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-e intelligent transportation system (ITS) plays an irreplaceable role in alleviating urban traffic congestion and realizing
sustainable urban development. Accurate and efficient short-term traffic state forecasting is a significant issue in ITS. -is study
proposes a novel hybrid model (ELM-IBF) to predict the traffic state on urban expressways by taking advantage of both deep
learning models and ensemble learning framework. First, a developed bagging framework is introduced to combine several deep
belief networks (DBNs) that are utilized to capture the complicated temporal characteristic of traffic flow. -en, a novel
combination method named improved Bayesian fusion (IBF) is proposed to replace the averaging method in the bagging
framework since it can better fuse the prediction results of the component DBNs by assigning the reasonable weights to DBNs at
each prediction time interval. Finally, the proposed hybrid model is validated with ground-truth traffic flow data captured by the
remote traffic microwave sensors installed on the multiple road sections of 2nd Ring Road in Beijing. -e experimental results
illustrate that the ELM-IBF method can effectively capture sharp fluctuations in the traffic flow. Compared with several
benchmark models (e.g., artificial neural network, long short-term memory neural network, and DBN), the ELM-IBF model
reveals better performance in forecasting single-step-ahead traffic volume and speed. Additionally, it is proved that the ELM-IBF
model is capable of providing stable and high-quality results in multistep-ahead traffic flow prediction.

1. Introduction

With the rapid growth of vehicle ownership, the conflict
between traffic demand and traffic supply becomes in-
creasingly acute, and it causes more frequent traffic con-
gestion. Although the construction and improvement of the
expressway network alleviate the rapidly increasing traffic
demand to some extent, the urban traffic problems cannot be
solved only by building or expanding the expressway net-
work because of the restrictions on urban land use and
environmental factors [1]. -erefore, to alleviate traffic
congestion on the urban expressways with limited space, ITS
has gradually become an effective way to manage the traffic
flow on expressways and to improve the mobility and safety
of expressways.

Short-term traffic flow prediction technology is an es-
sential issue in ITS. It describes the process of estimating the
anticipated traffic conditions in the short-term given his-
torical and current traffic information captured by several
traffic detectors [2–4]. With the help of traffic information
released by the advanced traffic information service system,
travelers can understand road conditions and choose time-
saving travel paths [5]. At present, the common detectors
employed in the ITS include loop detectors, global posi-
tioning systems, and remote traffic microwave sensors
(RTMS). As one of the most popular nonintrusive traffic
detectors, RTMSs transmit microwave beams to both
moving and stationary objects and receive the reflected
signals as the background signals [6]. When a car enters the
detection zone, the reflected signal will be strengthened to
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exceed the background signal threshold, and the car will be
detected. Meanwhile, RTMSs are installed on the side of the
road without causing temporary lane closure or traffic flow
interruption during the process of installation [7]. Hence,
more traffic management departments regard this kind of
non-invasive sensor as an automatic transportation data
acquisition method. Due to the high measurement accuracy
of RTMSs, which can be up to 95% [8], the continuous travel
speed and volume captured by RTMS are used as the dataset
in this study.

Because of the complexity and dynamic state of traffic
flow, massive approaches including deep learning technolo-
gies [9–12] have been proposed to address traffic state esti-
mation issues. However, high-efficiency and robust prediction
of traffic conditions are difficult because of the following
challenges and problems: (1) though traffic conditions on
urban expressways exhibit recurrent patterns over time, re-
current traffic conditions are affected by planned incidents
such as road construction and sports events, and unplanned
incidents and accidents, resulting in a deviation from the
recurrent patterns; (2) deep learning-based models such as
convolutional neural network and long short-term memory
(LSTM) neural network need big datasets to train thousands
of parameters and learn the spatiotemporal characteristics of
the traffic flow. It may cause huge time consumption and fail
to meet the real-time requirements of forecasting traffic
conditions; (3) most of the existing methods focus on pre-
dicting the traffic flow in the next time interval. In fact, ac-
curate and stable methods are needed to deal with the task of
multistep-ahead traffic flow forecasting [13].

By taking advantage of both deep learning models and
ensemble learning framework, this paper builds a novel hybrid
model (ELM-IBF) to forecast traffic state. It has been proven
that deep belief networks (DBN) are valid in the prediction
task [14]. Hence, we utilized DBNs as the subpredictors in this
study. -en, a new bagging framework is introduced to de-
crease the size of the training data and reduce the training time
of the DBNs. Finally, we developed the bagging framework by
replacing the average combinationmethods with an improved
Bayesian fusion method. Based on the aforementioned dis-
cussion, the improvements and contributions of this paper are
summarized in the following four aspects:

(1) A novel hybrid model (ELM-IBF), which combines
the ensemble learning theory and deep belief net-
work, is proposed to make short-term traffic state
prediction on urban expressways.

(2) Deep belief networks are utilized as the sub-
predictors in the Bagging algorithm to learn the
complicated temporal characteristic of traffic flow.

(3) A combination method, named improved Bayesian
fusion, is proposed to replace the averaging method
in the Bagging framework. It can better fuse the
prediction results of the component DBNs by
assigning the reasonable weights to component
DBNs at each prediction time intervals.

-e remainder of this paper is organized as follows: a
general overview of existing literature on traffic forecasting is

provided in Section 2. -e theory of DBN, the improved
Bayesian fusion (IBF) methods, and the proposed ELM-IBF
model are introduced in Section 3.-e experimental dataset,
the evaluation index, and the experimental environment are
given in Section 4. -e discussions of the prediction per-
formance of different methods and relevant analyses are
carried out in Section 5. Finally, we present the conclusions
and future research efforts in Section 6.

2. Literature Review

Due to the significance and prospective applications of traffic
flow prediction, considerable research efforts have been
made to enrich traffic prediction approaches. In general, the
methodology falls into three major categories: statistical
methods, nonparametric methods, and hybrid methods.

2.1. Statistical Methods. -e statistical methods mainly in-
clude time-series models [15], Kalman filtering methods
[16], and Auto-Regressive Integrated Moving Average
(ARIMA) methods [17]. Among the various statistical
methods, ARIMA [17] and its variants [18, 19] have been
proved to be capable of getting promising forecasting results.
Many researchers applied the data analysis techniques de-
veloped by Box and Jenkins [20] to predict freeway short-
term traffic flow, and it is found that the ARIMA model can
represent freeway time-series data in a highly accurate
manner. It is also shown that the ARIMA model was ade-
quate in reproducing time series of urban arterials [18].
Compared with typical ARIMA forecasting methods, Sea-
sonal ARIMA (SARIMA) enables the extraction of the
seasonal variations and reveals implicit periodical charac-
teristics in the time-series data. Hence, SARIMA-based
methods [21] have obtained better predictive performances
than typical ARIMA methods.

2.2. Nonparametric Methods. -ough statistical methods
offer explicit formulas to give valuable interpretations of
traffic characteristics, they are inferior at predicting the
traffic flow with irregular fluctuations considering their
definite model structure [22]. During recent years, massive
nonparametric methods for traffic flow prediction have
emerged such as support vector regression [23, 24],
k-nearest neighbor [25], random forest [26], and XGBoost
[27]. Different from statistical methods, nonparametric
methods have relaxed assumptions for inputs, and they are
more capable of processing outliers and noisy data [28].
Artificial neural networks (ANN), which can capture the
nonlinear correlations and mine the complex patterns of the
measured historical data, are the most popular nonpara-
metric methods. Since Hua and Faghri introduced ANN
models to vehicle travel time estimation [29], many other
advanced neural network models were shifted to the traffic
forecast domain successively, such as feed-forward neural
network [30], fuzzy neural network [31], echo state neural
network [32], radial basis function neural network (RBFNN)
[33], and recurrent neural network (RNN) [34].
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With the development of big data, the nonparametric
methods for traffic flow prediction are shifting from ANNs
to deep learning methods [35–39]. For example, Huang et al.
[14] proposed a deep architecture with a deep belief network
(DBN) at the bottom and a multitask regression layer at the
top. -e DBN layer is employed for unsupervised feature
learning, and a multitask regression layer is used above the
DBN for supervised prediction. Yang et al. [40] established a
novel stacked autoencoder model to learn the hierarchical
representation of urban traffic flow.Ma et al. [41] introduced
the LSTM neural network, which can overcome the van-
ishing gradient problem of the RNN, to forecast traffic speed
based on the microwave data in Beijing. Li et al. [13] pro-
posed a deep belief network optimized multiobjective par-
ticle swarm algorithm to forecast day-ahead traffic flow.
Wang et al. [42] built a path-based deep learning framework
that can produce better traffic speed prediction on a city-
wide scale. Peng et al. [43] provided a long-term traffic flow
prediction method based on dynamic graphs to overcome
data defects in traffic flow prediction. Although the deep
learning method can process a large amount of data, its
prediction results are strongly dependent on the amount of
data, and training a deep learning model takes a long time
and uses a large amount of storage space.

2.3. Hybrid Methods. As the statistical methods and non-
parametric methods both have their flaws in traffic prediction,
an effective combination of different approaches may be a
better choice to solve the traffic flow forecasting problem.
-ere are many existing works of literature demonstrating the
advantage of hybrid methods, and consequently, numerous
hybrid models [44–46] have been developed. Wei and Chen
[47] combined empirical mode decomposition and back-
propagation neural networks (BPNN) to predict the short-
term passenger flow in metro systems. Wang et al. [48]
proposed a short-term traffic speed forecasting hybrid model
using chaos wavelet analysis and support vector machine. Gu
et al. [49] established a Bayesian combination model with
deep learning, which combines the ARIMA model, radial
basis function neural network, and the gated recurrent unit
neural networks to forecasting traffic volume in multiple
scenarios. Li et al. [50] built a multimodal deep learning
model using two parallel stacked autoencoders that can si-
multaneously consider the spatial and temporal dependencies
of the traffic flow. Gu et al. [51] proposed a fusion model
consisting of an entropy-based grey relation analysis and a
double-layer RNN structure. Vlahogianni [52] proposed the
surrogate model using three prediction methods for com-
bination in short-term freeway traffic speed prediction. -ese
studies have demonstrated that the combination of different
predictors can improve the final accuracy of traffic prediction
under normal traffic conditions on freeways and motorways.
Qiu et al. [53] established an integrated precipitation-cor-
rection model for freeway traffic flow prediction using fusion
techniques with four basic forecastingmodels.-e advantages
of the hybrid models lie in two points: (1) the superiority of
each component model can be mined to improve the pre-
diction accuracy and robustness of the whole model. (2) -e

component models can be trained or calibrated parallelly,
which saves time and is more efficient than some complicated
single models.

-erefore, inspired by the powerful data mining capa-
bility of deep learning methods and the high robustness of
ensemble learning technology, we propose a novel hybrid
method (ELM-IBF) for traffic flow prediction through in-
tegrating the deep belief networks and an improved en-
semble learning framework. Experimental results confirm
that the ELM-IBF model enables us to make accurate and
stable multistep-ahead traffic flow forecasting.

3. Methodology

In this section, we first introduce the DBNs, which are
component predictors of the ELM-IBF model. -en, a de-
scription of an IBFmethod is given. Finally, we introduce the
ELM-IBF model based on the bagging framework developed
by DBNs and IBF.

3.1. Deep Belief Network (DBN). DBN is a deep artificial
neural network with many hidden layers as shown in
Figure 1(a). Each hidden layer has a large number of hidden
units. -e classical DBN is equivalent to the superposition of
several Restricted Boltzmann Machines (RBMs) and an
output layer. DBN usually utilizes a fast and greedy unsu-
pervised learning algorithm to train RBMs. After the RBM
layers training is completed, a supervised fine-tuning
method is adopted to adjust the network by the training data
[54]. Figure 1(b) illustrates the structure of an RBM, where v
represents a visible layer, and h represents a hidden layer. In
the stacked structure of the DBN shown in Figure 1(c), the
hidden layer of one RBM is regarded as the visible layer of
the next RBM. An energy function is defined by an RBM
according to its parameter set θ� (w, b, a) as follows:

E(v, h|θ) � − 􏽘
i

bivi − 􏽘
j

ajhj − 􏽘
i

􏽘
j

wijvihj, (1)

where vi and hj are the ith visible layer unit and jth hidden
layer unit, respectively; wij is the weight between vi and hj; bj
and aj are the biases of the layers.

-e joint probability distribution of visible layer v and
hidden layer h can be calculated as follows:

p(v, h|θ) �
exp(−E(v, h|θ))

􏽐v,hexp(−E(v, h|θ))
. (2)

As shown in Figure 1(a), there are no interconnections
between the neurons in the visible layer and the hidden layer.
As the binary units are used, vi and hj belong to (0, 1). -e
activation probabilities of the neurons in the hidden layer
and the neurons in the visible layer are given as follows:

p hj � 1|v, θ􏼐 􏼑 � σ bj + 􏽘
j

wijhj
⎛⎝ ⎞⎠, (3)

p vi � 1|h, θ( 􏼁 � σ ai + 􏽘
i

wijvi
⎛⎝ ⎞⎠, (4)
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where σ is a sigmoid activation function.
For the whole hidden layer and visible layer, they can be

given by

p(h|v) � 􏽙
j

hj|v􏼐 􏼑, (5)

p(v|h) � 􏽙
i

vi|h( 􏼁. (6)

-e marginal probability distribution of input vector v
over the hidden units is obtained as

p(v|θ) �
􏽐hexp(−E(v,h|θ))

􏽐v,hexp(−E(v, h|θ))
. (7)

-erefore, the objective function can be given as

L(θ, v) � 􏽘
v∈D

log p(v, θ), (8)

where D represents the training dataset.
To obtain the optimal θ for a single data vector v, the

gradient of log-likelihood estimation can be calculated based
on the following equations:

z logp(v|θ)

zwij

� Ep〈hjvi〉 − E􏽢p〈hjvi〉, (9)

z logp(v|θ)

zaj

� Ep〈hj〉 − E􏽢p〈hj〉, (10)

z logp(v|θ)

zbi

� Ep〈vi〉 − E􏽢p〈vi〉, (11)

where Ep〈.〉 and E􏽢p〈.〉 are the expectations of the proba-
bility over v under the empirical distribution P and model’s
distribution􏽢P.

-e contrastive divergence (CD) learning method
[54–56] can be utilized by reconstruction to minimize the
difference of two Kullback-Leibler divergences (KL) to
gainE􏽢p〈.〉. CD learning is proved to be efficiently practical
and also can reduce computational cost compared with the
typical Gibbs sampling method. At the beginning of the CD
algorithm, the visible layer is initialized with training data;
then, the hidden layer is calculated with the conditional
distribution. Afterward, the visible layer is calculated with
conditional distribution according to the hidden layer. -e
result is a reconstruction of the input. -is algorithm only
needs to iterate for k times to obtain the estimation of the
model, and k usually takes the value of 1. -e pseudocode of
training an RBM is presented in Algorithm 1.

After obtaining a trained RBM, a regression layer is
introduced to form the DBN model, which enables it to
predict traffic flow data. -e whole structure of the DBN
model is shown in Figure 1(c). Afterward, the complete
training process of DBN can be divided into two phases
including a pretraining phase and a fine-tuning phase.

During the pretraining phase, a greedy layer-by-layer is
used to gain the weights. First, training data is employed to
fully train the first RBM as the code in Algorithm 1. Second,
the output layer of the first RBM is taken as the input of the
second RBM. -en, the above steps can be repeated several
times.

After the pretraining phase, the backpropagation (BP)
algorithm, a supervised learning method, is adopted to
adjust the parameters to finish the fine-tuning phase.

(a) (c)

(b) 

visible layer hidden layer

visible layer hidden layer

visible layer hidden layer

hl

hl-1

hl-1

hl-1

v
Visible
layer

Output
layer h1 hj

v vi

b

a

Figure 1: -e deep belief network and restricted Boltzmann machines. (a) Deep belief network, (b) restricted Boltzmann machines, and (c)
stacked procedure of RBMs.

4 Mathematical Problems in Engineering



Compared with the random initialization, the initial weights
of each layer will be in a better position in the parameter
space. Empirically speaking, starting from these positions,
the gradient descent is more likely to converge to a better
local extreme point because the unlabeled data has provided
prior information about the patterns contained in a large
amount of input data.

3.2. Improved Bayesian Fusion (IBF). Bayesian fusion is a
linear fusion method with dynamic weights based on con-
ditional probability and Bayesian rules to combine the
prediction results of several subpredictors to form a better
one. -e principle of Bayesian fusion is to assign dynamic
weights to different subpredictors based on their historical
performance. In this paper, we intend to present an im-
proved Bayesian fusion approach for developing the
framework of ensemble learning.

Let pn
t denote the weight of the subpredictor n at time

interval t. Traditional Bayesian fusion (TBF) [57] assumes
that the weight pn

t depends on the prediction errors of all
past intervals rather than only depending on the prediction
error at prediction interval t. -is assumption makes the
TBF very insensitive to the fluctuating accuracy of com-
ponent predictors, such that if the dominant subpredictorm
is no longer the most accurate, it will spend many intervals
reducing the dominant status of that subpredictor, thus
imposing a negative impact on the predictions of the TBF.
-erefore, Wang et al. [46] proposed a new Bayesian fusion
(BF) to select a few traffic flows that may have comparatively
higher relevance to the traffic flow at the prediction interval
and neglect less relevant traffic flows when calculating the
weights of the subpredictors.

According to Wang’s research, the weight of the sub-
predictor n at the time interval t can be calculated as follows:

p
n
t �

1/
���
2π

√
σn( 􏼁

R(P) exp 􏽐i∈P − yi − y
n
i( 􏼁/σn􏼂 􏼃

2
􏼐 􏼑

􏽐
N
m�1 1/

���
2π

√
σm( 􏼁

R(P) exp 􏽐i∈P yi − y
m
i( 􏼁/σm( 􏼁

, (12)

where N is the number of the subpredictors; P is the set that
contains the past time intervals such as P� {t− 1, t− 2, . . .,
t− λ} and λ is the length of the fusion step; R(P) is the

dimension of the set P and R(P)� λ; i
y is the measured traffic

flow data at the time interval i. yn
i is the predicted value of the

traffic flow data of the subpredictor n at the time interval i; σn

is the deviation of en
t which represents the prediction error of

the subpredictor n at the time interval t, and en
t � yi − yn

i .
-e prediction result of the BF is written as the linear

combination of the output of all the subpredictors, which is
formulated as

􏽢yt+1 � 􏽘
N

m�1
p

m
t y

m
t+1, (13)

where 􏽢yt+1 is the predicted value of the BF at time interval
t+ 1; pm

t is the weight of the subpredictor m at the time
interval t+ 1; ym

t+1 is the predicted value of the subpredictor
m at the time interval t+ 1.

However, the BF still has a drawback in the linear
combination equation, because the sum of the weights of all
subpredictors is equal to one. Hence, if the prediction results
of the subpredictors are all larger or less than the actual
value, the fusion result will still be larger or less than the
actual value, and the prediction error of the BF could be even
larger than those of some of the subpredictors. To deal with
the problem above, this study replaces equation (13) with a
nonlinear equation illustrated as follows:

􏽢yt+1 � τt 􏽘

N

m�1
p

m
t y

m
t+1, (14)

where τt is an error compensation factor, which can be
calculated in the following equation:

τt �

1 +
􏽐

N
m�1 􏽐

t
i�t−λ e

m
i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏽐
N
m�1 􏽐

t
i�t−λ y

m
i

, 􏽘
t

i�t−λ
e

m
i ≥ 0,∀m ∈ [1, N],

1, otherwise,

1 −
􏽐

N
m�1 􏽐

t
i�t−λ e

m
i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏽐
N
m�1 􏽐

t
i�t−λ y

m
i

, 􏽘

t

i�t−λ
e

m
i ≤ 0,∀m ∈ [1, N],

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

Input: Training dataset X� {x1, x2, . . ., xm}
Output: An RBM with the trained parameters

(1) for all sample x in X do
(2) v(0)⟵ x
(3) compute p(h

(0)
j � 1|v(0)) � σ(bj + 􏽐jwijhj)

(4) select a sample from the hidden layer
(5) h(0) ∼ p(h(0)|v(0))

(6) reconstruct the visible layer p(v
(0)
i � 1|h(0)) � σ(ai + 􏽐iwijvi)

(7) select a sample from the visible layer
(8) compute p(h

(1)
j � 1|v(1)) � σ(bj + 􏽐jwijhj)

(9) update: w � w + η[[p(h(0) � 1|v(0))v(0)T − p(h(1) � 1|v(1))v(1)T]]

a � a + η(v(0) − v(1))

b � b + η[p(h(0) � 1|v(0)) − p(h(1) � 1|v(1))]

(10) end

ALGORITHM 1: Training an RBM (a, b, w).
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where em
i is the prediction error of the subpredictorm at the

time interval i and em
i � yi − ym

i .
From equation (15), it is illustrated that τt is related to the

length of the fusion step λ, the prediction error of the
subpredictors em

i , and the prediction value of the sub-
predictors ym

i . Based on Wang’s study [46], an improved
Bayesian fusion (IBF) can be proposed by combining
equations (12), (14) and (15).

3.3. Proposed Hybrid Method (ELM-IBF). Ensemble learn-
ing, which is also referred to as the multiclassifier system,
completes the learning task by building and combining
multiple learning devices [58]. Common ensemble learning
strategies include AdaBoost [59], bagging [60], and
stacking.

-e Bagging method is a representative parallel en-
semble learning algorithm that mainly uses the Bootstrap
sampling approach to create subdatasets. During the
training process, a Bagging method takes a certain number
of samples from the original samples, and repeated sampling
is allowed during training process. In this case, some samples
in the original sample may be selected as training set samples
many times, while other samples may not appear in the
process of Bootstrap sampling. -rough this process, the
diversity of individual learners can be increased, and the
overall generalization ability of the entire model can be
improved.

For a given training dataset D� {(x(i), y(i)), i� 1, 2, . . ., l},
the number of iterations is ts � 1, 2, . . ., Ts and the specific
process of a general Bagging method for regression problem
is shown as follows:

Step 1: Use Bootstrap to sample subdatasets D(ts) with
the size of k from the dataset D for Ts times. Ts training
subdatasets with the size of k can be obtained.
Step 2: Each training set is learned with a subpredictor,
and the corresponding subpredictor ht can be obtained.
Step 3: Use each trained subpredictor
hts

, ts � 1, 2, . . . , Ts to make a prediction, and use the
averaging method to calculate the final output.

In this paper, an improved hybrid model (ELM-IBF)
based on an improved ensemble learning method and DBNs
is established to make short-term traffic flow predictions for
the expressways. Figure 2 illustrates the structure of the
ELM-IBF model. After applying the bagging method as its
basic framework, the proposed method introduces DBNs as
the subpredictors of the bagging framework, which are
trained based on the different subdatasets and used to
forecast multistep-ahead traffic flow, respectively. -en, the
IBFmethod, which can dynamically adjust the weights of the
subpredictors and adopt the error compensation factor
changing the sum of the weights at each prediction time
interval, is employed as the combination strategy of the
bagging framework. Finally, the prediction results of the
ELM-IBF model can be calculated by equation (14). Note
that the implementation process of the ELM-IBF model can
be divided into two phases, including Phase I for training the
DBN predictors and Phase II for forecasting the traffic flow.

Algorithm 2 reveals a pseudocode of implementing an ELM-
IBFmodel. As indicated in the tables, the main parameters in
the ELM-IBF model are the number of the DBNs Ts and the
lengths of the fusion steps λ, which are determined before
the fusion. At each time step, Ts DBNs are assigned ap-
propriate weights automatically according to their perfor-
mance according to the previous λ time steps. -e
hyperparameters in the DBNs can be set according to
previous studies [13].

-e input and output of the ELM-IBF model can be
written as follows:

xin � xt−tb+1, xt−tb+2, . . . , xt􏽨 􏽩
T
, (16)

xout � 􏽢xt+1, 􏽢xt+2, . . . , 􏽢xt+ta
􏽨 􏽩

T
, (17)

where tb is the look-back time step of the input vectors; ta is
the look-ahead prediction time step; xt is the measured traffic
flow data (volume or speed) at time interval t; 􏽢xt+1is the
predicted traffic flow data (volume or speed) at time interval
t+ 1.

4. Experiment

4.1. Data Description. To demonstrate the performance of
the proposed model, we conduct numerical experiments
based on the real-world traffic flow data containing volume
and speed data. As revealed in Figure 3, the ground-truth
data for measuring varied model performance were cap-
tured by multiple remote traffic microwave sensors
(RTMS) located at six road sections on the 2nd ring roads of
Beijing.-ese six road sections include the East of Jishuitan
Bridge (P1), the North of Fuxingmen Bridge (P2), the West
of You’anmen Bridge (P3), the West of Zuo’anmen Bridge
(P4), the South of Dongbianmen Bridge (P5), and the
North of Chaoyangmen Bridge (P6). -e length of the
sampling time is two weeks (from January 6, 2014 to
January 19, 2014) with a 2 min sampling time interval (720
time intervals in a day). -us, the total number of records
captured by each detector is 10080 with less than 5%
missing and error rate. In addition, the whole dataset is
divided into two parts including the first nine days for
training (from Jan 6, 2014, to Jan 14, 2014) and the next five
days for testing (from Jan. 15, 2014, to Jan. 19, 2014).
Besides, the raw traffic flow data may contain little noises or
abnormal data, and the threshold value method was
employed to remove the outliers. To ensure a more reliable
result, missing and erroneous records were properly
remedied by using the temporally adjacent records. For the
purpose of examining the performance of the models,
especially the stability and robustness with the limited
dataset, volume and speed data are both treated as the
prediction target during the experiments.

-e experimental platform of our research is a Lenovo
computer with Intel(R) Core(TM) i7-8700 CPU@3.20 GHz
and 8GB memory. Python 3.6 with TensorFlow 1.0, Scikit-
learn, and Keras 0.9 is exploited to implement the relevant
models.
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Figure 2: -e structure of the ELM-IBF model method.

Phase I: Training the DBNs
Input: Training dataset D;
Sampling size k;
Number of DBN predictor Ts
Output: DBNs with the trained parameters

(1) for i� 1 to Ts do
(2) Sample the subdataset D(i) with size k from the dataset D by Bootstrap
(3) Train the DBN hi with subdataset D(i) by Algorithm 1 and BP Algorithm
(4) end

Phase II: Forecasting the traffic flow with trained DBNs
Input: Testing dataset D′;
Length of the testing dataset D′: l;
Trained DBNs;
Length of the fusion step: λ
Output: Predicted values of the ELM-IBF method

(5) for i� 1 to Ts do
(6) Predict the traffic flow data with testing dataset D′ by using DBN hi
(7) end
(8) for i from 1 to l do
(9) Calculate the weights of DBNs hj, j� 1, 2, . . ., Ts at each prediction time interval by using equation (12)
(10) end
(11) Calculate the predicted values with equations (14) and (15) in IBF

ALGORITHM 2: Implementing an ELM-IBF model.
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4.2. Baseline Methods. To examine the practicability and
effectiveness of the proposed method, ARIMA, radial basis
function neural network (RBFNN), BPNN, LSTM, and DBN
are chosen as the single benchmark models. Also, the en-
semble learning methods ELM-AM and ELM-BF are
employed as the hybrid benchmarks.

For the ARIMA, the Akaike information criterion (AIC)
is considered to determine the best order (p, d, q) of the
model, and the parameters p, d, q are chosen as 2, 1, and 1,
respectively. For the RBFNN and BPNN, they both have an
input layer with 20 neurons, a hidden layer with 50 neurons,
and an output layer with one neuron. -e sigmoid function
and Gaussian radial basis function are employed as the
activation function in the BPNN and the RBFNN, respec-
tively. Meanwhile, the LSTM, which has the superior ca-
pability for time-series prediction with long temporal
dependency, is composed of one input layer, one LSTM layer
with memory blocks, and one output layer. -e number of
the hidden units in the LSTM layer is 200, and the largest
time lag is 20. -e relevant parameters of the benchmark
DBN model are shown in Table 1, and the parameters of the
DBNs in the ELM-IBF method are set the same as those of
the DBN-based benchmark models. It is necessary to notice
that the ELM-AM and the ELM-BF share the same DBN
structures with the ELM-IBFmodel. To be specific, the ELM-
AM and ELM-BF use the average method combination
strategy and the Bayesian fusion strategy, respectively.

Note that the look-back time step tb of the NN-based
models (RBFNN, BPNN, LSTM, DBN, ELM-AM, ELM-BF,
and ELM-IBF) is set as 20, and it means that the traffic
condition during the previous 40min will be considered in
the input of the NN-based models. In the proposed method,
the sampling size k is set as the 2/3 size of the entire training
dataset. -e number of DBN predictors Ts is set as 3, and the

fusion step λ in IBF is set as 1. -e prediction target of this
study is the traffic volume and speed in the testing dataset.

4.3. Evaluation Indicators. To evaluate the performance of
the proposed model and benchmark models, mean absolute
error (MAE), root mean square error (RMSE), mean ab-
solute percentage error (MAPE), and -eil inequality co-
efficient (TIC) are selected as the evaluation index.

MAE �
1
s

􏽘

s

i�1
􏽢yi − yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (18)

RMSE �

������������

1
s

􏽘

s

i�1
􏽢yi − yi( 􏼁

2

􏽶
􏽴

, (19)

P1

P2

P3 P4

P5

P6

P1

P2

P3 P4

P5

P6

Figure 3: -e observation of the experimental road sections on 2nd Ring Road of Beijing.

Table 1: Relevant parameters of the DBNs.

Description Value
Number of nodes in the input layer 20
Number of RBM layers 2
Number of nodes in the first hidden layer 400
Number of nodes in the second hidden layer 400
Iteration number of each RBM 200
Activation function (RBM) Sigm
Learning rate (RBM) 1
Batch size (RBM) 100
Number of epochs (RBM) 200
Batch size (NN) 100
Number of epochs (NN) 500
Activation function (NN) Sigm
Learning rate (NN) 1
Input Zero Masked Fraction (RBM) 0.5
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× 100%, (20)
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2
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i�1 yi( 􏼁

2
􏽱 , (21)

where 􏽢yi is the predicted value, and yi is the observed value. s
is the length of the prediction time interval.

Note that MAE, RMSE, and MAPE are utilized to
represent the accuracy of the prediction models. TIC reflects
the fitting degree between the predicted value and the ob-
served value. -e numerical distribution of TIC is between 0
and 1. -e smaller the TIC is, the higher the fitting degree is.

5. Results and Discussion

5.1. Overall Prediction Performance of Different Methods.
With the look-ahead prediction time step ta of the ELM-IBF
model set as 1, Tables 2 and 3 compare the overall prediction
performance of the ELM-IBF model and its benchmarks in
terms of traffic volume and traffic speed prediction by taking
the prediction results of the separated six scenarios as a
whole.

Generally, the ELM-IBF model demonstrates better
predictive performance compared with the single models. In
terms of speed prediction illustrated in Table 2, the ELM-IBF
model outperforms the DBN, which is the second-best single
model with improvements of 28.98%, 30.66%, and 28.66%
on MAE, MAPE, and RMSE, respectively. In terms of the
volume prediction revealed in Table 3, the MAE and MAPE
of the ELM-IBF model are 33.69% and 36.17% less than
those of the DBN. Among the hybrid models, the perfor-
mance advantages of the ELM-IBF model are more obvious
under the condition that the ELM-AM, the ELM-BF, and the
ELM-IBF share the same component predictors. Meanwhile,
the robustness of the ELM-IBF model can be guaranteed
since its ensemble learning structure can keep the model
robust, and its improved Bayesian fusion mechanism can
benefit the accuracy.

It can be observed that the prediction performance of the
ELM-AM and the ELM-BF is slightly worse than that of their
component model DBN. -e possible reasons can be sum-
marized as follows: (1) the training data of DBN in the en-
semble learning frameworks are not large enough, which leads
to insufficient training. (2)-e fusion algorithms, such as AM
and BF, are not efficient enough to assign larger weights to the
DBN predictors, which illustrate better performance.

Figure 4 gives the overall prediction errors produced by
these different methods in several road sections. As indicated
in Figure 4, the proposed ELM-IBF method reveals better
predictive performance than other models in terms of the
maximum, minimum, and median of errors. Besides, it can
be found that the ELM-IBF model has a smaller distance
between Q1 and Q3, and the error distribution of the ELM-
IBF model is more concentrated than that of other models.

Figure 5 illustrates the prediction results of the ELM-IBF
model on a weekday (2014.1.16) and a weekend (2014.1.18)

on the road section P1. In Figure 5, the ELM-IBF model is
capable of capturing the tendency and volatility of the traffic
flow for the entire day on the weekdays and the weekends.
Even at the morning peak (8:00–11:00) and the evening peak
(16:00–20:00) of the weekday when the traffic speeds fluc-
tuate sharply, the proposed method is still able to fit the
fierce fluctuation of traffic speeds and make a precise single-
step-ahead prediction.

Figures 6 and 7 display the correlation between actual
values and predicted values from six models including one
statistical method (ARIMA), two traditional nonparametric
methods (BPNN and RBFNN), two deep learning methods
(DBN and LSTM), and the proposed ELM-IBF model in five
days. r represents the Pearson correlation coefficient to
evaluate the relevance between observed and predicted
values. -e two figures indicate the prediction results in the
task of speed prediction and volume prediction, respectively.
From the observation of two figures, we can gain several
conclusions as follows: the ELM-IBF model produces better
prediction results with r compared with other models. In
addition, the deep learning models outperform the statistical
model and traditional nonparametric methods, because
DBN and LSTM have complex structures and strong
learning abilities. Furthermore, the ELM-IBF model works
best among these models, because it combines the advan-
tages of deep learning methods and ensemble learning
theory.

5.2. Performance of the ELM-IBF Model for Multistep-Ahead
Prediction. Table 4 lists the prediction performance of the
ELM-IBF model for multistep-ahead prediction tasks. It can
be observed that theMAEs, MAPEs, RMSEs, and TICs of the
proposed method do not rise obviously as the look-ahead

Table 2: Comparison of the speed prediction performance of
different methods.

Methods MAE MAPE (%) RMSE TIC
ARIMA 4.75 8.86 6.82 0.0522
RBFNN 5.30 10.57 7.68 0.0588
BPNN 4.79 9.47 6.80 0.0520
DBN 4.52 8.84 6.49 0.0496
LSTM 4.55 8.89 6.50 0.0496
ELM-AM 4.66 8.96 6.64 0.0512
ELM-BF 4.59 8.80 6.52 0.0503
ELM-IBF 3.21 6.13 4.63 0.0354

Table 3: Comparison of the volume prediction performance of
different methods.

Methods MAE MAPE (%) RMSE TIC
ARIMA 10.50 11.40 14.15 0.0543
RBFNN 12.36 14.02 16.64 0.0639
BPNN 10.75 12.93 14.30 0.0549
DBN 10.42 11.39 14.05 0.0540
LSTM 10.49 11.21 14.10 0.0546
ELM-AM 10.90 12.34 14.59 0.0558
ELM-BF 10.78 12.23 14.41 0.0551
ELM-IBF 6.91 7.27 9.21 0.0359
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Figure 4: Comparison of the prediction errors for each method at the road section P1. (a) Speed prediction (MAE). (b) Speed prediction
(MAPE). (c) Volume prediction (MAE). (d) Volume prediction (MAPE).
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Figure 5: Continued.
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time step increases. To be specific, the MAEs, MAPEs, and
RMSEs fluctuate slightly with the look-ahead time step ta
increasing from 1 to 10, which corresponds to the prediction
horizons ranging from 2min to 20min. It is interesting to
find that the ELM-IBF model becomes more accurate when
it is utilized to forecast traffic volume with a longer look-
ahead time step. Meanwhile, the TICs rise slowly with ta
becoming larger, and it means that the fitting degree of the

ELM-IBF model drops a little, although its prediction ac-
curacy is relatively stable.

Overall, the proposed method exhibits the advantages of
makingmultistep-ahead traffic flow prediction. In the case of
both traffic speed and volume prediction, the accuracy and
stability of the results predicted by the ELM-IBF model with
10 look-ahead time steps are even higher than those pre-
dicted by its benchmark models (e.g., ARIMA, BPNN,
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Figure 5: Prediction results of the ELM-IBF model at the road section P1. (a) Speed prediction on a weekday (2014.1.16). (b) Volume
prediction on a weekday (2014.1.16). (c) Speed prediction on a weekend (2014.1.18). (d) Volume prediction on a weekend (2014.1.18).
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Figure 6: -e correlation distribution of predicted results for the traffic speed. (a) ARIMA; (b) RBFNN; (c) BPNN; (d) DBN; (e) LSTM;
(f) ELM-IBF.
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RBFNN, LSTM, DBN, ELM-AM, and ELM-BF) with only
one look-ahead time step shown in Tables 2 and 3.

5.3. Sensitivity Analysis. In this section, we conduct the
sensitivity analysis and parameter tuning on the ELM-IBF
model, where two kinds of critical parameters are investi-
gated, including the length of the fusion step and the number
of subpredictors.

-e length of the fusion step λ in the IBF is an important
parameter that affects the prediction performance of the
proposed method. Figure 8 indicates the relationship be-
tween the prediction performance of the ELM-IBF model
and the length of the fusion step under the condition that the

look-ahead prediction time step ta is chosen to be 1, and the
number of DBN predictors is set as 3. Figure 8 reveals that
the prediction accuracy and fitting degree decline gradually
with the length of the fusion step λ increasing from 1 to 10.
-is may be caused by the phenomenon that the error
compensation factor τt in equation (15) becomes closer to 1
when prediction errors during more previous time intervals
are taken into the fusion process with the fusion step be-
coming larger. -erefore, the recommended length of the
fusion step is λ� 1, which can ensure the accuracy and
robustness of the ELM-IBF method without costing too
much fusion time.

Figure 9 indicates the relationship between the predic-
tion performance of the model and the number of DBN
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Figure 7: -e correlation distribution of predicted results for the traffic volume. (a) ARIMA; (b) RBFNN; (c) BPNN; (d) DBN; (e) LSTM;
(f) ELM-IBF.

Table 4: Prediction results of the ELM-IBF model with longer prediction horizon.

Look-ahead time step
Speed prediction Volume prediction

MAE MAPE (%) RMSE TIC MAE MAPE (%) RMSE TIC
1 3.21 6.13 4.63 0.0354 6.91 7.27 9.21 0.0359
2 3.28 6.89 5.43 0.0424 6.95 7.47 9.30 0.0364
3 3.45 7.81 6.53 0.0515 7.00 7.58 9.50 0.0371
4 3.84 9.29 7.82 0.0616 7.03 7.66 9.63 0.0378
5 3.89 9.49 7.86 0.0621 7.13 7.75 9.70 0.0384
6 4.08 10.06 8.31 0.0653 7.22 7.93 9.88 0.0388
7 4.24 10.71 8.68 0.0682 7.36 8.22 10.18 0.0399
8 4.37 11.28 9.06 0.0712 7.43 8.32 10.28 0.0402
9 4.49 11.58 9.23 0.0724 7.77 8.79 10.85 0.0423
10 4.54 11.66 9.29 0.0729 7.97 9.02 10.90 0.0455

12 Mathematical Problems in Engineering



15

10

5

0

M
A

E

1 2 3 4 5 6 7 8 9 10
Length of the fusion step λ

Speed prediction
Volume prediction

(a)

0.1

0.05

0.15

0

M
A

PE

1 2 3 4 5 6 7 8 9 10
Length of the fusion step λ

Speed prediction
Volume prediction

(b)

15

20

10

5

RM
SE

1 2 3 4 5 6 7 8 9 10
Length of the fusion step λ

Speed prediction
Volume prediction

(c)

0.08

0.06

0.04

0.02

0
1 2 3 4 5 6 7 8 9 10

Length of the fusion step λ

Speed prediction
Volume prediction

TI
C

(d)

Figure 8: -e influence of the length of the fusion steps on the ELM-IBF model. (a) MAE; (b) MAPE; (c) RMSE; (d) TIC.
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subpredictors when making a single-step-ahead prediction
with the fusion time step set as 1. -e number of DBN
subpredictors is tuned from 1 to 10 with a step of 1. As il-
lustrated in Figure 9, theMAEs, RMSEs, andMAPEs decrease
more than 30% with the number of DBN subpredictors in-
creasing from 1 to 5 in the task of forecasting both traffic
speed and volume prediction, implying that the appropriate
increase of the subpredictors can significantly improve the
accuracy and fitting degree of the ensemble model. In ad-
dition, when the number of DBN subpredictors is larger than
5, the performance of the ELM-IBFmodel remains stable, and
it demonstrates that the excessive increase of the number of
subpredictors has little effect on the prediction performance
probably due to the similarity of the homogeneous models.
-erefore, the suitable number of the DBNs is around 3∼5
considering the prediction accuracy and the time con-
sumption of training the deep learning models.

Note that though the ELM-IBF model exhibits its ca-
pability of predicting traffic flow parameters accurately and
stably, the shortcoming of the ELM-IBF may lie in its ef-
ficiency since the ensemble learning framework needs to
combine several DBNs, and the aggregate time of training
several DBNs is much larger than one DBN model. How-
ever, with the rapid development of data processing, data
storage, and parallel computing technology, the training
time consumption of the deep learning model may be
shortened dramatically, and the sensitivity analysis of the
above two critical parameters is also beneficial to reduce the
time consumption and keep the accuracy of the ELM-IBF
model.

6. Conclusions

Short-term traffic flow prediction is a significant problem in
ITS. -is paper establishes a novel hybrid model (ELM-IBF)
for short-term traffic flow forecasting based on the com-
bination of ensemble learning theory and deep belief net-
work. At first, the Bagging algorithm is employed to divide
the training dataset into several subdatasets and determine
the entire structure of the ELM-IBF model. -en, the deep
belief networks are introduced as the subpredictors trained

by the divided datasets. Afterward, an improved Bayesian
fusion approach is proposed to integrate the prediction
results of DBNsmore efficiently. Finally, the measured traffic
flow data collected on the six road sections of expressways in
Beijing are utilized to examine the accuracy and robustness
of the proposed method.

-emain conclusions of this study can be summarized as
follows: (1) the overall prediction results demonstrate that
the ELM-IBF model outperforms the single model-based
benchmarks (e.g., ARIMA, BPNN, RBFNN, LSTM, and
DBN) in terms of accuracy and fitting degree when making
single-step-ahead traffic volume and speed prediction. (2)
Compared with other ensemble learning methods (e.g.,
ELM-AM and ELM-BF) with the same subpredictors, the
ELM-IBF has lower MAE, MAPE, RMSE, and TIC. It proves
that the IBF combination methods can improve the per-
formance of the bagging framework significantly and work
better than AM and BF methods. (3) -e ELM-IBF model
illustrates a stable and accurate prediction performance in
the task of forecasting multistep-ahead traffic flow. (4)
Sensibility analysis confirms that the length of the fusion step
and the number of the subpredictors both affect the pre-
dictive performance of the ELM-IBF model, and the rec-
ommended values of the two aforementioned parameters are
1 and 5, respectively.

In the future, we will concentrate on utilizing multi-
source traffic flow data to enrich the input variables of the
proposed method to further improve model performance.
Larger amounts of data including more abnormal traffic
conditions are necessary to be used for training and ex-
amining the proposed models. Furthermore, this paper only
applies homogeneous component predictors in the ELM-
IBF model, while heterogeneous component predictors
could be added and investigated to enhance the general-
ization ability of the ensemble learning model.

Data Availability
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