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Finding a feasible, collision-free path in line with social activities is an important and challenging task for robots working in dense
crowds. In recent years, many studies have used deep reinforcement learning techniques to solve this problem. In particular, it is
necessary to find an efficient path in a short time which often requires predicting the interaction with neighboring agents.
However, as the crowd grows and the scene becomes more and more complex, researchers usually simplify the problem to a one-
way human-robot interaction problem. But, in fact, we have to consider not only the interaction between humans and robots but
also the influence of human-human interactions on the movement trajectory of the robot. +erefore, this article proposes a
method based on deep reinforcement learning to enable the robot to avoid obstacles in the crowd and navigate smoothly from the
starting point to the target point. We use a dual social attention mechanism to jointly model human-robot and human-human
interaction. All sorts of experiments demonstrate that our model can make robots navigate in dense crowds more efficiently
compared with other algorithms.

1. Introduction

In the context of the rapid development of technique, the
robot has expanded from an isolated work environment to a
shared social space for cooperation with humans. As a basic
subject of robotics, mobile robot navigation has been ex-
tensively studied. In the old days, traditional mobile robot
navigation usually regarded other agents as static obstacles
and only judged the next action when they walked in front of
the agent. Not only did this cause a lot of safety problems,
but also the navigation efficiency was very low. In recent
years, due to the growing aging of the population and the
increasingly expensive labor force, more service robots have
been developed to work in a social environment [1]. In order
for robots to navigate more efficiently and normatively in
dense crowds, researchers need to follow the principles of
social interaction between humans [2–5].

One of the most basic abilities of a robot to navigate a
crowd is to avoid collisions. Humans have an innate ability
to observe and adjust their behavior through their own
observations, so we can easily pass through people safely.

However, robots need to perceive and predict human be-
havior, which involves more complex techniques such as
human-computer interaction. Researchers have proposed
some manual calculation or data-driven methods for robot
trajectory prediction [6, 7] to obtain interactive information
between humans and machines. But the collision-free robot
navigation in crowds is still a daunting task.

Early methods usually divide prediction and planning
into two steps. After predicting the future trajectories of
other people, the method intends a complete safe path
without collision for a robot.+ese models first learn human
motion patterns to predict the motion of other people and
then plan the robot’s path accordingly [8, 9]. But, in dense
crowds, the predicted trajectories of people will spread
across the entire space, so seeking a safe path that does not
collide with humans in the crowd is tough. In this case, the
robot using the above method may be blocked in the crowd,
which is the problem of robot freezing, and the navigation
time will be infinitely extended. In response to this problem,
the researchers plan to treat humans and robots as a whole
joint planning path [10, 11].
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Most of the current researches use deep learning to
extract the characteristics of human-computer interaction
and use reinforcement learning framework training strate-
gies to make the robot interact with the crowd in a “trial-
and-error” manner and obtain the greatest reward. +at is,
the robot learns from experience to understand and adapt to
a crowd of people and encodes the interaction between the
crowd and the robot in the navigation strategy. Recent work
in this field [12, 13] has made significant progress, but the
existing model still has some shortcomings: (a) most
methods only consider the impact of a one-way person on
the robot, while ignoring the fact that the interaction be-
tween people will also affect the behavior of the robot; (b) the
feature extraction module is relatively simple, resulting in
the value of the incoming reinforcement learning being not
accurate enough to avoid collisions. As the number of people
increases, the collision rate of robots during movement is
higher; (c) the reward is not clear enough, and the robot fails
to respond in a short time.

In order to solve the above problems, it is proposed that
the dual social attention reinforcement learning model in-
tegrates the perceived state characteristics of humans, ro-
bots, and human-human interactions. +en this model
obtains accurate values through dual attention modules; and
this model can handle any number of agents and encode
them into a fixed-length value. To make navigation more
efficient, we improve the existing reward function. +e
contributions of this paper are as follows:

(i) We develop a dual social attention reinforcement
learning algorithm to predict human dynamics and
make the robot navigate the crowd efficiently.

(ii) We design a new reward function to make robot
navigation more efficient.

(iii) We evaluate our proposed DSARL algorithm in a
simulated environment and compare this algorithm
with four other navigation algorithms. Compared
with other models, the performance of this model is
better.

+e rest of this article is organized as follows. +e Section 2
introduces the related work of this article. +en, the Section 3
explains the definition of the problem. +e Section 4 describes
the details of the model DSARL proposed in this article, fol-
lowed by the simulation experiment in Section 5 and the final
conclusion in Section 6.

2. Related Works

2.1. Traditional Methods. In order to navigate in a crowd in a
manner that meets social requirements, robots need the ability
to perceive, understand, and predict the behavior of sur-
rounding pedestrians and adjust their actions in time. In the
early work, the main idea to solve this problem was to predict
the trajectory of other people first and then plan a safe road.
Some researchers use hand-made methods. +ey build a
discrete model [14] or a statistical model [15] to predict the
trajectory of other pedestrians and then choose the next lo-
cation in the space around the person. In order to enhance the

social consciousness of robots in human-computer interaction,
researchers have created social forces [16, 17] to enable robots
to better understand crowd movements. +e social power
model they built combined with predictive information can
detect and locate the behavior of people in the crowd and
obtain an interactive solution for the robot’s perception and
navigation in the crowd. +e social power model has been
applied to robots in real life.

+ere are also some researchers who use data-driven
methods to predict pedestrian trajectories. +ey build an
LSTM [6, 18] model to learn general human motion and
predict the future trajectories [19]. Using this model, the
agent can predict the pedestrian’s position on the road and
adjust its direction accordingly to avoid the collision; that is,
the agent considers the influence of the social neighborhood
and the scene layout to adjust itself accordingly.

However, the behavior of people in dense crowds is more
complicated and random, so the work of predicting pe-
destrian trajectories will be more difficult and computa-
tionally expensive. In the circumstances of human-perceived
navigation of mobile robots that require safety and time
efficiency, this method of predicting and planning is still
challenging in practical applications.

2.2. Deep Reinforcement LearningMethods. At present, deep
reinforcement learning methods are applied in many fields
including the field of robot perception and navigation.
Unlike the traditional methods, the deep reinforcement
learning methods combine the tracking and prediction of
pedestrian route planning robot navigation together.+at is,
the robot learns from the experience of pedestrian move-
ment, understands the crowded scene, and encodes the
human-computer interaction characteristics into the navi-
gation strategy. +e results in this field [12, 20, 21] have
confirmed the superior performance of deep reinforcement
learning in crowd perception navigation. +ese deep rein-
forcement learning methods first collect relevant data from
the surrounding people to build a value network, train in a
reinforcement learning framework, and finally map the
information to the control commands of the robot.

According to the above model, we combined the social
LSTMmethod [6] and the social force model [22] to design a
dual social attention reinforcement learning model to catch
importance of each neighbour on the robot and code group
cooperative behavior into this model.

3. Problem Formulation

In the entire navigation task, we define the problem as a
robot moving from the start point to the endpoint through n

humans. We first need to perceive the information of the
nearby environment and the state of the robot itself. We
adopt the method of taking the robot as the center [12, 23] so
that the robot is located at the origin, and the X-axis points
to the target of the robot.

Suppose that, for each agent (robot or human), other agents
can observe position p � [px, py], velocity v � [vx, vy], and
radius r. For the robot, there are some states that other agents
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cannot observe, including the preferred speed vpref and its
distance to the target point dg � ‖p − pg‖2. pg is the position of
the target point, so the state vector of the robot is defined as
s � [dg, vpref , vx, vy, r]. Similarly, the human state vector hi

also includes position, speed, and radius, as well as the distance
di � ‖p − pg‖2 from the robot to the current human i.
+erefore, the human state vector hi � [px, py, vx,

vy, ri, ri + r]. +e interaction between people is represented by
a local map Mi [24], which encodes the existence and speed of
the surrounding people by constructing a L × L × 3 map tensor
with each person i as the center:

Mi(m, n, :) � 
j∈Ni

δmn xj − xi, yj − yi hj
′ , (1)

where hjt′ is a local state vector of human j, δmn[xj −

xi, yj − yi] is an indicator function that equals 1 only if the
relative position (Δx,Δy) is located in the cell (m, n), and
Ni is a series of nearby humans of the ith person.

+en, at time t, the robot’s state is st, the human’s state is
ht � [h1t ,h2t , h3t , . . . ,hn

t ], and the human-human interaction
is Mt. +en we define the joint state of robot navigation as
jt � [st, ht, Mt]. We assume that the speed of the robot
changes depending on the action command, and the action
command is determined by the navigation strategy, that is,
vt � at � π(jt).

According to the joint state and action at time t to obtain
the corresponding reward Rt(jt, at), we set the following
reward function:

Rt jt, at(  �

− 0.25, if dmin < 0,

− 0.01 +
dmin

20
, else if dmin < 0.2,

1, else if pt � pg,

0, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

where dmin is the minimum separation distance between the
robot and the human in the time period [t − Δt, t]. We assume
that the current position of the robot is set toProbot � [px1, py1]

in the time period [t − Δt, t], and the radius of the robot is
rrobot.+e position of the human is phuman � [px1, py1] and the
radius of the human is rhuman; and dmin is defined as
dmin � ‖probot − phuman‖2 − (rrobot + rhuman). As shown in
Figure 1, when dmin is less than 0, the robot collides with the
human.Whendmin is located at [0, 0.2), the robot is too close to
the human, causing human discomfort. For the above two
situations, we will punish the robot. If the robot successfully
reaches the target point without collision, it will be rewarded.

We hope that the optimal strategy π∗(jt) can maximize
the reward:

π∗ jt(  � argmax
at

R jt, at( 

+ c
Δt·vpref 

jt+Δt
P jt, at, jt+Δt( V

∗ jt+Δt( djt+Δt.
(3)

Among them, R(jt, at) is the reward obtained at time t,
and vpref is the preferred speed of the robot. c ∈ (0, 1) is the

discount factor, and the preferred speed is introduced as the
standardized item in the discount factor. Δt is the decision
interval between two actions, and P(jt, at, jt+Δt) is the
conversion probability from time t to Δt.

V∗ is the optimal value of the joint state jt at time t as
follows:

V
∗ jt(  � 

K

k�0
c

k·Δt·vpref · R jt, a
∗
t( , (4)

where K refers to the entire number of decisions that the
robot will make from the current state at time t to the last
state.

4. Approach

When a robot moves in a dense crowd, the robot needs to
not only avoid every human that may collide with it but also
avoid being affected by human-to-human social interaction
when walking. Robot navigation in a crowd needs to adjust
its trajectory according to the movements of other people
around. +erefore, we designed a dual social attention re-
inforcement learning model with three major modules to
complete the entire navigation task, as shown in Figure 2.

Moreover, because different humans have different in-
fluences on the current state of the robot’s location, the
model needs to count the corresponding importance and
encrypt the socially compliant navigation of the neighbor-
hood’s collective influence. +is model is mainly composed
of the three following modules:

(i) Perception module: integrates the state of the robot,
humans’ states in the crowd, and the interaction
between people

(ii) Attention module: makes use of the dual attention
mechanism to assign weights to the fixed-length
vectors obtained by the interactivemodule, suppress
some influential factors, and obtain more accurate
state-input vectors

(iii) Planning module: processes the vector obtained by
the attention module by a multilayer perceptron
(MLP) and then gets the final value

Next, we introduce the structure and formula of the
following modules in detail. Since the states discussed below
are all at time t, we have omitted the time index t.

4.1. Perception Module. In the crowd, everyone has an in-
fluence on the robot and is also influenced by the human
around. In dense scenes, it is necessary to consider not only
the impact of all people on the robot but also the impact of
human interaction on the robot. +e data is huge and
difficult to handle, so we designed a pair of interactive
modules as shown in Figure 3. First, it collects the current
state of the robot, then observes the interaction state of each
pair of people and the robot, and finally uses the local map to
represent the interaction between people. +e perception
module integrates the above three states to form a new
unprocessed state input.

Mathematical Problems in Engineering 3



+e robot’s state s, human’s state hi, and human-human
interaction Mi are defined in the Problem Formulation
section. After obtaining these three states, we use a multi-
layer perceptron to merge the robot’s state s, the human’s
state hi, and the human-human interaction state Mi into a
fixed length vector e:

ei � ϕe s, hi, Mi; We( , (5)

where ϕe(·) is an embedding function with ReLU activations
and We denotes the embedding weights.

+en we return ei to the subsequent MLP to get the
paired interaction vector between human and robot:

pi � ψp ei; Wp , (6)

where ψp(·) is a fully connected layer with ReLU nonlin-
earity and Wp denotes the network weights.

4.2. AttentionModule. When there are more humans in the
environment, the state that the interaction module needs to
handle becomes more complicated. So, in order to better
process perception data, it is significant to construct a
module that can handle any number of states. So, no matter
how the number of humans increases or decreases, we can
integrate all states into a fixed-length input vector through
this model. At the same time, we need to correctly estimate
how much influence each neighbor has on the robot during
the movement, which can reflect whether this person will
affect the next action of the robot. +erefore, we make use of
the attention mechanism to assign different attention scores
to different areas of the input data and focus on marking
people who have a greater impact on the state of the robot.
Chen et al. [24] obtained accurate state input by using the
self-attention mechanism, so we propose a dual social

attention module to catch the relative importance of each
neighbor and the influence of the collective crowd on the
robot as shown in Figure 4.

What we collect in the perception module is the state
of the robot, the state of each person, and the state of
interaction between people. In order to obtain a more
accurate vector, we used the attention mechanism twice
to process the data. +en our attention module must not
only consider the impact of human-human interaction on
the state of the robot but also emphasize the impact of the
robot on the motion state and trajectory of the human
body because the impact of the robot on the human body
will further affect the state of the robot. Let us start with
the first layer of the attention module.

First, all ei obtained by the interactive module are pooled
to obtain em, where em is the average value of all individual
data:

em �
1
n



n

i�1
ei. (7)

+en we pass em through a multilayer perceptron ψα(·)

to get the proportion of each vector pi, which is the attention
score αi of the vector:

αi � ψα ei, em; Wα( , (8)

where ψα(·) is an MLP and Wα denotes the weights.
After that, we assign each weight to the corresponding

interaction vector pi of the human and robot pair and then
perform a weighted linear combination of all the pairs, that
is, to standardize score αi and perform a weighted sum-
mation of all pi. +e final vector is one of the representations
of the overall crowd:
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Figure 1: Collision between robot and human. When the robot collides with human 1, their minimum separation distance is less than 0.
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c � 
n

i�1
softmax αi( pi. (9)

+e above is the first-layer attention module. In order to
obtain a more accurate crowd vector, we get pm by pooling
averagely pi (human-robot interaction vector). We pass pm

and pi through multilayer perceptron ψβ(·) to obtain dif-
ferent attention scores βi and obtain another vector d

representing the crowd through a series of weighted
summations:

pm �
1
n



n

i�1
pi,

βi � ψβ pi, pm; Wβ ,

d � 
n

i�1
softmax βi( ei,

(10)

where ψβ(·) is a multilayer perceptron with ReLU activation
function and Wβ denotes the weights.

Finally, vectors c and d are averaged to get the final
vector representation of crowd k:

k �
c + d

2
 . (11)

4.3. Planning Module. Based on the final vector k obtained
by the attention module, we design this module to estimate
value v:

v � fv s, k; Wv( , (12)

where function fv(·) is a multilayer perceptron with ReLU
activation function and Wv denotes the weight.

4.4. Value Network Training. +e value network composed
of the above three modules also needs to be trained using
reinforcement learning algorithms. +e value network can
calculate the input state to obtain the value corresponding to
the state. We use the temporal-difference method and ex-
perience replay mechanism to train the value network. +en
the training process is shown in Algorithm 1.

From Step 1 to Step 3, we initialize the value network
where the robot imitates the navigation strategy of the
human expert to complete some demonstration experience.
From Step 4 to Step 16, we use reinforcement learning to
optimize the value network and the robot gains experience
from the exploration.

5. Simulation

In this part, we conduct simulation experiments on five
different models for evaluation. +e specific content of the
experiment is displayed in the next subsections, including
the construction of the experimental environment, the
setting of parameters, compared solutions, evaluation
standards, and the analysis of specific experimental results.

5.1.Virtual EnvironmentConstructionandParameter Setting.
We install the Python-RVO2 library in the Python 2.7.0
environment to build a simulation environment for robots
to navigate in the crowd. Simulated humans and robots are
set up in this environment. +e simulated human is con-
trolled by ORCA [25], and the sampling parameters obey the
Gaussian distribution so as to achieve the diversity of be-
havioral data. We used circle crossing scenes for people in
both training and testing; that is, the positions of all humans
are randomly arranged and represented by a circle with a
radius of 4m, and their destinations are on the opposite of
the starting position. We randomly interfere with the X and
Y coordinates of the person’s starting position and target
position. Different algorithms are input to the simulated
robot to find a path in the crowd.

+ere are roughly four existing methods that can effi-
ciently realize robot navigation in a crowd: ORCA, CADRL,
LSTM-RL, and SARL. In order to make an even comparison,
we ensure that the planning modules are the same in all
methods. We train and test the above four models and our
model in a simulated environment and get the results for
comparison.

In order to strengthen the reliability of the experiment,
we set up two states of humans and the robot: visible and
invisible. When the robot is not visible, humans will only
interact with humans and will not respond to the robots.
When the robot is visible, humans will also be affected by the
robot’s actions in the process of social movement.+emodel
which is trained for 10000 episodes is evaluated using 500
random test cases in both settings.

Our experiment runs on Ubuntu 16.04, and we configure
the corresponding Python version and PyTorch. After
meeting the hardware equipment for the experiments, we set
the parameters required for the experiments as follows. In
the simulator environment, the square width is set to 10, and
the number of humans is set to 5. +e radius of those circles
of the simulated robot and human is set to 0.3m, the priority
speed of the robot and human is set to 1m/s, and the number
of humans is set to 5.+e local map is a 4 × 4 grid centered at
each human and the side length of each cell is 1m.We set the
batch size to 100 when we train the policy. In reinforcement
training, the learning rate is set to 0.001 and the discount
factor c is 0.9. We assume that the robot has complete
kinematics, and the action space includes 80 discrete actions.
+ese actions consist of linear velocity and angular velocity.
+e linear velocity takes exponential values in (0, vpref ]; this
allows the robot to take some of the more fine-grained
operations when approaching the target; and the angular
velocity takes 16 values uniformly in [0, 2π).

5.2. Baselines. ORCA [25] is a classic distributed underlying
algorithm. It is local navigation, and its navigation target is
around the individual, allowing the individual to avoid other
individual targets and obstacles that are close to him. Since
ORCA is mutual, as long as both robots use ORCA, the two
robots do not need to communicate, and the speed of the two
is calculated in a distributed manner and there will be no
collision.
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ORCA can complete computing tasks when the number
of robots in the scene is large. In solving the problem of
n-body avoiding mutual collision, if this method is adopted,
the computational complexity is O(n). But the robots in this
algorithm are independent and cannot communicate with
each other. +erefore, when a single robot is navigating in a
crowd, the robot that uses the ORCA algorithm for obstacle
avoidance cannot observe all the parameters of the sur-
rounding humans, and the robot can easily collide with
humans during the movement. When the frequency of
collisions increases, the robot’s navigation time will also
become longer. In addition, ORCA cannot consider the
impact of human interaction on robots.

CADRL is an algorithm for robots to avoid collisions
during navigation. It is simulated and trained through deep
reinforcement learning. Specifically, this method develops a
value network. +e network of CADRL encodes the esti-
mated time for the robot to reach the final position by

observing the position and speed of the robot and its
neighbors.

CADRL uses a deep reinforcement method on the basis
of ORCA to process the obstacle avoidance navigation of the
robot. CADRL first uses the ORCA algorithm to predict the
pedestrian trajectory and then uses the deep V-learning
algorithm tomake the robot’s next decision. It can collect the
interaction information between the robot and the sur-
rounding people within the effective time. Since CADRL
obtains the interactive information of all agents by con-
structing a value network, this greatly reduces the compu-
tational consumption compared to ORCA.

LSTM-RL is another improved algorithm made on
CADRL. +e use of LSTM allows the algorithm to use any
number of observations from other robots, instead of only
using a fixed observation size. In other words, LSTM-RL
supports LSTM to encode the states of all robots into a fixed-
length joint vector and next enter the vector into the value
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network to select the next operation. +e inputs of CARDL
and ORCA are fixed-size observation information. If a new
agent approaches, the state input must be recalculated; and
LSTM-RL has no such limitation, which greatly reduces the
computational cost.

SARL integrates the collected state in the environment
into a fixed vector, uses the pooling module to express it into
a compact group representation, and finally navigates to the
target place. Compared with the above three algorithms,
SARL canmake the robot pass the crowd completely without
obstacles very accurately. +e state information that the

SARL algorithm can collect and integrate is the most
abundant and extensive, including the state of the robot, the
state of each human, and the impact of the interaction
between humans on the robot.+e self-attentionmechanism
is also used in SARL to emphasize those humans who have a
great influence on the state of the robot.

+e states information collected by our DSARL is also
the most complete and accurate like SARL, and it takes more
into account; and our DSARL uses dual attention to collect
and emphasize the influence of crowd movement on robots
and the influence of robot movement on the next step of
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Figure 4: Architecture of attention module. We pool the different perceptual vectors and combine them with the attention scores obtained
by the multilayer perceptron.

(1) Initialize experience replay memory E with demonstration D

(2) Initialize value network V with memory E

(3) Initialize target value network V′⟵V

(4) for episode � 1, . . . , M do
(5) Initialize joint state jt � 0
(6) repeat
(7) at⟵ arg maxat∈AR(jt, at) + cΔt·vpref V(jt+Δt)
(8) value⟵R(jt,at) + cΔt·vpref · V′(jt+Δt)
(9) state⟵ jt+Δt
(10) Enrich experience E⟵ (state, value)
(11) Optimize value network V with experience E

(12) Update value network V by gradient descent
(13) until terminal state st or t≥ tmax
(14) Update target network V′⟵V

(15) end for
(16) return V

ALGORITHM 1: Value network training.
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human activities. +e interaction is two-way, and the robot
will also affect the change of the human trajectory during the
movement, which in turn affects the robot’s next decision;
and DSARL gives extremely high rewards during the
movement of the robot perfectly avoiding the crowd.

5.3. Evaluation Standard. We compare the performances of
these five models from four aspects: success rate, obstacle
rate, navigation time, and total reward.

(i) Success rate: the rate of safely reaching the target
point without collision during robot navigation

(ii) Collision rate: the rate of collisions with other
humans during robot navigation

(iii) Navigation time: the total time it takes for the robot
to walk from the starting point to the target point

(iv) Total reward: accumulated rewards during robot
navigation

5.4. Simulation Result Analysis

5.4.1. Quantitative Analysis. When the robot is set to be
invisible in the experimental settings, the robot needs to
predict the trajectory of all humans to avoid collisions. As
shown in Table 1, we use success rate, collision rate, navi-
gation time, and rewards to evaluate different algorithms.

As can be seen from Table 1, in an invisible environment
setting, the success rate of ORCA is the lowest; and collision
rate of ORCA is the highest. Because the robot in this case is
independent, it cannot communicate with the surrounding
humans and cannot accurately avoid the crowd reaching the
destination safely. In all other algorithms that use rein-
forcement learning, CADRL has the worst performance.
+is is because only a single interaction pair is considered in
the CADRL method, and other interactions are ignored.
However, the navigation effect of CADRL is still much better
than that of ORCA, and deep reinforcement learning has
played a big role. +e difference in navigation time between
CADRL and LSTM-RL is not great, but the overall per-
formance of LSTM-RL is still better than that of CADRL.
+is is because the LSTM algorithm can collect the state of
any number of other robots instead of just using a fixed
observation size.+is makes the robot more accurately avoid
moving crowds during navigation. Both SARL and DSARL
have completed all test cases without timeouts and conflicts;
and the total navigation time of SARL and DSARL is greatly
reduced compared to other methods. +e result demon-
strates that the social attention mechanism is good at
capturing the influence of crowd interaction. In addition, the
success rate and collision rate of SARL and DSARL are
almost the same, but the navigation time of our DSARL
algorithm is shorter than that of SARL. +e reward of
DSARL is higher than that of SARL. +is is because our
DSARL has dual attention. It not only extracts the impact of
crowd interaction on robots like SARL but also emphasizes
that robots also affect crowd activities and thus affect the
robot’s navigation trajectory. In general, from the data point

of view, our model is superior to other models in terms of
navigation efficiency and rewards.

When the robot is set to be visible in the environment
settings, the experimental data we got are shown in Table 2.

From Table 2, we can see that the navigation success rate of
ORCA is almost one hundred percent, but the navigation time
is relatively long and the reward is not high. +at is because
ORCA can only perceive the situation close to itself, without
information about the global environment, so the robot does
not collide with other individual targets and obstacles around
itself when navigating. However, understanding and inter-
acting with human behavior is necessary for robots to get high
returns. +e performance of CADRL when the robot is visible
is stronger than that when the robot is not visible. +e per-
formance of LSTM-RL is stable and is always better than
CADRL. In the visual situation, the robot can observe more
information. Both SARL and DSARL have high success rates,
but DSARL’s navigation time and total rewards are still higher
than those of SARL. +erefore, the navigation efficiency of
DSARLwill be better than that of SARL regardless of whether it
is visible or not.

In general, regardless of whether the robot is visible or
not, the results of reinforcement learning methods are
similar. +e performance of LSTM-RL is similar to that of
SARL.+e performance of ORCA in the visible environment
is far better than that in the invisible environment. Our
DSARL also improves the reward function part to obtain
higher reward returns. In addition to the experimental data,
we will also analyze the robot’s trajectory changes under
different algorithms in the next section.

5.5. Cases Study. We further analyze the effectiveness of the
model in this section. As shown in Figure 5, we compare the
paths formed by the robot using different navigation algo-
rithms in an invisible environment. We use the same test case
so that human trajectories using different algorithms are the
same.

CADRL is going straight to the destination. When
meeting a human in the center of space, CADRL does not
make a big step to avoid or retreat but aggressively walks past
the human. At a certain moment in the center of space,
CADRL is very close to humans, and, in order to avoid
collisions, CADRL takes a long time to navigate. In contrast,
LSTM-RL turns sideways at the start and will largely avoid
the crowd in 4.0 to 8.0 seconds. LSTM-RL navigation takes
about the same time as CADRL.

Since SARL hesitates when it starts, it travels a short
distance in 0.0 to 4.0 seconds. But then SARL constructs a
barrier-free shortcut through the center of the space to reach
the target so that SARL can safely and quickly avoid humans.
Our DSARL immediately identifies a safe path from the be-
ginning; no matter at any moment, there is always a long
distance between it and every human being. In 4.0 seconds, the
robot has moved halfway. +e human closest to the robot at
this moment is a red circle, and the other humans are also far
away at thismoment. In 4.0 to 8.0 seconds, the robot chooses to
go around a bend because it has to avoid more concentrated
crowds, resulting in a shorter walking distance. In the last part
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Table 1: Results in the invisible setting.

Methods Success Collison Time (s) Reward
ORCA 0.43 0.57 10.86 0.0483
CADRL 0.87 0.12 11.14 0.2511
LSTM-RL 0.97 0.02 11.92 0.2820
SARL 0.99 0.01 10.49 0.3351
DSARL (our) 1.00 0.00 10.39 0.3439

Table 2: Results in the visible setting.

Methods Success Collison Time (s) Reward
ORCA 1.00 0.00 12.19 0.2552
CADRL 0.92 0.08 10.76 0.2734
LSTM-RL 0.93 0.07 10.42 0.2854
SARL 0.99 0.01 10.34 0.3493
DSARL (our) 1.00 0.00 10.24 0.3505
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Figure 5: Continued.
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of the journey, humans are hardly encountered and the robot
reaches the end quickly and accurately.

In other words, the robot using the DSARL algorithm
can navigate without hesitation and avoid the collision-
prone central area and finally reach the destination safely. It
can be clearly seen from the picture that DSARL can safely
avoid all humans in a short time. Compared with SARL,
robots that use the DSARL algorithm to navigate are more
efficient and will not hesitate to wander on the road.

In general, the navigation success rate of the robot using
our method is better than that of the robot using the SARL
method, whether it is visible or not. In terms of navigation
time, our method reduces the robot’s navigation time by
0.97% on the basis of SARL. In terms of task rewards, our
method improves by 2.6% compared to SARL. From the
SARL trajectory in Figure 5, it is also obvious that the robot
using SARL is hesitating when it first starts and does not
know which direction to go in within 0.0 to 4.0 seconds. +e
robots using our method move forward clearly and deci-
sively in navigation, without wasting time. In addition,
robots that use SARL navigation are too close to humans
within 4.0 to 8.0 seconds and are prone to collisions.
However, robots that use our DSARL navigation will keep a
certain distance from humans at any time.

6. Conclusions

In this article, we model all human-robot and human-human
interactions to solve the problem of safe navigation of robots in
crowds.We combine the state of people, the state of robots, and

the interaction between people and aggregate all states into a
compact group representation through a dual social attention
enhancement module. +en the dual social attention rein-
forcement learning model is trained and tested in our rein-
forcement learning algorithm framework. Compared with the
impact of human-human interaction on robot decision-
making in the SARL algorithm, we consider that the robot’s
impact on the human trajectory during the movement will also
affect the robot’s next decision, so we add another attention
module to use a dual attention to extract and emphasize the
influence of crowd interaction on the robot trajectory and the
influence of robot movement on the next human activities.+e
robot has an impact on the human trajectory during the
movement, which will affect the robot’s next decision; and we
improved the reward function to strengthen the constraints on
robot behavior. Experimental results show that our algorithm is
superior to other algorithms in collision-free navigation success
rate, time efficiency, and task achievement (total rewards given
to the robot). In future research, we plan to further improve the
algorithm and develop a new action spacemodule to enable the
robot to output continuous actions. We hope to further im-
prove navigation efficiency.

Our simulation experiments verified the reliability and
rationality of this method. We plan to further study our
method in real scene in the future research. In the real scene,
the robot may face some problems, such as errors and delays
in obtaining position information and speed information,
due to the gap between actual application and simulation.
+erefore, we may need to fine-tune the parameters of the
model with more data collected from real scene.

0.0

0.0

0.0

0.0

0.0

0.0

8.0

8.0

8.0

8.0

8.0

8.0

10.8

10.8

10.8

10.8
10.8

10.8
4.0

4.0

4.0
4.0

4.0

4.0

−4

−4

−2

−2

40

Robot

0

x (m)

y 
(m

)
4

2

2

(c)

0.0

0.0

0.0

0.0

0.0

0.0

8.0

8.0

8.0

8.0

8.0

8.0

10.8

10.8

10.8

10.8
10.8

10.8
4.0

4.0

4.0
4.0

4.0
4.0

−4

−4

−2

−2

40

Robot

0

x (m)

y 
(m

)

4

2

2

(d)

Figure 5: Trajectory comparison with other algorithms. +ese circles indicate the position of the robot or human at a certain moment.
Yellow circle means the robot; other colours are human circle. (a) Trajectory path diagram using CADRL algorithm. (b) Trajectory path
diagram using LSTM-RL algorithm. (c) Trajectory path diagram using SARL algorithm. (d) Trajectory path diagram using our DSARL
algorithm.
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