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Typhoon wind speed prediction is of great significance for it can help prevent wind farms from damages caused by frequent
typhoon disasters in coastal areas. However, most researches on wind forecast are either for meteorological application or for
normal weather.-erefore, this paper proposes a systematic method based on numerical wind field and extreme learningmachine
for typhoon wind speed prediction of wind farms. -e proposed method mainly consists of three parts, IGA-YanMeng typhoon
numerical simulation model, typhoon status prediction model, and wind speed simulation model based on an extreme learning
machine. -e IGA-YanMeng typhoon numerical simulation model can greatly enrich typhoon wind speed data according to
historical typhoon parameters. -e typhoon status prediction model can predict the status of typhoons studied in the next few
hours. And wind speed simulation model simulates the average wind speed magnitude/direction at 10m height of each turbine in
the farm according to the predicted status. -e end of this paper presents a case study on a wind farm located in Guangdong
province that suffered from the super typhoonMangkhut landed in 2018.-e results verified the feasibility and effectiveness of the
proposed method.

1. Introduction

Wind power has become a hot spot because it is friendly to
the environment and it can supply a huge amount of energy
for human society. More and more countries pay attention
to wind power and build wind farms in the coastal area.
However, frequent typhoon disasters have always been a
huge threat to the normal operation of wind turbines. As a
result, typhoon wind speed prediction deserves more
concern.

At present, researches on wind forecast for wind farms in
recent years can mainly be divided into two categories. One
is a meteorological forecast of typhoon weather, which fo-
cuses on forecasting the meteorological data of typhoon.
Yuan et al. [1] built up a model based on long short-time
memory to forecast the typhoon intensity. Some studies
tried to find out factors that influence the typhoon intensity
forecast, such as the uncertainty of boundary layer [2] and

lightning data [3]. Forecasting rainfall, flood, and storm
surge ensemble along typhoon is also concerned via ap-
proaches such as GPU [4], radar [5, 6], and artificial neural
network [7, 8]. What’s worth noting is that these types of
meteorological models require a huge amount of calculation,
which makes it difficult to be used for engineering
application.

-e other category is wind speed forecast under ordinary
weather. Great progress has been achieved in this field with
many mature technologies utilized such as artificial neural
network [9, 10], ARIMA [11], support vector machine [12],
and sample clustering [13]. And some researches are
combined withmeteorological technology such as numerical
weather prediction [14, 15]. However, few studies applied for
engineering emphasize wind speed forecast under typhoon
weather. One of the big problems with this issue is the lack of
measured typhoon data. For wind speed under ordinary
weather, massive measured data can be recorded every day.
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But it is different when it comes to typhoon data. For a
certain local area, only a small number of typhoons occur
and will be recorded.

-erefore, this paper proposes a systematic method
based on numerical wind field and extreme learning ma-
chine for typhoon wind speed prediction suitable for the
engineering field, alleviating the problem of huge calculation
and the lack of measured typhoon data. Section 2 introduces
the framework of the method proposed as a whole. It mainly
consists of three parts: IGA-YanMeng typhoon numerical
simulation model, typhoon status prediction model, and
wind speed simulation based on extreme learning machine.
Section 3 introduces how the IGA-YanMeng typhoon nu-
merical simulation model simulates the wind speed (in-
cluding magnitude and direction) of each wind turbine
under historical typhoons selected. And Section 4 introduces
the typhoon status prediction model, whose purpose is to
predict the status of typhoon studied in the next 1 hour to 6
hours. -en Section 5 introduces the wind speed simulation
model based on ELM and how it simulates the average wind
speed magnitude/direction at 10m height of each turbine in
the farm according to the predicted status. In Section 6, a
case study on a wind farm suffering from the super typhoon
Mangkhut in 2018 will be presented to validate the method.
Finally, Section 7 concludes this study.

2. The Proposed Systematic Method

A systematic method illustrated in Figure 1 is proposed to
predict wind speed of wind farm, basically consisting of
three parts: IGA-YanMeng typhoon numerical simulation
model, typhoon status prediction model, and wind speed
simulation based on extreme learning machine.-e purpose
of the first part is to generate a huge numerical wind speed
training set using the YanMeng wind field according to some
filtered typhoon data from the historical typhoon database
provided by the Chinese meteorological station [16]. At the
same time, multipoint measured data is used to enhance the
simulation accuracy of the model by optimizing the key
parameters through an improved genetic algorithm. -e
second part is the typhoon status prediction model, whose
function is to predict the changes of typhoon parameters
such as geographic coordinates, translation speed, transla-
tion direction, and so on in the future according to real-time
information of the typhoon recorded in the previous mo-
ment.-en, the wind speed simulation model can obtain the
wind speed magnitude/direction of each wind turbine based
on an extreme learning machine through the predicted
typhoon status from the second part. Finally, it is achievable
to take measures before the accident happens to avoid or
decrease the damage of the wind farm caused by the typhoon
disaster.

3. IGA-YanMeng Typhoon Numerical
Simulation Model

-e basic function of the IGA-YanMeng typhoon numerical
simulation model is to simulate the wind speed (including
magnitude and direction) of each wind turbine under

historical typhoons selected. -ese numerous wind speed
data generated will be used as a huge training set to train the
ELM later. -is model can be mainly divided into four parts:
data processing, IGA, historical typhoon filter, and Yan-
Meng wind field, as shown in Figure 2.

-e first step is to select available historical typhoons
from the database provided by the local meteorological
station using the filter. Figure 3 illustrates how it functions.

-e filter calculates the distance between the center of
the wind farm and each geographic position along the track
of a historical typhoon. It is assumed that the historical
typhoon influenced the wind farm if the distance is shorter
than the scale of the typhoon, which is used to describe the
size of different typhoons. For example, the center of the
wind farm is within the influence range of typhoon 1 in
Figure 3; therefore, typhoon 1 will be selected in the filter,
while typhoon 2 will not. -e geographical coordinates of
the wind farm center can be calculated using the following
equations:

Lltd,c � 

Mt

i�1

Lltd,i

Mt

, (1)

Llgd,c � 

Mt

i�1

Llgd,i

Mt

, (2)

where Lltd,c is the latitude of the wind farm center, Lltd,i is the
latitude of the ith wind turbine in the wind farm, Llgd,c is the
longitude of the wind farm center, and Llgd,i is the longitude
of the ith wind turbine in the wind farm. Mt is the total
number of wind turbines in the wind farm.

-en, YanMeng wind field can simulate the 10min
average wind speed magnitude/direction at 10m height of
each wind turbine under the historical typhoons selected in
the filter. YanMeng typhoon wind field considers the
pressure gradient of the boundary layer friction, with
equilibrium equations written as follows [17, 18]:

zvc

zt
+ vc · ∇vc � −

1
ρa

∇pa − fck × vc + Ft, (3)

where vc is the typhoon wind speed, ρa is the air density, fc is
the Coriolis force parameter, Ft is the boundary layer friction
force, and k is a unit vector. -e speed of air movement can
be decomposed into the vector sum of the gradient wind
speed, vg, and the surface friction wind speed vf in the free
boundary layer, expressed as follows:

vc � vf + vg. (4)

-e air pressure model used in YanMeng’s typhoon wind
field is the Holland pressure field model, in which the
pressure of the location at r km from the typhoon center P(r)
is [19]

P(r) � P0 + ΔP · exp −
Rm

r
 

B

 , (5)

where P0 is the typhoon center pressure, Rm is the maximum
wind speed radius. B is the Holland pressure profile
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parameter, and ΔP � P∞ − P0 with P∞ taken as 1,010 hPa.
In general, the maximum gradient wind speed radius can be
approximated as the maximum wind speed radius, and the
pressure gradient along the radial distribution can be de-
scribed as follows:

zP

zr
�
ΔPB

r

Rmax

r
 

B

exp −
Rmax

r
 

B

 . (6)

At the same time, some measured wind speed data of the
wind farmwill be used to enhance the simulation accuracy of
YanMeng wind field through IGA. Figure 4 shows how IGA
functions in this process in detail. Data processing is the first
step. -e measured wind speed data (magnitude and di-
rection) will be recorded by the sensors set at multiple wind
turbines among the farm. However, under such extreme
typhoon conditions, some wind speed sensors may suffer
damage, resulting in abnormal measured data such as data
missing, abnormal data, and so on. -ence, these original
data required necessary processing before further use.
Figure 5 explains two approaches, Karman-window method
and envelope filtering used in the data processing.

Firstly, the abnormal data point needs to be eliminated
using Karman-window method. -e basic idea is to predict
the wind speed of the next moment and determine a range
named detection window that is calculated according to the
previous series of wind speed. For example, yt − 1 is the wind
speed magnitude of the last moment; yt is the wind speed
magnitude of current moment t; yk,t is the predicted wind
speed of the current moment obtained using the Karman
filter; and KC is the scale factor that can control the size of
window. Rinc,t and Rdec,t determine the range of the de-
tection window. -e data will be regarded as abnormal if it
goes beyond the detection window. Rinc,t is the increase
limit range of the detection window at current moment t.

And Rdec,t is the decrease limit range of the detection
window at current moment t. -ey are given by the fol-
lowing equations:

Rinc,t �


20
n�1Δinc,t−n 

20
,

Rdec,t �


20
n�1Δdec,t−n 

20
,

(7)

where ∆inc,t− n is the increment of wind speed at moment
t− n and ∆dec,t− n is the decrease of wind speed at moment
t− n.

-en, the envelope filtering method is proposed to ex-
tract the average wind from the original wind data. As can be
seen in Figure 5, the original wind speed data is very
scattered because of the pulsating wind composition, which
required elimination. -e upper envelope line and lower
envelope line that surround the original data can be de-
termined by analyzing the turning points of the curve. -en
the filtered wind speed data can be calculated using the
following equation:

yi,f �
yi,u + yi,l 

2
, (8)

where yi,f is wind speed after filtering at moment i, yi,u is the
wind speed on the upper envelope line at moment i, and yi,l is
the wind speed on the lower envelope line at moment i.

As can be seen in Figure 4, the second step of IGA is
selection. -e available measured wind speed data of wind
turbines will be put into comparison with those simulated
data from YanMeng wind field. -e error between the
measured data and simulated data will be used to enhance
the simulation accuracy by optimizing two important pa-
rameters, B and z0 of YanMeng wind field using IGA.
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Figure 1: -e flowchart of the systematic method.
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-e fitness value F is used to evaluate the performance of
parameters combination as follows:

F �
1

����������������������������������


i

vt,i − vr,i /vr,i 
2

+ ψt,i − θr,i /θr,i 
2

 



,
(9)

where F is the fitness of an individual, vs,i is the simulated
average wind speed at ith monitoring point, vr,i is the real-
time measured average wind speed at ith monitoring point,
Ψs,i is the simulated wind direction at ith monitoring point,
and θr,i is the real-time measured wind direction at ith
monitoring point.

-ose parameter combinations with higher fitness values
will be reserved to the next generation in the genetic
algorithm.

Px �
Fx


n
k�1 Fk

, (10)

where Px is the probability of selection for parameter
combination x, Fx is the fitness value of parameter combi-
nation x, and n is the population size, the number of in-
dividuals of a generation.

-en IGA will judge whether the simulation perfor-
mance of YanMeng wind field model meets the accuracy
conditions. If the result is negative, the process will go to
crossover andmutation. Crossover andmutation in IGA can
assure the diversity of the parameter population, which can
help avoid local optimization. What is noticeable is that the
directional mutation in IGA is different from the typical GA,
which is totally random [20]. -e mutation direction de-
pends on the overall situation of simulation error of all
points.-e relative simulation error ei of point i can be given
by the following equation:

ei �
vt,i − vr,i 

vr,i

. (11)
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Figure 2: Flowchart of IGA-YanMeng typhoon numerical simulation model.
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An error coefficient E is used to describe the holistic
error as follows:

E �
iei

i ei



. (12)

When the error ei is positive, it is representing that the
simulated wind speed is larger than the real-time measured
one. -e mutation runs without any direction to ensure global
optimization when the difference is small. But when the dif-
ference comes big with quantitative description shown by the
following formula, the mutation will happen with the direction

that decreases the difference.-e direction depends onwhether
the error ei is positive or negative.

E≥ 0.5

orE≤ − 0.5.
(13)

Parameters B and z0 after directional mutation and
crossover will be imported into the YanMeng wind field for
simulating data. -e process will go back to selection for a
new round of iteration. And it does not end until the ac-
curacy conditions are met. Finally, the optimal parameters B
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and z0 will be used for generating a numerical wind speed
training set, as can be seen in Figure 2.

4. Typhoon Status Prediction Model

-e second part of the systematic method is the typhoon
status prediction model, whose purpose is to predict the
status of typhoons studied in the next few hours. -e status
includes six key parameters of the typhoon, as shown in
Table 1.

-e model considers the historical typhoon data based
on similarity and also the previous status of the typhoon
itself. -e main flowchart is shown in Figure 6.

Firstly, the season similarity filter checks the occurrence
month of the historical typhoons. -e typhoon data will be
eliminated if the time difference between the historical ty-
phoon and the current one is more than a month. -en, an
influence circle with a radius of 250 km as shown in Figure 7
is used to select those historical typhoons closed to the
position of the current typhoon.

In Figure 7, pt is the position of the current typhoon at
the moment t. pt + i is the position of the current typhoon in
the next i hour. pt− i is the position of the current typhoon i
hour ago.

-e similarity of the historical typhoon is given as
follows:

Sg,m � 1 −
dm

R
 

2

, (14)

where Sg,m is the geographic similarity of pm on the historical
typhoon track, dm is the distance between pm and pt in km,
and R is the radius of the influence circle; it is taken as
250 km.

Sv,m � 1 −
vm − vt( 

vt





2

, (15)

where Sy,m is the translation speed similarity of pm, vm is the
translation speed of pm in km/h, and vt is the translation
speed of pt in km/h.

Sθ,m � 1 −
θm − θt( 

θt





2

, (16)

where Sθ,m is the translation direction similarity of pm, θm is
the translation direction of pm, and θt is the translation speed
of pt.

-e overall similarity of pm is as follows:r

Sm �

��������������

S
2
g,m + S

2
v,m + S

2
θ,m



. (17)

-e correlation between previous status and future one
of current typhoon is also taken into consideration. It is
given by the following equation:

Ct−i � 1 −
dt− i

R
 

2

, (18)

where Ct− i is the correlation value of pt− i on the previous
track of the current typhoon. dt− i is the distance between pt
and pt− i in km.

In this model, the status of the current typhoon is de-
scribed by two vectors. One is parameter set λt, including six
key parameters mentioned in Table 1:

λt � Vmax ,t, pair,t, vt, θt,φltd,t,φlgd,t , (19)

where Vmax,t is the maximum wind speed among the ty-
phoon structure at moment t in km/h, pair,t is air pressure of
the typhoon center at moment t in hPa, vt is translation
speed of typhoon center at moment t in km/h, θt is trans-
lation direction of typhoon center at moment t in °, φltd,t is
the latitude of typhoon center at moment t in °, and φlgd,t is
the longitude of typhoon center at moment t in °.

-e other is parameter change rate set ∆λ, which is
expressed as follows:

Δλt � ΔVmax ,t,Δpair,t,Δvt,Δθt,Δφltd,t,Δφlgd,t , (20)

where ∆λt is the 1 hour rate of change of set λt, and it is used
to predict typhoon status in the future. ∆λt is the weighted
value of the parameter change rate set for all points in the
influence circle, which can be calculated using the following
equation:

Δλt(i) �


Mh

m Δλm(i)Sm + 
Mc

n Δλn(i)Cn 

H
, i � 1, 2, . . . , 6,

(21)

H � 
M

m

Sm + 
N

n

Cn
⎛⎝ ⎞⎠, (22)

where ∆λt(i) is the No. i element of set ∆λt,Mh is the number
of historical typhoon points in the influence circle, andMc is
the number of current typhoon points in the influence circle.

Finally, the typhoon status of the next hour described
with λt + 1 can be predicted by the following equation:

λt+1 � λt + Δλt. (23)

5. Wind Speed SimulationModel Based on ELM

-is model simulates the average wind speed magnitude/
direction at 10m height of each turbine in the farm
according to the predicted status. Before the simulation, the
huge numerical wind speed training set will be used to train
the ELM, making it more accurate.

-e basic structure of ELM is shown in Figure 8.
-e input data can be written as a column vector X as

follows:

X �

x1

x2

⋮
xm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

M×1

, (24)
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where xm is the input data type m and M is the number of
data types.

-e second layer, hidden layer consists of a certain
number of hidden neurons. Each neuron with three attri-
butes, input weight, bias, and output weight, stands for the
correlation between the input layer and the output layer.

-e input weight matrix W is written as follows [21]:

W �

w1,1 w1,2 · · · w1,N

w2,1 w2,2 · · · w2,N

⋮ wm,n ⋮

wM,1 wM,2 · · · wM,N

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

M×N

. (25)

-e bias column vector B is written as follows [21]:

Table 1: Key parameters of the typhoon.

Parameter Description of parameter
Vmax -e maximum wind speed among the typhoon structure in m/s
pair Air pressure of the typhoon center in hPa
vc Translation speed of typhoon center in km/h
θ Translation direction of typhoon center in °

φltd Latitude of typhoon center in °

φlgd Longitude of typhoon center in °

Historical Typhoon data

Season similarity filter

Predicted typhoon status

Current typhoon data

Influence-circle filter

Similarity calculation

Parameter prediction

Available data

Weighted rate of
parameter change

Figure 6: Flowchart of typhoon status prediction model.
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B �

b1

b2

⋮
bn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N×1

. (26)

And the output weight matrix Q is written as follows
[21]:

Q �

q1,1 q1,2 · · · q1,K

q2,1 q2,2 · · · q2,K

⋮ qn,k ⋮

qN,1 qN,2 · · · qN,K

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N×K

, (27)

where N is the number of neurons in the hidden layer and K
is the number of the output data types; there are two output
data types, wind speed magnitude and wind speed direction
in the research, and the K is therefore taken as 2. wm,n

represents the input weight value of input data type m and
the neuron n. bn represents the bias value of neuron n and
qn,k represents the output weight value of neuron n and the
output data k.

-e relation between output Y and input X can be de-
scribed as follows [21]:

yk � 
N

n�1
qn,kg 

M

m�1
wm,nxm + bn

⎛⎝ ⎞⎠, k � 1, 2, . . . , K,

(28)

where g(x) is an activation function and yk is the output data
type k.

-e wind speed simulation model is like a mapping from
typhoon information to the average wind speed of a certain
turbine position. In other words, more valuable information
is necessary to ensure the performance of the ELM network.
-erefore, other kinds of information of typhoon such as the
distance between the target point and typhoon center as well
as the azimuth of the target point among the typhoon
structure will be added to the input data types.

In a typical ELM, the input weight matrixW and the bias
column vector are generated randomly. -e essence of
solving the ELM network is to solve the output weight
matrixQ through the training set [21]. In this study, the ELM
is used to simulate the average wind speed data of each
turbine position according to the corresponding key pa-
rameters of the typhoon. -e situation is that not every
single parameter is beneficial to the simulation accuracy
because the correlation between wind speed data and dif-
ferent parameters is not the same. -erefore, PSO will be
used to optimize the input weight matrix W and the bias
column vector B of the ELM network.

PSO algorithm is the optimization method inspired by
the birds flocking phenomenon in nature [22]. It has been
widely used for its convenience and efficiency. Imagine there
is a huge flock of birds searching for food in a forest. Every
single bird moves in different locations in the forest. In this
process, a bird learns where to find more food based on its
own searching experience, which is called individual

experience in PSO. At the same time, it communicates with
other birds about the best place, which is called social ex-
perience.-en the birds adjust their searching strategy to get
more food. -is is exactly how the PSO algorithm works.

-e basic flowchart of PSO is shown in Figure 9.
In the swarm initialization section, a swarm of 500 birds

are generated based on the Pearson correlation analysis. -e
initial value will be determined according to the corre-
sponding correlation between different data types in the
ELM network. Each bird has a scheme of parametersW and
B [22]:

Pind � pind,1, pind,2, . . . , pind,D , (29)

where Pind is the individual parameter scheme of a bird and
D is the number of elements in matrix W and B.

-en, every bird’s performance is judged in the fitness
calculation section using equation (30) [22]. And a bird will
update the best scheme of its own based on searching ex-
perience, which is known as individual experience in PSO.
At the same time, the social experience, the best scheme of
the whole bird swarm will also be refreshed.

FPSO �
1

��������
e
2
v + e

2
d 

 , (30)

where ev is the mean squared error (MSE) of wind speed
magnitude simulation with ELM and ed is the MSE of wind
speed direction simulation with ELM.

Gind � gind,1, gind,2, . . . , gind,D ,

Gswm � gswm,1, gswm,2, . . . , gswm,D ,
(31)

where Gind represents the best scheme of an individual bird
based on its own searching experience. And Gswm represents
the best scheme of the whole bird swarm.

Finally, each bird adjusts their searching strategy and
moves to a new location to improve its own performance
according to individual experience and social experience.
-e adjustment is described with Vind [22] as follows:

Vind � citaVind,last + cindrind Gind − Pind( 

+ cswmrswm Gswm − Pind( ,
(32)

where Vind is the adjustment of Pind and Vind, last is the
adjustment of Pind for the last iteration. cita is the inertia
constant, cind is the constant of individual experience, cswm is
the constant of social experience, rind is the random value for
individual experience in the interval (0,1), and rswm is the
random value for social experience in the interval (0,1).

Pind′ � Pind + Vind, (33)

where Pind′ is the new individual parameter scheme of a bird.

6. Case Study

-is section presents a case study on a wind farm located in
Guangdong province suffering severe damage when the
super typhoon Mangkhut landed in 2018. -e systematic
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method proposed in this paper is used to predict the average
wind speed magnitude and direction of the turbine under
the typhoon condition.

As the No. 22 typhoon in 2018, Mangkhut became a
tropical storm in the west Pacific at 5:00 on September 8,
2018. -en it strengthened continuously and marched
northwest toward China’s southern sea. It finally developed
into a super typhoon and landed at 17:00 on September 16 in
Taishan city, Guangdong province [16].

In the first part of the systematic method, the IGA-
YanMeng typhoon numerical simulation model, a huge
training set of typhoon parameter-turbine wind speed is
generated through the YanMeng wind field according to the
historical typhoon data containing information of 2,354
typhoons that landed on the Chinese coastline from 1949 to
2018 provided by China meteorological station [16]. At the
same time, multipoint measured wind speed data covering
1,263,613 moments during typhoon weather and 13 wind
turbines positions in recent years are used to improve the
accuracy of the training set, optimizing the parameters B and
z0 in YanMeng wind field.

Meanwhile, the typhoon status prediction model is used
to forecast the typhoon parameter change in the next 1–6
hours based on historical typhoon similarity and Man-
gkhut’s previous status correlation. In the process of the
prediction for 1–6 hours, the prediction of typhoon pa-
rameter change is conducted hour by hour. For example, the
model first predicts parameter change in the next 1 hour.
-en on this basis, the model will add the predicted status in
the next 1 h to the typhoon previous status sequence and
predict parameter change in the next 2 h. And so on, the
prediction of parameter change in the next 1–6 h comes out.
Figure 9 presents the result of Mangkhut’s status prediction
at 13:00 on September 16. -e actual track is marked with
white arrows and white lines. -e six predicted positions of
Mangkhut from 1 h to 6 h ahead of 13:00 are marked with
yellow dots.

As can be seen in Figure 10, in the 4 h ahead of 13:00, the
predicted positions are rather closed to the actual ones.
However, when it comes to 5 h to 6 h ahead, it is quite

difficult for the model to predict the actual trend and the
error goes big.

Particular focus is placed on the prediction performance
from 9:00 on September 16, 2018, to 6:00 on September 17,
2018, when Mangkhut landed onshore and swept across
Guangdong province, to better validate the systematic
method as a whole. Table 2 shows the root-mean-squared
error (RMSE) of prediction for each typhoon key parameter
1 h ahead to 6 h ahead during the period, while Figure 11
shows the curve of predicted parameters.

It can be seen from Table 2 that the RMSE of key pa-
rameter prediction 1 h ahead is the smallest, while the RMSE
of 6 h ahead is the largest, which infers that when the
prediction time interval gets bigger, the RMSE grows bigger
correspondingly.

-en the wind speed simulation model generates the
average wind speed at 10m height including the magnitude
and direction of every single turbine in the wind farm
according to the predicted typhoon key parameters. Before
that, the huge training set of typhoon key parameter-turbine
wind speed is used to train the ELM network with PSO,
making it more accurate. Figure 12 shows the simulation
performance of ELM with PSO.

It can be seen in Figure 12 that the RMSE converged to
the minimum of 0.3428 at epoch 860 for wind speed sim-
ulation. As for wind direction simulation, the RMSE con-
verged to the minimum of 1.1251 at epoch 289.

Table 3 shows the RMSE value and the R index of ELM
with PSO.

RMSE stands for the simulation error, and the R index
represents the correlation between the input and the output
of ELM. It can be seen from Table 3 that the RMSE of the
validation set came to 0.342837 for wind speed simulation,
and it came to 1.125069 for wind direction simulation. R
index of validation set reached 0.998912 for wind speed
simulation, and it reached 0.999741 for wind direction
simulation. It can be inferred that the wind speed simulation
model based on ELM shows extraordinary performance.

Figure 13 shows the wind speed magnitude/direction
prediction results of wind turbine No. 13 with coordinates

Wind speed
magnitude

Wind speed
direction

Input layer Hidden layer
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neuron2

x
m

Output layer

data type 2

data type 3

data type M
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b
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Figure 8: -e structure of ELM.
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Figure 9: Flowchart of PSO.
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Figure 10: Mangkhut’s predicted status in 6 h at 13:00 on September 16, 2018.

Table 2: -e overall RMSE of typhoon key parameter prediction.

Key parameter 1 h ahead 2 h ahead 3 h ahead 4 h ahead 5 h ahead 6 h ahead
Vmax 1.730064 2.563183 3.569731 4.43167 5.274586 5.973571
Pair 2.715035 3.783636 5.132059 6.172818 7.148655 8.036933
vc 2.468804 2.990488 3.19536 3.716567 4.315859 4.417815
θ 19.92125 20.02723 21.53194 23.19538 28.60333 30.37751
φltd 0.11604 0.18525 0.239314 0.302295 0.384715 0.4521
φlgd 0.072334 0.106627 0.143203 0.180261 0.231382 0.293897
Note: from 9:00, September 16, 2018, to 6:00, September 17, 2018.
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Figure 11: Prediction of typhoon parameters: (a) the maximum wind speed among the typhoon structure Vmax, (b) air pressure of the
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(113.728°E, 22.137°N) from 9:00 on September 16, 2018, to 6:
00 on September 17, 2018.

In Figure 13, the bold green curve represents the
measured wind speed magnitude. -e bold blue curve
represents the measured wind speed direction. And the
other thin curves stand for the predicted one. It can be seen
that the curves of 1 h ahead to 3 h ahead are quite close to

that of measured data, whether it is for magnitude or di-
rection. However, the curves of 4 h ahead to 6 h ahead are
more unstable in some parts. And there are larger differences
between them and the measured data. -e detailed error
information is given by Table 4.

For the wind speed magnitude, prediction 1 h ahead is
the most accurate with the RMSE of 0.625876. -e RMSE
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Figure 12: -e performance of ELM with PSO: (a) wind speed simulation and (b) wind direction simulation.

Table 3: RMSE and R index of ELM with PSO.

Wind speed Wind direction
RMSE R RMSE R

Training set 0.344394 0.998910 1.209380 0.999692
Validation set 0.342837 0.998912 1.125069 0.999741
Test set 0.343006 0.998906 1.219426 0.999691
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Figure 13: Wind speed prediction results of wind turbine No. 13: (a) wind speed magnitude and (b) wind speed direction.
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gets bigger when the prediction time interval increases. And
it reaches 2.882477 for that 6 h ahead. A similar pattern
appears when it comes to the wind speed direction part.
Among the 1 h prediction data, the smallest RMSE is
2.85382, while the largest one is 14.68233. One interesting
thing is that the RMSE of 3 h ahead is slightly smaller than
that of 2 h ahead, which might be due to the unstable
prediction in the long time period, especially when the
typhoon track gets complicated in mountainous areas.
However, the RMSE of direction prediction gets bigger when
the prediction time interval increases from the whole.

7. Conclusions

(1) -is paper proposed a systematic method to predict
the average wind speed at 10m height (including
magnitude and direction) of the wind turbine. -e
method mainly contains three parts: the IGA-Yan-
Meng typhoon numerical simulation model, ty-
phoon status prediction model, and the wind speed
simulation model. -e first step is to generate a huge
training set of typhoon key parameter, turbine wind
speed. Meanwhile, the status of the typhoon is
predicted based on the similarity of historical ty-
phoons and the correlation of the current typhoon’s
previous status. Finally, the wind speed is predicted
according to the predicted typhoon status with the
ELM trained by the training set in the first step.

(2) -is method innovatively uses the YanMeng wind
field to enrich the training set of ELM to a great
extent, which helps improve the accuracy of ELM.
And in this process, a new approach named envelop
filter is used to extract the average wind speed from
the original wind data. What is more, two param-
eters, B and z0 in the YanMeng wind field, are op-
timized using IGA based on multipoint measured
data in recent years.

(3) In the wind speed simulation model, PSO is used to
determine the input weight matrix W and bias
column vector B of the ELM network, making it
more accurate when it simulates the wind speed of
turbines. -e RMSE of the validation set came to
0.342837 for wind speed simulation, and it came to
1.125069 for wind direction simulation. -e R index
of the validation set reached 0.998912 for wind speed
simulation, and it reached 0.999741 for wind di-
rection simulation.

(4) -e end of the paper presents the prediction results
of turbine No. 13 from 9:00 on September 16, 2018,
to 6:00 on September 17, 2018, when the typhoon
Mangkhut swept over. Overall, the RMSE of pre-
diction 1 h ahead is the smallest. When the

prediction time interval increases, RMSE becomes
larger correspondingly, whether it is for magnitude
or direction of wind speed. For the magnitude, the
smallest RMSE is 0.625876 for 1 h ahead, while the
largest is 2.882477 for 6 h ahead. And for the di-
rection, the smallest RMSE is 2.85382 for 1 h ahead,
while the largest is 14.68233 for 6 h ahead.

(5) It is feasible to judge the probability of wind speed
exceeding the capacity of the wind turbine in the next
few hours according to the prediction results of the
systematic method. And take some effective mea-
sures to reduce the damage caused by typhoon
conditions. It is valuable for those wind farms lo-
cated in coastal areas. However, there are some
deficiencies in the research that require improve-
ment. -e prediction accuracy of wind speed goes
down when it comes to further future prediction.-e
decrease in prediction accuracy will become obvious
if the actual typhoon status changes drastically,
though the state of the typhoon is stable for most of
the time. -erefore, future development emphasis
should be placed on the enhancement of prediction
accuracy for the longer term. Moreover, the method
should be extended to other fields such as trans-
mission lines to show its true value.

Nomenclature

B: Bias column vector
Ct− i: -e correlation value of pt− i on the previous track

of the current typhoon
cita: -e inertia constant
cind: -e constant of individual experience
cswm: -e constant of social experience
D: -e number of elements in matrix W and B
dm: -e distance between pm and pt in km
dt− i: -e distance between pt and pt− i in km
ei: -e relative simulation error for point i
fc: -e Coriolis force parameter
E: Error coefficient
ed: -e MSE of wind speed direction simulation with

ELM
ei: -e relative simulation error of point i
ev: -e mean squared error (MSE) of wind speed

magnitude simulation with ELM
F: -e fitness of an individual
FPSO: A particle’s performance
Ft: -e boundary layer friction force
Fx: -e fitness value of parameter combination x
Gind: -e best scheme of an individual bird based on its

own searching experience

Table 4: RMSE of wind speed prediction of wind turbine No. 13.

1 h ahead 2 h ahead 3 h ahead 4 h ahead 5 h ahead 6 h ahead
Wind speed magnitude 0.625876 1.242866 1.774625 2.050791 2.248948 2.882477
Wind speed direction 2.85382 6.236313 5.338348 8.972893 11.91879 14.68233
Note: from 9:00, September 16, 2018, to 6:00, September 17, 2018.
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Gswm: -e best scheme of the whole bird swarm
k: A unit vector
K: -e number of the output data types
KC: -e scale factor
Lltd,c: -e latitude of the wind farm center
Lltd,i: -e latitude of the ith wind turbine in the wind

farm
Llgd,c: -e longitude of the wind farm center
Llgd,i: -e longitude of the ith wind turbine in the wind

farm
M: -e number of data types
Mt: -e total number of wind turbines in the wind

farm
Mh: -e number of historical typhoon points in the

influence circle
Mc: -e number of the current typhoon points in the

influence circle
N: -e number of neurons in the hidden layer
n: Population size
vc: -e typhoon wind speed
P0: -e typhoon center pressure
Pind′: -e new individual parameter scheme of a bird
pair,t: Air pressure of the typhoon center at moment t in

hPa
Pind: -e individual parameter scheme of a bird
pt: -e position of the current typhoon at themoment

t
pt + i: -e position of the current typhoon in the next i

hour
pt− i: -e position of the current typhoon i hour ago
Px: -e probability of selection for parameter

combination x
Q: Output weight matrix
R: -e radius of influence circle
Rdec,t: -e decrease limit range of the detection window

at current moment t
Rinc,t: -e increase limit range of the detection window

at current moment t
Rm: -e maximum wind speed radius
rind: -e random value for individual experience
rswm: -e random value for a social experience
Sm: Overall similarity of pm
Sg,m: -e geographic similarity of pm on the historical

typhoon track
Sy,m: -e translation speed similarity of pm
Sθ,m: -e translation direction similarity of pm
vc: Translation speed of typhoon center in km/h
vg: -e gradient wind speed
vm: -e translation speed of pm in km/h
Vmax: -e maximum wind speed among the typhoon

structure in m/s
Vmax,t: -e maximum wind speed among the typhoon

structure at moment t in km/h
vr,i: -e real-time measured average wind speed at ith

monitoring point
vs,i: -e simulated average wind speed at ith

monitoring point
vt: -e translation speed of pt in km/h

Vind: -e adjustment of Pind
Vind, last: -e adjustment of Pind for the last iteration
W: Input weight matrix
X: Input data column vector
Y: Output data column vector
yt− 1: -e wind speed magnitude of the last moment
yt: -e wind speed magnitude of current moment t
yk,t: -e predicted wind speed of the current moment

obtained using the Karman filter
yi,f: -e wind speed after filtering at moment i
yi,u: -e wind speed on the upper envelope line at

moment i
yi,l: -e wind speed on the lower envelope line at

moment i
∆inc,t− n: -e increment of wind speed at moment t− n
∆dec,t− n: -e decrease of wind speed at moment t− n
∆λ: Parameter change rate set of set λt
Ψs,i: -e simulated wind direction at ith monitoring

point
ρa: -e air density
θ: Translation direction of typhoon center in °

θ: -e translation direction of pm
θt: -e translation speed of pt
θr,i: -e real-time measured wind direction at ith

monitoring point
φltd: Latitude of typhoon center in °

φlgd: Longitude of typhoon center in °

λt: Parameter set
φltd,t: Latitude of typhoon center at moment t in °

φlgd,t: Longitude of typhoon center at moment t in °.
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