematical optimization model of BWBUG can
be expressed as follows:
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Min−
L

D

w.r.t x ∈ xl, xu ,

s.t. g(x)≥ 0,

(1)

where L/D is the lift-drag ratio of the BWBUG, and the
optimization objective is to maximize the lift-drag ratio. x is
the shape parameterization variable with the variable range
of [xl, xu]. g(x) denotes geometric constraints, which need
to meet certain design requirements such as thickness and
volume.

3. Problems Existing in the Traditional
SBO Method

To solve the optimization model of BWBUG, the main idea
of the traditional surrogate-based optimization method is to
use the surrogate model to replace the time-consuming
numerical simulation analysis in the optimization design. Its
detailed optimization process can be described as follows:

(1) *e Design of Experiments (DOE) is used to gen-
erate the sample points in the design space, and the
response values at these points are obtained by
running accurate numerical simulations. *en, the
initial surrogate model is established based on these
data.

(2) Based on the established surrogate model, according
to certain criteria for adding new sample points, the
global optimization algorithm is applied to solve the
corresponding suboptimization problem. Finally, the
optimal solution is obtained as the new sample
points.

(3) *e response values at the new sample points are
calculated and the surrogate model is updated until
the added sample point sequence converges to the
optimal solution.

For a better understanding, the whole optimization
process is shown in Figure 2.

Compared with the intelligent optimization method, the
optimization efficiency can be greatly improved by estab-
lishing the surrogate model of lift-drag ratio and adopting
the optimization process in Figure 2, but the following two
problems still need to be solved.

Problem 1. Figure 2 mainly uses the high-fidelity CFD
model to calculate the lift-drag ratio at different sample
points and builds a surrogate model of the lift-drag ratio
based on these data to replace the original CFD model for
optimization design, which greatly reduces the calculation
consumption in the optimization process. However, if all the
sample data are calculated through the high-fidelity CFD
model, the calculation is still very time-consuming.

Problem 2. Figure 2 often uses gradient-free optimization
algorithms (such as NSGA and PSO) to solve the sub-
optimization problems.*erefore, the calculation times of
the geometric constraints have an exponential relation-
ship with the number of optimization variables in solving
the suboptimization problems. References [16–17] show
that 8 optimization variables need to be calculated with
thousands of geometric constraints. Even if it only takes
ten seconds or a few seconds to regenerate the geometry
each time, the amount of geometric constraint calcula-
tions in the whole suboptimization process is still
considerable.

4. Efficient Surrogate-Based
Optimization Method

When the surrogate model is used to optimize the shape of
the BWBUG, if the high-fidelity CFD model is directly used
for the hydrodynamic analysis, the calculation cost is high.
In addition, the amount of geometric constraint calculation
in the process of solving the suboptimization problem is
large. In this section, the shape parametric model of the
BWBUG is established, and the analytic expression of the
geometric constraint gradient information is derived. A
multifidelity CFDmodel composed of high-fidelity and low-
fidelity CFD models is established to use the low-fidelity
model to predict the results of the high-fidelity model. Fi-
nally, an efficient surrogate-based optimization method
based on the multifidelity model and geometric constraint
gradient information is proposed, which can greatly reduce
the calculation times of the high-fidelity model and geo-
metric constraints in the shape optimization process of
BWBUG.

4.1. Shape Parameterization and Constraint Gradient
Computation

4.1.1. Shape Parametric Modeling. For the shape of
BWBUG shown in Figure 1, its parametric modeling can
be built by interpolating all the airfoil sections with the
lofting technique. *en, by modifying the profile, twist
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Figure 1: *e geometric shape of BWBUG.
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angle, and spatial position of each airfoil section in the
parametric modeling, the shape of BWBUG can be de-
formed in the optimization design process. In the fol-
lowing section, the geometric parametric modeling
process is described in detail, and the related parametric
variables are defined.

(1) Let DK ∈ R2, k � 0, . . . , m  be the m data points of
the initial airfoil, and arrange them in sequence with
the airfoil trailing edge as the starting and ending
points.A(ξ) is defined as the B-spline fitting curve of
thesem data points, which is determined by n control
points Pi, (i � 1, . . . , n). By changing the value of Pi,
the curve shape of A(ξ) can be changed. Figure 3
shows the data points of one airfoil profile, the
B-spline fitting curve, and the corresponding control
points.

(2) Place the airfoil section A(ξ) on the xy plane and
introduce the scale factors Sx and Sy in x direction
and y direction, respectively. By changing the values
of Sx and Sy, the chord length and thickness of the
airfoil profile A(ξ) can be changed.

(3) Define θ as the twist angle of airfoil section A(ξ) in
the xy plane. *en, the rotation transformation of
airfoil section A(ξ) can be realized by changing the
value of θ.

(4) Use T to represent the placement position of airfoil
section A(ξ) in three-dimensional space. *en, the
spatial layout of airfoil section A(ξ) can be con-
trolled by changing the value of T.
To sum up, the shape of BWBUG can be expressed by
the following formula:

W(ξ, η) � T(η) + Θ(η)S(η)A(ξ), (2)

where ξ is the direction of airfoil profile curve and η
is the spanwise direction. S(η) is the 3 × 3 scale
matrix and its diagonal element is Sx, Sy, 0 . Θ(η)

represents the rotation matrix with the twist angle of
θ. T(η) represents the position coordinate.
Figure 4 shows an example of the left-right sym-
metrical BWBUG. For ease of description, the left
half is taken for display.
By changing the parameter values of Pi, Sx, Sy, θ,T,
the geometric deformation of the BWBUG can be
realized in the optimization design process.

4.1.2. Geometric Constraint Gradient Calculation.
Because the BWBUG has internal loading requirements, it is
often necessary to set corresponding thickness constraints at
different positions. Suppose that the thickness h between the
upper and lower surfaces of the BWBUG is required to be
greater than the initial thickness h0 at position (x, 0, z), the
geometric constraint g can be expressed as follows:

g � W ξ1, η1(  − W ξ2, η2(  − h0 ≥ 0, (3)

where (ξ1, η1) and (ξ2, η2) are the local coordinates corre-
sponding to the upper and lower surfaces of BWBUG at po-
sition (x, 0, z), respectively, and h � W(ξ1, η1) − W(ξ2, η2).

According to the expression formula (2) of W(ξ, η), the
gradient information of the geometric constraint g relative
to the parameterized variables Pi, Sx, Sy, θ,T can be derived
as follows:
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Figure 2: *e optimization process of the traditional SBO method.
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Figure 3: Data points and A(ξ) fitting curve of one airfoil.
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4.2. Multifidelity Surrogate Model. *e lift-drag ratio of
BWBUG is the primary objective of shape optimization, and
its calculation by high-fidelity CFD model is the most time-
consuming. Considering that the results of the low-fidelity
CFDmodel can reflect the change trend of lift-drag ratio, the
nested Kriging model of high-fidelity and low-fidelity
models are established to significantly improve the efficiency
of building the Kriging model under the condition of
achieving the same accuracy.

4.2.1. CFD Model with High and Low Fidelity. In this
section, a multifidelity CFD model composed of the high-
fidelity model and low-fidelity model is established. Among
them, the difference of high and low-fidelity models is
mainly reflected in the grid elements and the number of
grids. For the grid generation of the left-right symmetrical
BWBUG, a half shape is modeled to reduce the compu-
tation cost. *e computation domain is set as a box-to-
pology shape and the size of the domain is set to
[−10L, 15L] × [0, 10L] × [−10L, 10L] (L is the reference
length) in length, width, and height direction, respectively.
*e trimmed mesher and prism layer mesher are used to
generate the volume grids in the computational domain.
*e number of prism layers is set to 5, and the volume
growth rate is set to 1.2. In addition, two control volumes
are introduced to increase the local grid density near the
BWBUG.*emesh number of the high-fidelity model is set
about 350W, and that of the low-fidelity model is set about
70W. Figures 5 and 6 show the surface grids of the high-
fidelity and low-fidelity model, respectively. It can be seen
that the high-fidelity model has smaller grid elements and a
larger number of grids, while the low-fidelity model has
larger grid elements and a smaller number of grids.

Both the high and low-fidelity models are solved using
the SST k − w turbulence model, and the same boundary
conditions and solving parameters are set. *e boundary
conditions include the following: the left surface of the
computation domain is set as the velocity inlet, the right
surface is set as the pressure outlet, the back surface is set as
the symmetry plane, and the other three remaining surfaces
are set as the slip walls. In addition, the BWBUG surface is
set to the nonslip wall. *e solution parameters include the

following: the maximum number of iteration steps is set to
1000 steps, and the convergence residual is set to 1e− 5.

Figures 7 and 8 show the pressure distribution of high
and low fidelity models at 1kn speed and 4° angle of attack.
From the pressure distribution, it can be seen that the
high-fidelity model exhibits smoother pressure distri-
bution at the front edges of the BWBUG than the low-
fidelity model.

4.2.2. Nested Kriging Surrogate Model. *e Kriging model
[29, 30] is an interpolation model. *e interpolation result
y(x0) at the point x0 is defined as the linear weighting of the
response values ys of the known samples:

y x0(  � wT x0( ys, (5)

where w(x0) is the weighting coefficient.
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Figure 4: *e parametric shape of BWBUG.

Figure 5: Surface grids of the high-fidelity model.

Figure 6: Surface grids of the low-fidelity model.
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Figure 7: Pressure distribution of the high-fidelity model.
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Figure 8: Pressure distribution of the low-fidelity model.
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From formula (5), the lift-drag ratio at the estimated
points can be obtained as long as the expression of the
weighting coefficient w(x0) is given. For the Kriging model,
the unknown function is regarded as a specific realization of
the Gaussian static random process, and the optimal
weighting coefficientw(x0) is calculated by both meeting the
minimum mean square error and the unbiased condition.
Based on [30], the analytical expression of w(x0) is given by
the following formula:

R F

FT 0
 

w x0( 

λ
  �

r

f x0( 
 , (6)

where R is called the correlation matrix, which is composed
of correlation function values between all known sample
points. r is called the correlation vector, which is composed
of correlation function values between unknown points and
all known sample points. f is the vector of basis function,
which is previously defined.

By solving the linear equations (6) and substituting them
into formula (5), the estimated value of the Kriging model
can be obtained as follows:

y x0(  � fT x0( β + rTR− 1 ys − Fsβ , (7)

where β � (FTRF)− 1(FTR− 1ys).
It is assumed that the sampling points of high and low-

fidelity CFD models are as follows:

S1 � x11, . . . , xn
1 

T
,

S2 � x12, . . . , xm
2 

T
,

(8)

where the subscripts “1” and “2” represent high-fidelity and
low-fidelity CFD models, respectively, and n is often much
smaller than m.

*eir corresponding lift-drag ratio calculation results are
as follows:

Y1 � y
1
1, · · · , y

n
1 

T
,

Y2 � y
1
2, · · · , y

m
2 

T
.

(9)

*en, the nested Kriging model of high- and low-fidelity
CFD models is established by the following steps.

Step 1. Kriging model is established for the sample data
of low-fidelity CFD model as follows:

ylf x0(  � wT
lf x0( Y2, (10)

where ylf is the low-fidelity Kriging model.
Step 2. *e difference between high-fidelity value and
low-fidelity Kriging model prediction value is calcu-
lated at the sample points of the high-fidelity CFD
model, as shown in the following formula:

d � Y1 − ylf S1( . (11)

Step 3. *e Kriging model for the difference value
calculated by formula (11) is established by the fol-
lowing formula:

d x0(  � wT
hf x0( d. (12)

Step 4. By summing the Kriging model established by
formulas (10) and (12), the approximate results of the
high-fidelity CFD model are obtained as follows:

yhf x0(  � ylf x0(  + d x0( , (13)

where yhf represents the approximate value of the
high-fidelity CFD model.

4.3. Shape Optimization Framework for BWBUG. To per-
form the shape optimization of BWBUG efficiently, the
nested Kriging model is established according to Section
4.2 to replace the time-consuming CFD model to calculate
the lift-drag ratio. *e suboptimization problems for
adding new sample points are solved efficiently by intro-
ducing the geometric constraint gradient information
calculated in Section 4.1. *e sample points are infilled
dynamically, and the nested Kriging model is updated it-
eratively until the optimization converges. *e detailed
optimization framework based on the above idea is de-
scribed as follows:

(1) *e experimental design methods, such as full fac-
torial design, fractional factorial, orthogonal array,
central composite design, or Latin hypercube design
[31, 32], are used to sample the parameterized design
space, and the initial sample points of high-fidelity
and low-fidelity models are obtained, respectively.

(2) At the corresponding sample points, the high-fidelity
and low-fidelity CFD models are solved to calculate
the lift-drag ratio of BWBUG, and the nested Kriging
model is established according to the method in
Section 4.2.2.

(3) *e criterion for infilling sample point is adopted
and the corresponding suboptimization problem is
solved to obtain the optimal solution as the new
sample point. *e common criteria include Mini-
mum of Surrogate Prediction (MSP), Expected
Improvement (EI), or Probability of Improvement
(PI). [33, 34]. Among them, MSP is the simplest,
most direct, and the earliest criterion to be used. Its
principle is to infill the sample point which can make
the objective function of the surrogate model reach
the minimum value. For the BWBUG, MSP is se-
lected, and it mainly infills sample points by solving
the following suboptimization problems with geo-
metric constraints:

Min. yhf(x)

w.r.t x ∈ xl, xu ,

s.t. g(x)≥ 0,

(14)

where yhf(x) is the predicted value of the nested
Kriging model.
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For the above suboptimization problem, considering
that the gradient analytic expression of geometric
constraint g(x) is given in Section 4.1.2, gradient
optimization algorithms (such as the SQP method)
are used to solve the suboptimization problem
efficiently.

(4) At the new sample point generated by MSP, accurate
CFD analysis is carried out to determine whether it
converges to the optimal solution. If it converges, the
optimization process ends. Otherwise, the results are
added to the existing data set and the whole opti-
mization process is repeated.

For a better understanding of the process above, an
overview of shape optimization algorithm for BWBUG is
shown in Algorithm 1, and the shape optimization frame-
work for BWBUG is described in Figure 9.

5. Results and Discussion

In this paper, a left-right symmetrical BWBUG is taken as an
example to perform the shape optimization design for
verifying the effectiveness and efficiency of the proposed
surrogate-based optimization method.

5.1. Optimization Problem Description. *e initial shape of
the left-right symmetrical BWBUG is composed of 11 airfoil
sections, and all the airfoil sections are NACA0012 airfoil. In
order to reduce the number of parametric variables and the
amount of calculation in the optimization process, the left
half shape composed of six airfoil sections is selected for
optimal design.

Considering that the internal structure and loading
equipment of the BWBUG have been determined with the
initial shape design, the chord length of each airfoil
section and the placement position of each airfoil section
are set as constant to ensure that the internal structure
and equipment layout remain unchanged in the opti-
mization design. *e scale factors in y direction Sy and
the twist angle θ of six airfoil sections are selected as
optimization design variables to improve the perfor-
mance of BWBUG.

In addition, the thicknesses at 1/4 chord position of 6
airfoil sections are set to be no less than the initial value as
geometric constraints to meet the loading requirements of
internal equipment. And the interval constraints of opti-
mization variables are also introduced not only to ensure
sufficient optimization exploration space but also to avoid a
sharp increase in the amount of calculation caused by an
excessively large interval.

To sum up, the following optimization problems are
obtained:

Min. −
L

D

w.r.t Syi, θi, (i � 1, . . . , 6)

s.t.

0.8≤
Syi

Syi0

≤ 1.2,

−80 ≤ θi ≤ 8
0
,

hi − hi0
≥ 0,

i � 1, . . . , 6,

(15)

where Syi0
is the initial value of the variable Syi and hi0

is the
initial thickness value of BWBUG at 1/4 chord position of
the i th airfoil section.

5.2. Shape Optimization and Results Analysis. *e proposed
optimization method is used to solve the optimization
problem (15). Firstly, the Latin hypercube method is used to
select 30 and 70 sample points as the initial sample points of
high-fidelity and low-fidelity CFD models, respectively. Sec-
ondly, the corresponding lift-drag ratio is calculated at each
sample point, and the nested Kriging model is built according
to Section 4.2.2. Finally, the gradient-based optimization al-
gorithm is used to solve the MSP suboptimization problem
and the obtained optimal points are infilled dynamically to
update the nested Kriging model until the optimization
converges. *e convergence condition is that the difference
between the two optimal sample points is less than 10− 4.

Initial variable space

Sampling based on DOE

Low-fidelity
CFD model

High-fidelity
CFD model

Low-fidelity
Kriging model

Infill
sample point

Nested Kriging model

Solve the sub
problem

Gradient of
constraints

Convergence? No

Yes

End

Figure 9: *e shape optimization framework for BWBUG.
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*e shape optimization was carried out in the work-
station, whose processor is Intel® Core™ i7-7700K and
memory size is 16GB. *e whole optimization converged
after running 362 hours. In the process, 23 sample points
were infilled dynamically to update the nested Kriging
model. A total of 53 high-fidelity CFD analyses and 93 low-
fidelity CFD analyses were performed to obtain the optimal
shape for BWBUG. Figure 10 shows the convergence history
of the whole optimization process.

Table 1 lists all the initial values from which the opti-
mization was started, and all the optimal values obtained
after the shape optimization of BWBUG. Figure 11 com-
pares the pressure distribution on the upper surface between
the initial shape and the optimal shape of BWBUG. Fig-
ure 12 compares the pressure distribution on the lower
surface of the initial shape and the optimal shape.

It can be seen from Table 1 that the thicknesses at 1/4
chord position of six airfoil sections are all greater than the
initial values, which meets the requirements of geometric
constraints. Compared with the initial shape of BWBUG, the
lift-drag ratio has an increase of 23.9% from 13.24 to 16.41.
Figures 11 and 12 give the reason why the lift-drag ratio
increases. As Figure 11 shows, the low-pressure area on the
upper surface of the optimal shape is larger than that of the
upper surface of the initial shape, especially at the leading
edge.While Figure 12 shows that the area of the high-pressure
zone on the lower surface of the optimal shape is larger than
that of the lower surface of the initial shape. Considering the
total pressure distribution on the upper and lower surfaces,
the optimal shape produces a higher lift force than the initial
shape, which indirectly increases the high lift-drag ratio.

Taken together, the proposed optimization method tries
to find a better design shape of BWBUG at each iteration
(Figure 10) by dynamically infilling new sample points to
update the nested Kriging model of the multifidelity CFD
model, and finally, it obtains an optimal shape which has a
better hydrodynamic distribution meeting the design re-
quirements than the initial shape (Table 1). It is demon-
strated that the proposed optimization is effective in
improving the hydrodynamic performance of BWBUG.

5.3. Comparison with Traditional SBO Method. In this sec-
tion, the traditional SBO method and the proposed opti-
mization method are both applied to optimize the
optimization problem (15), and their optimized results are
compared with each other to verify the efficiency of the
proposed optimization method.

In order to make the optimized results statistically
significant, five initial points are selected evenly within the
variable bounds to start the optimization, as shown in Ta-
ble 2. As for the parameter settings of the proposed opti-
mization method, they are the same as those in Section 5.2.
As for the parameter settings of the traditional SBO method,
the Latin hypercube method is also adopted to select 70
sample points to establish the initial surrogate model, but the
high-fidelity CFD model is used to calculate the lift-drag
ratio at all sample points. *e remaining parameter settings
are the same as those in Section 5.2.

In order to shorten the time to complete the whole
optimization above, the ten optimizations above were
performed on a massively parallel supercomputer and each
optimization was carried out concurrently with the same
computational resources. Table 3 lists the detailed com-
parison data between the traditional SBO method and the
proposed optimization method.

It can be seen from Table 3 that the average values of L/D
obtained by the traditional SBO method and the proposed
optimization method are 16.39 and 16.40, respectively,
which are roughly the same as a relative error of only 0.06%.
And for each case of five initial points, the maximum relative
error of L/D is 0.18%. All these results imply that the
proposed optimization method can get almost the same
optimal objective as the traditional SBO method. Consid-
ering that the traditional SBO method has been widely
proved to be an effective optimization method [35],
therefore the proposed optimization method is also proved
to be effective indirectly.

In addition, Table 3 shows that the average time cost by
the traditional SBO method and the proposed optimization
method is 261.0 hours and 185.7 hours, respectively.
Compared with the traditional SBO method, the average
time cost by the proposed optimization method is reduced
by 28.9%, which demonstrates that the proposed optimi-
zation method has higher optimization efficiency than the
traditional SBO method. After the in-depth analysis, the
calls to the low-fidelity CFD model and high-fidelity CFD
model (Table 3) by the two methods reveal the reasons why
the proposed optimization method is more efficient. For
the traditional SBO method, just the high-fidelity CFD
model is called for the calculation of L/D and the average
calls are 98. While for the proposed optimization method,
the average calls to the low-fidelity CFD model are 91 and
the average calls to the high-fidelity CFD model are 51. *e
proposed optimization method calls 91 more low-fidelity
CFD models and 47 less high-fidelity CFD models than the
traditional SBO method. What is more, the computational
time of the high-fidelity CFD model is almost 4–6 times
that of the low-fidelity CFD model for the optimization
problem (15). *erefore, the proposed optimization
method mainly improves the optimization efficiency by
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–L
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Figure 10: *e convergence history of shape optimization for the
BWBUG.
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using the low-fidelity CFD model to reduce the compu-
tational time of high-fidelity model, which agrees well with
the hypotheses before.

However, it should be noted in Table 3 that the optimal
values of L/D obtained from different initial points are
different with a small deviation for both the proposed

optimization method and the traditional SBO method. It
implies that both methods cannot strictly converge to the
global optimality. Although it is difficult and uneconomical
for surrogate-based optimization methods to find a strict
global optimal solution to complex engineering problems, it
should be fully considered in our future work.

Inputs:
n, m: number of initial samples for high- and low-fidelity CFD models
[xl, xu]: lower and upper bounds
τ: Minimum Expected Improvement

Outputs:
x∗: best point identified
y∗: corresponding function value
S1 � sample(n), S2 � sample(m) Sample
Y1 � High_CFD(S1), Y2 � Low_CFD(S2) Calculate by multifidelity CFD models
While k< kmax and (yhf − y∗)/y∗ < τ do

ylf � kriging(S2,Y2) Build Kriging for high-fidelity model
d � Y1 − ylf(S1) Calculate the difference values
d � kriging(S1,d) Build Kriging for difference values
yhf � ylf + d Build the nested Kriging model
x∗ � MSP(x) Solve the MSP problem
yhf � High_CFD(x∗), ylf � Low_CFD(x∗) Evaluate at predicted optimum
y∗ � min(yhf, Y1) Update best point if necessary
S1←[x∗, S1], S2←[x∗, S2] Add new point to training data
Y1←[yhf,Y1], Y2←[ylf,Y2]

k←k + 1
End while

ALGORITHM 1: Shape optimization algorithm for BWBUG.
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Figure 12: Pressure distribution on the lower surface.

Upper surface

-150
-100

-50
0

50
100

Original shape Optimized shape

Figure 11: Pressure distribution on the upper surface.

10 Mathematical Problems in Engineering



6. Conclusions

When the traditional SBO method is used for the shape
optimization design of BWBUG, there are some problems
such as time consumption of high-fidelity CFD analysis and
large amount of calculation of geometric constraints in the
suboptimization process. In this paper, a shape parametric
model of the BWBUG is established, the analytic expression
of geometric constraint gradient is derived, and the mul-
tifidelity CFD surrogate model is constructed. Finally, an
efficient surrogate-based optimization method based on the
multifidelity model and geometric constraint gradient in-
formation is proposed, which reduces the calculation times
of the high-fidelity model and geometric constraints in the
shape optimization process, and greatly improves the op-
timization efficiency.

*e shape of one left-right symmetrical BWBUG was
optimized to verify the effectiveness and efficiency of the
proposed optimization method. *e results show that the
lift-drag ratio of the optimal shape obtained by the proposed
method is 23.9% higher than that of the initial shape, and the
optimization efficiency of the proposed method is 28.9%
higher than that of the traditional SBO method, which
proves that the proposed method has a good application
prospect in the shape optimization design of the BWBUG.

In addition, the main theories of the proposed optimi-
zationmethod, such as the parametric modelingmethod, the
gradient calculation method of geometric constraints, and
the multifidelity surrogate model method, are not just
suitable for the shape of BWBUG, but also for that of the
aircraft, ships, cars, and so on. *erefore, the proposed
optimization method has a broad applications prospect in

Table 2: Initial points from which the optimization is started.

Case Sy1/Sy10 Sy2/Sy20 Sy3/Sy30 Sy4/Sy40 Sy5/Sy50 Sy6/Sy60 θ1 θ2 θ3 θ4 θ5 θ6
1 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
2 0.8 0.9 1.1 1.2 1.0 1.1 −4.0 4.0 0.0 −8.0 8.0 4.0
3 1.1 0.9 1.2 0.8 1.2 0.9 −8.0 8.0 −4.0 4.0 0.0 −8.0
4 1.2 1.1 0.9 0.9 1.1 0.8 0.0 −8.0 4.0 −8.0 −4.0 8.0
5 0.9 1.0 0.8 1.1 0.9 1.2 8.0 0.0 −8.0 −4.0 4.0 −4.0

Table 1: *e initial values and optimal results for BWBUG.

Parameters Initial values Optimal values
−L/D −13.24 −16.41
Sy1/Sy10 1.0 1.0972
Sy2/Sy20 1.0 0.8000
Sy3/Sy30 1.0 1.1999
Sy4/Sy40 1.0 1.2000
Sy5/Sy50 1.0 0.8000
Sy6/Sy60 1.0 0.8229
θ1 0.0 −5.4593
θ2 0.0 −3.0811
θ3 0.0 −7.3963
θ4 0.0 −3.5005
θ5 0.0 −3.9580
θ6 0.0 −0.0000
h1 − h10 0.0 6.0473
h2 − h20 0.0 0.0080
h3 − h30 0.0 4.2409
h4 − h40 0.0 3.6299
h5 − h50 0.0 1.4569
h6 − h60 0.0 0.0079

Table 3: Comparison between the traditional SBO method and the proposed method.

Case
Traditional SBO method Proposed optimization method

L/D Calls to LF Calls to HF Time (h) L/D Calls to LF Calls to HF Time (h)
1 16.40 0 100 267.1 16.41 93 53 191.2
2 16.35 0 93 247.5 16.37 88 48 174.5
3 16.42 0 102 272.9 16.43 94 54 194.5
4 16.39 0 98 261.4 16.38 92 52 187.4
5 16.37 0 96 256.1 16.40 90 50 181.1
Avg. 16.39 0 98 261.0 16.40 91 51 185.7
∗LF denotes the low-fidelity CFD model; HF denotes the high-fidelity CFD model; Avg. represents the average value of the five cases; h represents hours.
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the shape optimization design of aircraft, ships, cars, and so
on.
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