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Dynamic inverse- (DI-) based control technique has been utilized in many applications and proven to be effective. Recently, the
inverse dynamic control (IDC), an expansion to the classical DI technique, has been trending with implementation in many areas.
It has been proved that IDC is capable of overcoming some limitations in DI-based techniques, particularly in cancellation of
useful nonlinearities. (is paper extends the implementation of IDC on the positional and speed control of the linear servo cart
system. Simulation results further proves that IDC is an effective and robust controller evidently when comparing it with the
proportional velocity and lead compensator controller.

1. Introduction

(e linear servo cart system is used widely in industries
especially in manufacturing and automation process. Some
of the application example includes pick-and-place system,
tool-feeding system in machining process, and indexing of
operations like drilling, stamping, and embossing. It became
a popular choice in the linear-positioning tool, thanks to the
combination of strengths from its actuator and ease of
positioning control from servo units. Due to that, various
types of controllers have been proposed to improve the
positional and speed control of servo systems including the
ever-present PID controller and its variances. Although
broadly accepted in industries, the traditional PID con-
trollers are known for their poor performance under the
influence of disturbances. To tackle this issue, the authors in
[1] introduce two-degree-of-freedom PID positional con-
troller where the position reference responses and distur-
bance responses were allowed to be designed independently,
while the authors in [2] combine the application of position
interpolation method and modified incremental PID. (ere
were also some other recent works implementing the PID

controller on positioning control of servo motors with
different tuning methods [3, 4].

(e functionality of the linear servo cart system involves
movement of the mechanical component which can lead to
friction resulting in the introduction of highly nonlinear
disturbance to the control output. One of the popular
methods used to deal with nonlinearity is sliding mode
controllers (SMCs). However, a conventional SMC with
switching control action suffers a major drawback in the
form of chattering. To overcome this weakness, a boundary
layer around the switching surface [5] and an integral SMC
with switching gains [6] were proposed.

Another common way of dealing with nonlinearities is
by employing nonlinear dynamic inversion- (NDI-) based
technique as shown in [7].(is type of controller is designed
by enforcing a stable linear error dynamics intuitively. It is
widely applied especially in aerospace fields such as un-
manned combat aerial vehicles (UCAV) [8], pitch axis
autopilots [9], and quadrotors [10]. Despite the effectiveness
shown by NDI in the presence of disturbances and noises,
there is a big limitation in the implementation of such
controllers as they are only applicable to the system where
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the model is known accurately. (is can be solved using
incremental NDI (INDI), an expansion to the classical NDI
which only requires a small part of a model to be known.
Some implementation of INDI can be found in [11–13].

Inverse dynamic control (IDC) is another expansion of
the NDI family where control by inversion of dynamic
inverse constraints is achieved through the Moore–Penrose
generalized inverse [14]. (is technique overcomes many
limitations of the classical NDI especially in the cancellation
of useful nonlinearities, robustness concerns, and compu-
tational challenges arising with square matrix inversion [15].
IDC has been implemented in many applications [16–18].
(is paper extends the design and implementation of IDC
on the positional and speed control of the linear servo cart
system. In this paper, a generalized inverse control technique
is demonstrated for Quanser’s linear servo cart system in
response to other recent advances in modern control
techniques, such as adaptive fuzzy control, fractional order
control, and inverse control [19–24]. Moreover, by using
sensor technology and new materials to optimize concrete
maintenance, we can collect necessary data to justify the
proposed control law [25–27].

(e remainder of this article is organized as follows: (e
mathematical model of the linear servo cart system is
established in Section 2, while Section 3 outlines the IDC
design for linear positional control of the linear servo cart
system.(e technique used to avoid singularity is explained in
Section 4, and simulation setup and the results are discussed
in Section 5 before this paper is concluded in Section 6.

2. Mathematical Model of the Linear Servo
Cart System

Figure 1 shows the linear servo cart system. (e relationship
between the force applied to the cart by the DC motor and
resultant motion of the cart can be derived by applying
Newton’s second law of motion and D’Alembert’s principle
to the system, as in

M _vc(t) + Faj(t) � Fc(t) − Beqvc(t), (1)

where M, vc, and Beq are the mass of the cart, linear velocity
of the cart, and the equivalent viscous damping coefficient,
respectively, and Faj is the armature inertial force due to
motor rotation acting on the cart which can be defined as

Faj �
ηgKgτaj

rmp
, (2)

where ηg is the efficiency of the gear box, Kg is the gear ratio,
and τaj is the armature inertial torque which can be
expressed as

τaj � Jm _ωm(t). (3)

(e angular velocity of the motor shaft can be translated
into linear velocity of the cart with the following equation:

ωm(t) �
Kgvc(t)

rmp
. (4)

By substituting (3) and (4), (2) can be rewritten as

Faj �
ηgK

2
gJm _vc(t)

rmp
2 . (5)

With that, the force in (1) can now be expressed in terms
of the linear velocity of the cart and by considering both the
electrical parts and the equation of motion:

Jeq _vc(t) + Beqvc(t) � AmVm(t), (6)

where

Beq �
ηgk

2
gηmktkm + Bcr

2
mpRm

r
2
mpRm

, (7)

and the actuator gain is

Am �
ηgkgηmkt

rmpRm

. (8)

Note that ηm is the efficiency of the motor, Kg, kt, and km

are the gear ratio, motor torque constant, and back-emf
constant, respectively, and rmp and Rm is the radius of the
motor pinion and the motor resistance.

Finally, the equivalent inertia term can be expressed as

Jeq � Mc +
ηeqk

2
gJm

r
2
mp

. (9)

3. Design of IDC Control

(e dynamics of the linear servo cart system can be
expressed by rearranging (6) as follows:

_vc � F + GVm, (10)

where F � −J−1
eqBeqvc and G � J−1

eqAm. It is known that the
velocity of the cart can be obtained by taking the derivative
of its linear position:

_xc � vc. (11)

In order to track the linear position of the cart precisely,
an error function in the form of squared error function of the
actual position, xc from its desired position, xcd is defined as

ξxc
� n1 xc − xcd( 􏼁

2
� n1e

2
xc

. (12)

Similarly, the error function for linear velocity can be
written as

ξvc
� n2 vc − vcd( 􏼁

2
� n2e

2
vc

. (13)

(e constraint linear time-varying ordinary differential
equation is established based on the deviation functions.
Note that the differential orders are corresponding to the
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relative degree of the deviation functions.(e equation takes
the following form:

€ξxc
+ c1(t) _ξxc

+ c2(t)ξxc
� 0, (14)

_ξvc
+ c3(t)ξvc

� 0, (15)

where c1, c2, and c3 are coefficients that allow the constraint
differential equations as in (14) and (15) to achieve uniform
asymptotic stability. (erefore, they must be selected
carefully as suggested in [15].

(e following can be obtained by taking the derivative
from (12) and (13):

_ξxc
� 2n1exc

_exc
, (16)

_ξvc
� 2n2evc

_evc
+ 2n2evc

F + GVm − _vcd( 􏼁. (17)

Taking further derivative on (16) yields
€ξxc

� 2n1 _e
2
xc

+ 2n1exc
F + GVm − _vcd( 􏼁. (18)

By putting the time derivatives of the equations in the
constraint dynamics as in (14) and (15), equations (16)–(18)
can be transformed into their algebraic form shown as
follows:

AVm � B, (19)

where

A �
A1

A2
􏼢 􏼣 �

2n1exc
G

2n2evc
G

⎡⎣ ⎤⎦, (20)

B �
B1

B2
􏼢 􏼣 �

2n1exc
_vcd − 2n1 _e

2
xc

− 2n1exc
F − 2c1n1exc

_exc
− c2n1e

2
xc

2n2evc
_vcd − 2n2evc

F − c3n2e
2
vc

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦. (21)

Due to the underdetermined nature of the algebraic
expression, (19) can have an infinite number of solutions.
Using generalized inversion by the Greville method, solu-
tions in the equation are parameterized as

Vm � A+
B + pλ, (22)

where A+ is the MPGI of A given as

A+
�

AT

AT
A′

. (23)

Note that λ is the null control and P is the null pro-
jection, which can be expressed as

P � 1 − A+A. (24)

Note that A has a dimension of 2 × 1, in which the P in
(24) will be zero when the property of pseudo-inverse
A+A � 1. (is will make the null control not useful, and
therefore, we will not consider it in our control design.

4. IDC Singularity Avoidance

(e main trouble with generalized inversion techniques is
the singularity which is caused by discontinuities in the
MPGI matrix function and eventually leads to the structure
to go unbounded. Such happens when the inverted matrix
tends to switch its rank.

To overcome this problem, we introduce a dynamic
scaling factor which is expanded within MPGI. We denote
the scaling factor as u and can be defined as

_u(t) � −u(t) +
c

exc
(t)

2
+ evc

(t)
2, u(0)> 0 . (25)

(e homogeneous part of equation (25) is asymptotically
stable, while c in the forcing phrase is a positive real-valued
constant.(e dynamically scaled generalized inverse (DSGI)
is formulated as

A∗ �
AT

ATA + u(t)􏼐 􏼑
. (26)

(us, we can update the IDC-based control input voltage
by the following expression:

V
∗
m � A∗B. (27)

Finally, we can update (10) by the following expression:

_vc � F + G A∗B( 􏼁. (28)

5. Numerical Simulations

To evaluate performances of the designed controller, we
performed numerical simulations on a linear servo cart
model having parameters as given in Table 1. (e proposed
IDC was having dynamic gains of n1 � 2 and n2 � 0.01 and
tracking gains of c1 � 50, c2 � 21000, and c3 � 0.1.

5.1. Linear Position Tracking. In the first simulation, we set
the desired motion profile to move the cart 100mm from its
initial position and back continuously in a period of 5
seconds with acceleration and deceleration time set at 15%
from the period as shown in Figure 2. By using the nominal
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linear servo cart system parameters, we showed that IDC is
able to track the position of the cart according to the profile
set accurately as suggested by the actual motion profile in
Figure 2 and the squared error norm in Figure 3.

5.2. Robust Analysis for Sinusoidal Position Tracking. We
evaluate robustness of our designed controller by setting a
0.2Hz sinusoidal input reference as shown in Figure 4
having 150mm of maximum amplitude with the numeri-
cal value of the linear servo cart system changed to 20% from
the one in the previous simulation. For comparison, the
system was also simulated using a proportional-velocity

controller with proportional gains Kp � 274.6159 and ve-
locity gains Kv � 5.5272. It was obvious from the squared
error norm in Figure 5 that IDC outperforms the PV
controller in linear position tracking of the linear servo cart
system. (is simulation results also suggest that IDC is a
robust controller.

5.3. Linear Speed Tracking. To evaluate performance of IDC
on tracking the speed of the linear servo cart system, we
simulate the scenario by giving a 0.25Hz square wave set
point with an amplitude of 0.2m/s. Another simulation is
done using a lead compensator (LC) for comparison, and the

Cart

Steel shaft

Cart position
Cart motor pinion

DC motor

Rack

Figure 1: Linear servo cart system.

Table 1: Parameters of the linear servo cart system.

Parameters Values Units
Motor armature resistance, Rm 2.6 Ω
Rotor moment of inertia, Jm 3.9 × 10−7 Kgm2

Motor current torque constant, kt 7.7 × 10−3 Nm/A
Motor efficiency, ηm 1 —
Motor back-emf constant, km 7.7 × 10−3 V/(rad/s)
Gear ratio, kg 3.71 —
Gear efficiency, ηg 1 —
Mass of the cart, M 0.57 kg
Motor pinion radius, rmp 6.4 mm
Equivalent viscous damping coefficient, Beq 4.3 —
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Figure 2: Position tracking of the linear servo cart system using IDC.
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results are as shown in Figure 6. We can see from the
simulation results that IDC has the ability to track the linear
servo cart’s speed smoothly without overshooting. (e

squared error norm measured from both controllers also
suggests that the IDC perform slightly better than the LC
controller as shown in Figure 7.
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Figure 3: Squared error norm for position tracking.
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Figure 4: Sinusoidal position tracking of the linear servo cart system.
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Figure 5: Squared error norm for sinusoidal position tracking.
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Figure 6: Speed tracking of the linear servo cart system.
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6. Conclusions

An IDC has been successfully designed to control linear po-
sition and speed of a linear servo cart system. (e controller
design has been discussed in detail, particularly in setting up
dynamic constraints in the form of constraint differential
equations. We have shown that the control law of stable linear
position and speed tracking is achieved by inverting the
constraint differential equations using MPGI. (rough simu-
lations, we have demonstrated that the IDC is an effective and
robust controller with performance of tracking linear position
and speed of the linear servo cart system, surpassing the
performance of PV and LC controllers.
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