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A design method is established for the mixed H2/H∞ output-feedback control of stochastic nonlinear systems with multiplicative
noise. Firstly, using T-S fuzzy rules, we obtain a fuzzy model to approximate the original nonlinear system. *en, by Schur’s
complement, the suboptimal H2/H∞ output-feedback control design is transformed into a two-step convex optimization
problem. A numerical example is given to show the effectiveness of the proposed method.

1. Introduction

One of the objectives of system control is to design a controller
for the object model so that the closed-loop system achieves
good performance while ensuring internal stability [1–4]. H2
control andH∞ control have been attractive subjects since they
are of great practical significance in the field of engineering
[5–9]. H2 control has a high request of model accuracy and
generally does not consider the influence of model error.
However, in practical control systems, the system could not
exclude the implication of uncertain factors. Being put forward
by Zames in 1981, nowadays the H∞ design idea has grown
into an important robust control theory to eliminate external
interference [10]. Accordingly, the combination of H2 and H∞
control design methods will ensure the robustness and opti-
mality of the controlled system at the same time (we refer the
readers to [11–14]).

It is noticeable that randomness is ubiquitous in the real
world [15]. For example, there is a great deal of randomness
in financial risk managements. Correspondingly, stochastic
H2/H∞ control has been an attractive subject in recent
decades. Chen et al. [16] implemented a detailed study on
stochastic H2/H∞ control problems for linear systems with

state-dependent noise. Subsequently, [17–20] reported re-
search progress on H2/H∞ control of Markov jump systems.

On the other hand, nonlinearity is a universal phe-
nomenon existing in engineering systems [21, 22]. Giving an
example, a buck-boost circuit is rich in nonlinear dynamics.
Generally speaking, control problems of nonlinear systems
are more complicated than those of linear systems [23–25].
Linearizing the nonlinear system has become mature
technology to treat the nonlinear problems. [26] introduced
a suitable linear model gained by the T-S fuzzy rule to
approximate a nonlinear system. [27] designed a mixed
H2/H∞ controller for nonlinear systems based on fuzzy
observer.

According to all above, robust control for stochastic
nonlinear systems is definitely worthy both from the the-
oretical and practical application views. Compared with
[27], in which the considered systemmodel does not contain
multiplicative noise, it is clear that H2/H∞ control for
nonlinear systems with multiplicative noise has broader
application prospects.*e other contribution of this paper is
that the suboptimal H2/H∞ output-feedback control design
is transformed into a two-step convex optimization prob-
lem, which is convenient for solving by MATLAB efficiently.
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*is article is organized as follows. Section 2 builds up an
approximate model of the original nonlinear system by the
T-S fuzzy rule. Section 3 designs a fuzzy observer-based
H2/H∞ output-feedback controller by solving a two-step
convex optimization problem. A numerical example is given
to illustrate the efficiency of the proposed design method in
Section 4. Section 5 gives the summary of this paper.

For convenience, we adopt the following notations:

tr(A): the trace of matrix A

AT: the transpose of matrix A

A≥ 0(A> 0): a positive semidefinite (positive definite)
matrix A

I: the identity matrix
‖x‖: the Euclidean 2-norm of the n-dimensional real
vector x

2. Problem Description

Consider the following nonlinear random perturbation
system:

dx(t) � [f(x(t)) + g(x(t))u(t)]dt + C(t)x(t)dw1,

y(t) � h(x(t)) + v(t),


(1)

where x(t) � [x1(t), x2(t), . . . , xn(t)]T ∈ Rn×1 is the state
vector, u(t) is the input of the system, and y(t) is the
measured output. We assume that w1 is a one-dimensional
standard Wiener process. f(x(t)), g(x(t)), and h(x(t)) are
supposed to be smooth functions. System (1) is influenced by
v(t) which is a bounded measurement noise, that is,
E 

T

0 vv′dt � R0 ≥ 0.
Using T-S fuzzy rule, we establish a linear fuzzy model

for the stochastic model (1). Specifically, by the fuzzy rule, Ri:
if m1(t) is Fi1, . . ., mg(t) is Fig, i � 1, 2, . . . , L, then we have

dx(t) � Ai(t)x(t) + Bi(t)u(t) dt + C(t)x(t)dw1,

y(t) � Di(t)x(t) + v(t),


(2)

where Ri represents the i th rule, L demotes the rule number,
m(t) � [m1(t), . . . , mg(t)]T are the measurable prerequisite
variables, Fij is the fuzzy set, and Ai, Bi, Di(i � 1, 2, . . . , L)

are matrices with right dimensions.
By using the single point blur method, the product of

reasoning, and the average weighted fuzzification, the fol-
lowing form of fuzzy model is obtained:

dx(t) �


L
i�1 μi(m(t)) Ai(t)x(t) + Bi(t)u(t) dt


L
i�1 μi(m(t))

+ C(t)x(t)dw1 � 
L

i�1
hi(m(t)) Ai(t)x(t) + Bi(t)u(t) dt + C(t)x(t)dw1,

y(t) �


L
i�1 μi(m(t))Di(t)x(t)


L
i�1 μi(m(t))

+ v(t) � 
L

i�1
hi(m(t))Di(t)x(t) + v(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

where μi(m(t)) � 
g
j�1 Fij(mj(t)), hi(m(t)) � μi(m(t))

/
L
i�1 μi(m(t)), m(t) � [m1(t), . . . , mg(t)]T, and

Fij(mj(t)) is the grade of membership of mj(t) in Fij. We
suppose that μi(m(t))≥ 0, i � 1, 2, . . . , L. It is easy to see

hi(m(t))≥ 0,



L

i�1
hi(m(t)) � 1.

(4)

*us, system (1) is equivalent to the following system:

dx(t) � 
L

i�1
hi(m(t)) Ai(t)x(t) + Bi(t)u(t) dt + C(t)x(t)dw1 +(Δf + Δg)dt,

y(t) � 
L

i�1
hi(m(t))Di(t)x(t) + v(t) + Δh,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(5)

where
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Δf � f(x(t)) − 
L

i�1
hi(m(t))Aix(t)⎡⎣ ⎤⎦,

Δg � g(x(t)) − 
L

i�1
hi(m(t))Biu(t)⎡⎣ ⎤⎦,

Δh � h(x(t)) − 

L

i�1
hi(m(t))Dix(t)⎡⎣ ⎤⎦

(6)

represent the approximate error between system (3) and
nonlinear model (1).

Select the finite-dimension compensator shown below:

dx(t) � 
L

i�1
hi(m(t)) Ai(t)x(t) + Bi(t)u(t) + Li y − 

L

i�1
hi(m(t))Di(t)x(t)⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦dt,

u(t) � 

L

j�1
hj(m(t))kjx(t), x(0) � x0,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(7)

where u(t) � 
L
j�1 hj(m(t))kjx(t) is the fuzzy controller

and kj(j � 1, 2, . . . , L) is the control parameter.
Setting x � x − x and x � [x, x]T, we get the following

closed-loop system:

dx � 
L

i�1


L

j�1
hi(m(t))hj(m(t)) Aijx + Biv dt + Cxdw1 +(Δf + Δg + Δh)dt, (8)

where

Aij �
Ai + Bikj LiDi

0 Ai − LiDi

 ,

Bi �
Li

−Li

 , C �
0 0

C C
 ,

Δf �
0

Δf
 ,Δg �

0

Δg
 ,Δh � 

L

i�1
hi(m(t))LiΔh − 

L

i�1
hi(m(t))LiΔh⎡⎣ ⎤⎦.

(9)

Next we consider H∞ control performance. Given c> 0
and weighting matrix Q1 > 0, if (x(0) � 0),

E 
T

0
x

T
Q1xdt< c

2
E 

T

0
v

T
vdt≜ c

2
tr R0( , (10)

then we call the H∞ performance is satisfied.
H∞ control aims to eliminate the influence of external

interference, but the performance of the closed-loop system
may not be ideal. *erefore, a mixed H2/H∞ control design
based on fuzzy observer will be implemented. H2 perfor-
mance is defined as follows:

J(x, u) � E 
T

0
x

T
Q2x + u

T
R1u dt, (11)

where Q2 > 0 and R1 > 0.

3. Output-Feedback Control Design Based on
Fuzzy Observer

In the previous work, using the T-S fuzzy rule, we got a fuzzy
model (3) and the approximate error between nonlinear
system (1) and the fuzzy model. *is section attempts to
design an output-feedback control satisfying H∞ perfor-
mance and H2 performance for fuzzy model (3).
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Let the following inequalities be true:

‖Δf‖≤ ‖ΔAx(t)‖,

‖Δg‖≤ 
L

i�1
hi(m(t))ΔBkjx(t)

���������

���������
,



L

i�1
hi(m(t))LiΔh

���������

���������
≤ 

L

i�1
hi(m(t))LiΔDx(t)

���������

���������
.

(12)

By computation and the above inequalities, we have

(Δf)
T

(Δf) � (Δf)
T
(Δf)

� f(x(t)) − 
L

i�1
hi(m(t))Aix(t)⎛⎝ ⎞⎠

T

× (fx(t)) − 
L

i�1
hi(m(t))Aix(t)⎛⎝ ⎞⎠

≤ (ΔAx(t))
T

(ΔAx(t))

� (ΔAx(t) + ΔAx(t))
T

×(ΔAx(t) + ΔAx(t))

� ([ΔA,ΔA]x(t))
T

×([ΔA,ΔA]x(t))

� (Φx(t))
T
(Φx(t)),

(Δg)
T
(Δg) � (Δg)

T
(Δg)

≤ 
L

j�1
hj(m(t))ΔBkjx(t)⎛⎝ ⎞⎠

T

× 
L

j�1
hj(m(t))ΔBkjx(t)⎛⎝ ⎞⎠

� 
L

j�1
hj(m(t)) ΔBkj, 0 x(t)⎛⎝ ⎞⎠

T

× 
L

j�1
hj(m(t)) ΔBkj, 0 x(t)⎛⎝ ⎞⎠

� 
L

j�1
hj(m(t))Ωjx(t)⎛⎝ ⎞⎠

T



L

j�1
hj(m(t))Ωjx(t)⎛⎝ ⎞⎠

≤ 
L

j�1
hj(m(t))x

T
(t)ΩT

jΩjx(t),

(Δh)
T
(Δh) � 2 

L

i�1
hi(m(t))LiΔh⎛⎝ ⎞⎠

T

× 
L

i�1
hi(m(t))LiΔh⎛⎝ ⎞⎠

≤ 2 
L

i�1
hi(m(t))LiΔDx(t)⎛⎝ ⎞⎠

T

× 
L

i�1
hi(m(t))LiΔDx(t)⎛⎝ ⎞⎠

� 2 
L

i�1
hi(m(t)) LiΔD, LiΔD x(t)⎛⎝ ⎞⎠

T

× 
L

i�1
hi(m(t)) LiΔD, LiΔD x(t)⎛⎝ ⎞⎠

� 2 
L

i�1
hi(m(t))Ξix(t)⎛⎝ ⎞⎠

T



L

i�1
hi(m(t))Ξix(t)⎛⎝ ⎞⎠

≤ 2
L

i�1
hi(m(t))x

T
(t)ΞTi Ξix(t),

(13)

where Φ � [ΔA,ΔA], Ωj � [ΔBkj, 0], Ξi � [LiΔD, LiΔD],
j � 1, 2, . . . , L, i � 1, 2, . . . , L.

For the smooth progress of subsequent work, let us
choose a Lyapunov function for system (8):
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V(x(t)) � x
T
(t)Px(t), (14) where P is a weighted matrix with appropriate dimensions.

By integrating (14), we have

E 
T

0
d(V(x(t))) � E 

T

0
d x

T
Px 

� 
L

i�1


L

j�1
h(m(t))hj(m(t))Ei 

T

0
Aijx + Δf + Δg + Δh 

T
Px + x

T
P Aijx + Δf + Δg + Δh 

+ �x
T �C

T
P�C�x + v

T
�B

T

i Px + x
T
PBivdt

≤ 
L

i�1


L

j�1
hi(m(t))hj(m(t))E 

T

0
�x

T 3P
2

+ PAij + A
T

ijP + C
T
PC +ΦTΦ +ΩT

jΩj + 2ΞTi Ξi xdt

+ 
L

i�1
hi(m(t))E 

T

0
v

T
�B

T

i P�x + �x
T
P�Biv dt

� 
L

i�1


L

j�1
hi(m(t))hj(m(t))E 

T

0
�x

T3P
2

+ P�Aij +�A
T

ijP + �C
T
P�C +ΦTΦ +ΩT

jΩj + 2ΞTi Ξi�xdt

− E 
T

0
c

− 1
�x

T
P 

L

i�1
hi(m(t))�Bi

⎛⎝ ⎞⎠ − cv
T⎛⎝ ⎞⎠ · c

− 1
�x

T
P 

L

i�1
hi(m(t))Bi

⎛⎝ ⎞⎠ − cv
T⎛⎝ ⎞⎠

T

dt

+ E 
T

0
c

− 2
x

T
P 

L

i�1
hi(m(t))Bi

⎛⎝ ⎞⎠ · 
L

i�1
hi(m(t))Bi

⎛⎝ ⎞⎠

T

Px + c
2
v

T
v⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦dt

≤ 

L

i�1


L

j�1
hi(m(t))hj(m(t))E 

T

0
x

T3P
2

+ PAij + A
T

ijP + C
T
PC +ΦTΦ +ΩT

jΩj + 2ΞTi Ξi

+ c
− 2

PBiB
T

i xdt + E 
T

0
c
2
v

T
vdt.

(15)

Based on (15), we can derive the following theorem. Theorem 1. If there exists a P> 0 satisfying the following
inequalities:

3P
2

+ PAij + A
T

ijP + C
T
PC + c

− 2
PBiB

T

i P + Q1 +ΦTΦ +ΩT
jΩj + 2ΞTi Ξi < 0, (16)

4P
2

+ PAij + A
T

ijP + C
T
PC + k

T

j R1
kj + Q2 +ΦTΦ +ΩT

jΩj + 2ΞTi Ξi < 0, (17)

where kj � kj, 0 , then

(a) H∞ control performance (10) is fulfilled.
(b) H2 performance (11) has a upper bound, that is,

J x, u � kjx ≤ ‖x(0)‖
2tr(P)

+ tr 
L

i�1
hi(m(t))Bi

⎛⎝ ⎞⎠R0 

L

i�1
hi(m(t))Bi

⎛⎝ ⎞⎠

T

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦.

(18)
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Proof. For given Q1 > 0, by Schur’s complement and (15),
one can see that

E 
T

0
x

T
Q1xdt − c

2
E 

T

0
v

T
vdt

≤E 
T

0
x

T
Q1x − c

2
v

T
v dt + 

L

i�1


L

j�1
hi(m(t))hj(m(t))E 

T

0
x

T
P Aijx + Δf + Δg + Δh 

+ Aijx + Δf + Δg + Δh 
T
Px + x

T
PBiv + v

T
B

T

i Px + x
T
C

T
PCxdt

≤ 
L

i�1


L

j�1
hi(m(t))hj(m(t))E 

T

0
x

T 3P
2

+ A
T

ijP + PAij + C
T
PC + Q1 +ΦTΦ +ΩT

jΩj + 2ΞTi Ξi x

+ x
T
PBiv + v

T
B

T

i Px − c
2
v

T
vdt

� 
L

i�1


L

j�1
hi(m(t))hj(m(t))E 

T

0

x

v
 

T X PBi

B
T

i P −c
2
I

⎡⎢⎣ ⎤⎥⎦
x

v
 dt< 0,

(19)

where X � 3P2 + PAij + A
T

ijP + C
T
PC + Q1 +ΦTΦ +ΩT

jΩj

+ 2ΞTi Ξi. *erefore, E 
T

0 xTQ1xdt< c2E 
T

0 vTvdt is directly
derived, i.e., conclusion (a) is valid.

Now let us prove (b). Under the constraint of (8), with
the help of the method of completing square, we assert that

J x, u � kjx  � E 
T

0
x

T
Q2x + u

T
R1u dt

≤ 
L

i�1


L

j�1
hi(m(t))hj(m(t))E 

T

0
x

T
Q2x + kjx 

T R2 kjx  + x
T
P Aijx + Δf + Δg + Δh 

+ �Aij�x + Δf + Δg + Δh 
T
Px + x

T
PBiv + v

T
B

T

i Px + x
T
C

T
PCxdt + x

T
(0)Px(0)

≤ 
L

i�1


L

j�1
hi(m(t))hj(m(t))E 

T

0
x

T 3P
2

+ A
T

ijP + PAij + C
T
PC + Q2 + k

T

j R1
kj +ΦTΦ +ΩT

jΩj + 2ΞTi Ξi xdt

+ E 
T

0
v

T


L

i�1
hi(m(t))Bi

⎛⎝ ⎞⎠

T



L

i�1
hi(m(t))Bi

⎛⎝ ⎞⎠vdt + x
T
(0)Px(0)

≤ x
T
(0)Px(0) + E 

T

0
v

T


L

i�1
hi(m(t))Bi

⎛⎝ ⎞⎠

T



L

i�1
hi(m(t))Bi

⎛⎝ ⎞⎠vdt

+ 
L

i�1


L

j�1
hi(m(t))hj(m(t))E 

T

0
x

T 4P
2

+ A
T

ijP + PAij + C
T
PC + Q2 + k

T

j R2
kj +ΦTΦ +ΩT

jΩj + 2ΞTi Ξi xdt

≤ ‖x(0)‖
2tr(P) + tr 

L

i�1
hi(m(t))Bi

⎛⎝ ⎞⎠R0 

L

i�1
hi(m(t))Bi

⎛⎝ ⎞⎠

T

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦,

(20)

which shows that (b) holds. *e proof of this theorem is
concluded.

According to *eorem 1, suboptimal H2/H∞ control
design has been transformed into solving the optimiza-
tion problem minP>0tr(P) under the constraint of (16)

and (17). However, because P22, Li, and W11 are coupled
in some components, the optimization problem is not
convex. So, we need to convert it into convex optimi-
zation problems.

Express P, Q1, and Q2 as follows:
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P �
P11 0

0 P22
 , Q1 �

Q
(1)
11 0

0 Q
(1)
22

⎡⎢⎢⎣ ⎤⎥⎥⎦, Q2 �
Q

(2)
11 0

0 Q
(2)
22

⎡⎢⎢⎣ ⎤⎥⎥⎦.

(21)

Plugging these representations into (16) and (17), one
gets

A11 A12

A21 A22
 < 0, (22)

B11 B12

B21 B22
 < 0, (23)

where

A11 � 3P
2
11 + P11 Ai + Bikj  + Ai + Bikj 

T
P11 + C

T
P22C + c

− 2
P11LiL

T
i P11 + Q

(1)
11 + ΔATΔA + k

T
j ΔB

TΔBkj + 2ΔDT
L

T
i LiΔD,

A12 � P11LiDi + C
T
P22C − c

− 2
P11LiL

T
i P22 + ΔATΔA + 2ΔDT

L
T
i LiΔD,

A21 � D
T
i L

T
i P11 + C

T
P22C − c

− 2
P22LiL

T
i P11 + ΔATΔA + 2ΔDT

L
T
i LiΔD,

A22 � 3P
2
22 + P22 Ai − LiDi(  + Ai − LiDi( 

T
P22 + C

T
P22C + c

− 2
P22LiL

T
i P22 + Q

(1)
22 + ΔATΔA + 2ΔDT

L
T
i LiΔD,

B11 � 4P
2
11 + P11 Ai + Bikj  + Ai + Bikj 

T
P11 + C

T
P22C + Q

(2)
11 + k

T
j

R2kj + ΔATΔA + k
T
j ΔB

TΔBkj + 2ΔDT
L

T
i LiΔD,

B12 � P11LiDi + C
T
P22C + ΔATΔA + 2ΔDT

L
T
i LiΔD,

B21 � D
T
i L

T
i P11 + C

T
P22C + ΔATΔA + 2ΔDT

L
T
i LiΔD,

B22 � 4P
2
22 + P22 Ai − LiDi(  + Ai − LiDi( 

T
P22 + C

T
P22C + Q

(2)
22 + ΔATΔA + 2ΔDT

L
T
i LiΔD.

(24)

Next, let W � diag(W11, I) with W11 � P−1
11 . Multiplying

both sides of (22) and (23) by W and setting Zi � P22Li,
Yj � kjW11, we have

C11 C12

C21 C22
 < 0, (25)

D11 D12

D21 D22
 < 0, (26)

where

C11 � 3I + AiW11 + W11A
T
i + BiYj + Y

T
j B

T
i + W11C

T
P22CW11 + c

− 2
LiL

T
i + W11Q

(1)
11 W11 + W11ΔA

TΔAW11 + Y
T
j ΔB

TΔBYj

+ 2W11ΔD
T
L

T
i LiΔDW11,

C12 � LiDi + W11C
T
P22C − c

− 2
LiZ

T
i + W11ΔA

TΔA + 2W11ΔD
T
L

T
i LiΔD,

C21 � D
T
i L

T
i + C

T
P22CW11 − c

− 2
ZiL

T
i + ΔATΔAW11 + 2ΔDT

L
T
i LiΔDW11,

C22 � 3I + P22Ai + A
T
i P22 − ZiDi − D

T
i Z

T
i + C

T
P22C + c

− 2
ZiZ

T
i + Q

(1)
22 + ΔATΔA + 2ΔDT

L
T
i LiΔD,

D11 � 4I + AiW11 + W11A
T
i + BiYj + Y

T
j B

T
i + W11C

T
P22CW11 + W11Q

(2)
11 W11 + Y

T
j

R2Yj + Y
T
j ΔB

TΔBYj + W11ΔA
TΔAW11

+ 2W11ΔD
T
L

T
i LiΔDW11,

D12 � LiDi + W11C
T
P22C + W11ΔA

TΔA + 2W11ΔD
T
L

T
i LiΔD,

D21 � D
T
i L

T
i + C

T
P22CW11 + ΔATΔAW11 + 2ΔDT

L
T
i LiΔDW11,

D22 � 4P
2
22 + P22Ai + A

T
i P22 − ZiDi − D

T
i Z

T
i + C

T
P22C + Q

(2)
22 + ΔATΔA + 2ΔDT

L
T
i LiΔD.

(27)

By Schur’s complement, (25) and (26) can be rewritten as
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M11 W11 Y
T
j M14 0

W11 M22 0 0 0

Y
T
j 0 M33 0 0

M
T
14 0 0 M44 Li

0 0 0 L
T
i −c

2
I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

N11 W11 Y
T
j N14

W11 N22 0 0

Yj 0 N33 0

N
T
14 0 0 N44

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

(28)

where

M11 � 3I + AiW11 + W11A
T
i + BiYj + Y

T
j B

T
i + Y

T
j ΔB

TΔBYj,

M14 � LiDi + W
T
11C

T
P22C − c

− 2
LiZ

T
i + W11ΔA

TΔA + 2W11ΔD
T
L

T
i LiΔD,

M22 � − Q
(1)
11 + ΔATΔA + 2ΔDT

L
T
i LiΔD 

− 1
,

M33 � − ΔBTΔB 
− 1

,

M44 � 3P
2
22 + P22Ai + A

T
i P22 − ZiDi − D

T
i Z

T
i + C

T
P22C + c

− 2
ZiZ

T
i + Q

(1)
22 + ΔATΔA + 2ΔDT

L
T
i LiΔD,

N11 � 4I + AiW11 + W11A
T
i + BiYj + Y

T
j B

T
i ,

N14 � LiDi + W11C
T
P22C + W11ΔA

TΔA + 2W11ΔD
T
L

T
i LiΔD,

N22 � − Q
(2)
11 + ΔATΔA + 2ΔDT

L
T
i LiΔD 

− 1
,

N33 � − R1 + ΔBTΔB 
− 1

,

N44 � 4P
2
22 + P22Ai + A

T
i P22 − ZiDi − D

T
i Z

T
i + C

T
P22C + Q

(2)
22 + ΔATΔA + 2ΔDT

L
T
i LiΔD.

(29)

Noticing that if (16) and (17) are true, then M44 < 0 and
N44 < 0, the following two inequalities hold:

3P
2
22 + P22Ai + A

T
i P22 − ZiDi − D

T
i Z

T
i + C

T
P22C + c

− 2
ZiZ

T
i + Q

(1)
22 + ΔATΔA + 2ΔDT

L
T
i LiΔD< 0,

4P
2
22 + P22Ai + A

T
i P22 − ZiDi − D

T
i Z

T
i + C

T
P22C + Q

(2)
22 + ΔATΔA + 2ΔDT

L
T
i LiΔD< 0,

(30)

which can be written as the following LMIs:
G1 P22 Zi

P22
−1
3I

0

Z
T
i 0 −c

2
I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (31)

G2 P22

P22
−1
4I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦< 0, (32)

where
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G1 � P22Ai + A
T
i P22 − ZiDi − D

T
i Z

T
i + C

T
P22C + Q

(1)
22 + ΔATΔA + 2ΔDT

L
T
i LiΔD,

G2 � P22Ai + A
T
i P22 − ZiDi − D

T
i Z

T
i + C

T
P22C + Q

(2)
22 + ΔATΔA + 2ΔDT

L
T
i LiΔD.

(33)

*erefore, the observer-based suboptimal stochastic
H2/H∞ control design can be transformed into solving a
two-step convex optimization problem.

*e first step: under the constraint of (31) and (32), solve
the convex optimization problem:

min
P22>0

tr P22( . (34)

It can be obtained that P22, Zi and Li � P−1
22Zi.

*e second step: under the constraint of (25) and (26),
solve the following convex optimization problem:

min
W11>0

tr W11( . (35)

We can get P11 � W−1
11 and the feedback gain kj. A

suboptimal solution P � diag(P11, P22) and compensator (7)
are achieved.

To sum up, we state the following main result. □

Theorem 2. If the above convex optimization problems (34) and
(35) have solutions, then Li � P−1

22Zi and kj � YjW
−1
11 .

Moreover, we have u∗(t) � YjW
−1
11 x(t), and J∗(x, u∗) � tr

(W−1
11 + P22)‖x(0)‖2 + tr[(

h
i�1 hi (m(t))Bi)R0(

L
i�1 hi(m

(t))Bi)
T].

4. A Numerical Example

For system (5), we define the fuzzy number as “big and
small” and assume its coefficient matrices are

A1 �
0.2 3.2

2.8 0.5
 , A2 �

0.6 2.6

3.4 0.3
 ,

B1 �
0

−0.3
 , B2 �

0

−0.2
 ,

C �
2.5 3

2.8 2
 , D1 � D2 � 1 1 .

(36)

Give

ΔA �
0.4 0.6

0.6 0.2
 ,ΔB �

0

0.1
 . (37)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
–6

–4

–2

0

2

4

6

Figure 1: *e trajectories of states x1 and x2.
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We have Δl � 0, Δh � 0 and ΔC � 0, ΔD � 0.
Choose c2 � 0.9. Using LMI toolbox inMATLAB, we get

P22 �
0.3140 −0.3253

−0.3253 0.3761
 , W11 �

4.9206 −4.9454

−4.9454 4.9958
 ,

Z1 �
1.0971

1.1117
 , Z2 �

1.0752

1.1196
 ,

Y1 � 0.9422 34.3978 , Y2 � −1.1508 29.9927 .

(38)

According to Li � P−1
22Zi, kj � YjW

−1
11 , the parameters of

observer and controller are

L1 �
63.0966

57.5249
 , L2 �

62.6370

57.1486
 ,

k1 � 1.4025 1.3952  × 103, k2 � 1.1374 1.1319  × 103.
(39)

Taking the controller u∗(t) into account, the simulation
results are shown in Figure 1. It is shown that the system can
achieve the desired control effects under the fuzzy controller.

5. Conclusions

In this paper, the mixed H2/H∞ output-feedback control
problem for stochastic nonlinear systems in a finite horizon
has been studied. Firstly, the nonlinear system is trans-
formed into a linear fuzzy model by T-S rules, and the error
between the original system and the fuzzy one has been
considered. A fuzzy observer-based two-step convex opti-
mization method has been proposed to treat the suboptimal
H2/H∞ problem. *e method is simple and effective. *e
closed-loop system can guarantee the robustness and
minimize the energy output. Since time delays exist widely in
practical systems, how to generalize the obtained H2/H∞
output-feedback controller design method to stochastic
nonlinear systems with delays is one of the directions of
future research.
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