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Zero-shot learning (ZSL) is a powerful and promising learning paradigm for classifying instances that have not been seen in
training. Although graph convolutional networks (GCNs) have recently shown great potential for the ZSL tasks, these models
cannot adjust the constant connection weights between the nodes in knowledge graph and the neighbor nodes contribute equally
to classify the central node. In this study, we apply an attention mechanism to adjust the connection weights adaptively to learn
more important information for classifying unseen target nodes. First, we propose an attention graph convolutional network for
zero-shot learning (AGCNZ) by integrating the attention mechanism and GCN directly. -en, in order to prevent the dilution of
knowledge from distant nodes, we apply the dense graph propagation (DGP) model for the ZSL tasks and propose an attention
dense graph propagation model for zero-shot learning (ADGPZ). Finally, we propose a modified loss function with a relaxation
factor to further improve the performance of the learned classifier. Experimental results under different pre-training settings
verified the effectiveness of the proposed attention-based models for ZSL.

1. Introduction

Image classification can be viewed as the task to correctly
classify the given image into its class.-ere aremany supervised
models that have achieved significant success in image classi-
fication, such as K-nearest neighbors (KNN) [1] and support
vector machines (SVM) [2]. Especially in recent years, deep
learning techniques have made great progress in image clas-
sification. However, most existing recognition models require a
large amount of training samples and can only classify instances
belonging to the classes covered by the training data. -ere are
about 30,000 classes that humans can recognize [3], where the
workload is quite huge to label all classes and the classes may be
growing over time. In contrast, humans are very good at
recognizing the unseen classes via reasoning. For example, if we
have seen cats and spotted dogs, we will look for an animal
called a leopard, which is a cat with spots. Hence, it is important
for the agents to acquire the ability of recognizing the unseen
classes and zero-shot learning (ZSL) is proposed accordingly.

Zero-shot learning [4] is an inevitable trend of target
classification, whose general idea is to transfer the knowl-
edge contained in the training instances to the task of testing
instance classification. As no labeled instances belonging to
the unseen classes are available, some auxiliary information
is necessary to be involved. -e auxiliary information in-
volved by the existing ZSL methods is usually some semantic
information [5]. Semantic attributes and semantic word
vector are two typical semantic information, while we have
to learn the mapping from semantic space to visual space
when using the two semantic information, which will make
it difficult for the model to learn semantic vector repre-
sentation from structured information.

As a non-Euclidean space data structure, knowledge
graph cannot be processed well by the traditional con-
volutional neural network (CNN). In order to solve this
problem, the graph convolutional network (GCN) [6] was
proposed with local graph operators. In a GCN, the influ-
ence of neighbor nodes on the central node is the same, and
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the GCN was affected by Laplacian oversmoothing, which
makes the GCN a shallow network. In order to solve the
problem that the central node can accept the distant node,
Michael Kampffmeyer proposed the DGP model [7].
However, there is no good explanation for the contribution
of neighbor nodes to the central node. Hence, we apply the
attention mechanism to the GCN for enhancing the inter-
pretability of the model and the model can well evaluate the
contribution of different neighbor nodes to the central node.

Zero-shot learning aims at recognizing unseen classes
by training. -erefore, the classes of testing dataset cannot
be included in the training dataset. In recent studies, many
models have adopted a pretrained model [8], and we
consider whether the pretrained model affects the model.
It is clear that when the model is being trained, more
samples will help the model test to get better results. In
zero-shot learning, we only consider the relationship
between the training set and testing set, but do not con-
sider the influence of pre-training. In many models, there
are small-scale datasets, such as Animals with Attributes 2
(AWA2) [9] used for the zero-shot learning task, and the
model will use the pretrained model of the ImageNet
dataset. However, the classes of the ImageNet training set
are often more than that of the training classes of AWA2
and other datasets. When we only know a small-scale
dataset for zero-shot learning, the task should only be
carried out in the training classes of the small-scale dataset.
-erefore, we divide the zero-shot learning into three
settings, that is, small-scale setting, classifier setting, and
large-scale setting, according to the pre-training methods,
and integrate the results of the three settings to make the
evaluation of the task model more accurate for more
practical tasks.

In this article, we proposed the attention-based graph
convolutional network for zero-shot learning with pre-training
to improve the performance of the task for unseen classes and
improve the generalization ability of the model. For the unseen
classes, we use the relationship of the classes to establish a
connection between the seen classes and the unseen classes.We
use knowledge graph as a prior knowledge of agents, which
allows the agents to learn to reason. -en, we use the GCN to
process the knowledge graphs and train the classifier for the
unseen classes. -e main contributions of this article are
threefold:

We integrate the attention mechanism and graph
convolutional network for zero-shot learning. Specif-
ically, we propose two attention-based models,
AGCNZ and ADGPZ, to learn adaptive connection
weights of the nodes to achieve more accurate
predictions.
We present a modified loss function with a relaxation
factor, which has a positive effect on the performance.
We have a complete discussion of the setting of ZSL
and propose three settings to certify the effect of
pre-training for zero-shot learning. Extensive experi-
ments show that the proposed attention-based models
can effectively improve the performance of zero-shot
learning.

-e rest of the article is organized as follows. Section 2
introduces the related work of ZSL. In Section 3, the pro-
posed approach is presented with the overall framework
followed by specific algorithms. In Section 4, the three
pre-training settings are introduced and the experimental
results demonstrate the success of the proposed algorithms.
Conclusions are given in Section 5.

2. Preliminaries

Zero-shot learning (ZSL) was first proposed in 2009
[10, 11] and has become one of the important fields of
machine learning for that ZSL can identify specific unseen
classes and meets the future demand for target recognition.
In ZSL, seen classes and unseen classes are connected in a
high-dimensional semantic representation space, which
includes the attribute space, word vector space, and text
description space. -e attribute space is firstly introduced
in ZSL, where the essential idea is to train a classifier with
each attribute of the input, use the trained classifier to
predict attributes, and pay more attention to the corre-
lation between learning attributes during the training
stage. For example, DAP [12] first estimates the posterior
value of each attribute in the image and predicts the class
label by learning the probabilistic attribute classifier. Later,
for the limitations of the DAP model, Akata et al. [13]
introduced a function to measure the compatibility be-
tween the image and the label embedding, whose pa-
rameters are learned from a set of training samples to
ensure that the correct classes rank higher than the in-
correct classes in a given image. Li et al. [5] also pay at-
tention to attribute ZSL, and an end-to-end network that
automatically discovers discriminative regions by a zoom
network and learns the discriminative semantics of user-
defined and latent attributes in augmented space is
represented.

As for the word vector space, Socher et al. [14] can
recognize objects in an image using an unsupervised large
text corpus without training data. Frome et al. [8] presented
a new deep visual semantic embedding model that uses
labeled image data and semantic information extracted from
unlabeled text to identify visual objects. Inheriting the
DeViSE method, Norouzi et al. [15] proposed a simple
method to construct an image embedding system from the
existing n-way image classifier as a result of a semantic word
embedding model containing n class tags. In the text de-
scription [16–18], text description is used to classify unseen
classes, and Kodirov et al. [19] proposed to solve the drift of
the zero-shot field by using a learning semantic autoencoder
(SAE). Wang et al. [20] introduced the GCN in their re-
search, using structured information and complex rela-
tionships to generate classifiers for unseen classes.
Knowledge graph is a semantic network that represents the
relationship between entities, and each class is represented as
an entity on the knowledge graph, for example, as shown in
Figure 1. In the zero-shot learning semantic representation
space, attribute descriptions require attribute annotations
and text descriptions require sentence descriptions, and a
large number of manual annotations are required.-erefore,
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the cost is relatively high and the advantages shown by the
word vector space are considerably attractive.

-e graph convolution network (GCN) has become a
hot spot of research in recent years. In the GCN, the
number of neighbors around the central node is different
in non-Euclidean data. Hence, many scholars have begun
to study how to deal with graph data structures. A GCN is
a kind of the network structure models that can process
graph structure data, and the most important part is its
convolutional kernel. Like a CNN, the GCN also aims to
be able to define convolutions on graphs. -erefore, the
essence of the graph convolution is to find a learning
convolution kernel suitable for graphs. Bruna et al. [21]
first proposed spectral convolutional neural networks.
Spectral domain graph convolutional networks imple-
ment convolution operations on topological graphs
through the theory of graphs, but the method has dis-
advantages such as computational complexity and non-
local connection. In addition, Defferrard et al. [22]
proposed to fit the convolution kernel using Chebyshev
polynomials to reduce computational complexity. Based
on the previous works, Kipf and Welling [6] proposed a
simple and effective layered propagation method via first-
order approximation, which became the pioneering work
of the graph convolutional network (GCN). Because of the
advantage of the GCN to process the graph data, GCN is
gradually applied to a wide range of research fields
[23–25] and there are also some studies on graphs, such as
Deepwalk [26] and Node2vec [27].

3. Problem Statement

In this section, a schematic framework of the proposed
approach is shown in Figure 2 ied loss funct with specific
methods of introducing the attention mechanism to
different GCN models for the zero-shot learning. In
addition, a modifion is also proposed between the pre-
dicted classifier and the ground-truth classifier. -en, the
algorithms are presented in detail as shown in Algo-
rithms 1 and 2.

3.1. Attention-Based Graph Convolution Network for Zero-
Shot Learning. Here given a graph G, each node on the G

represents a category. -e adjacency matrix is expressed as
A ∈ RN×N, which is used to characterize the relation be-
tween categories. -e propagation formula between GCN
layers is defined as

H
(m+1)

� σ 􏽥D
−1/2 􏽥A 􏽥D

−1/2
H

(m)
W

(m)
􏼒 􏼓, (1)

where I is the identify matrix, 􏽥A � A + I, degree matrix is
expressed as 􏽥Dii � 􏽐j

􏽥Aij, σ(·) is the nonlinear activation
function, and W ∈ RD×F is the weight matrix with F-feature
map in the output layer. H(m) ∈ RN×D is the matrix of
activations in mth layer, where N is the number of nodes and
D is the feature dimension [6].

In the above formula, each vertex not only has its own
neighbor, but also has a self-connection. Laplace smooths the
new feature of the vertex, that is, the weighted average of the
vertex itself and its neighbors. Because the vertices of the same
cluster tend to be more tightly connected, this makes the
classification task easier. In GCNs, although using a convo-
lution is already very effective, two-layer GCNs are much
better than one-layer GCNs. Because smoothing on the first
level of activation makes vertex characteristics in the same
categorymore similar and classification tasks easier. However,
as the number of GCN layers increases, the performance will
decrease.-e reason is that additional Laplace smoothing will
be performed as the number of layers increases. Conse-
quently, we can generally use a 2-layer network in this article.

3.1.1. Attention Mechanism. As an important concept in
neural networks, the attention mechanism was first used in
machine translation [28]. -ere are many applications in
various fields, such as computer vision [29–31] and natural
language processing [28, 32, 33]. Attention mechanism,
whether in computer vision or natural language processing,
can be classified as giving more attention to the target areas
that need to be focused on. In this article, when solving ZSL
tasks with knowledge graphs, we represent each category as

Felidae Acinonyx jubatus Cat

Felidae

Acinonyx
jubatus Cat

Figure 1: A knowledge graph can be established to represent the relationships between different species.
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each node on the knowledge graph and then use GCN to
process the knowledge graph. -erefore, it is very crucial
whether the result of GCN processing knowledge graphs can
fully express the real situation of each neighbor node’s in-
fluence on the central node. -erefore, we use cosine dis-
tance to calculate the attention of the node [34] and to
capture the degree of association between node j and node i,
as shown in Figure 3, and then use the improved GCN to
process the knowledge graph for ZSL.

3.1.2. Loss Function for Predicted Classifier. A node repre-
sents a class in the knowledge graph, and then, we use a word
embedding vector for each node. -e word embedding
vectors of all nodes in the knowledge graph are the input to
the graph convolutional network. -ere are N nodes,
M-dimensional vectors, input X ∈ RN×M, y is the ground-
truth for seen classes, and the loss function [7] can be
represented as

L �
1
2N

􏽘

N

i�1
GCNi(X) − yi( 􏼁

2
. (2)

-e optimized loss function is

L �
1
2N

􏽘

N

i�1
GCNi(X) − yi + δ( 􏼁

2
, (3)

where GCNi(X) represents the output of the graph con-
volutional network model and δ is the parameter to adjust
the error between the ground-truth and the predicted
classifier. We hope to calculate the error of the difference δ at
least, where the optimized loss function utilizes a relaxation
factor to enhance the generalization ability of the model. We
use the ground-truth to train the predicted classifier that can
classify unseen classes, add a relaxation factor to enhance the
generalization ability of the model, and do not have to be
exactly the same as the ground-truth.

3.1.3. Pre-Training Zero-Shot Learning Setting. We propose
three pre-training settings for zero-shot learning to better
evaluate the model. -e architecture of the proposed three
pre-training settings is given in Figure 4. We use the

ResNet50 [35] model, which has been pretrained on the
large-scale dataset. Based on this, for the classifier pa-
rameters of the pretrained model, large-scale setting
continues to use the classifier parameters of the large-scale
dataset, and classifier setting is that we use the classifier
parameters of trained by the training set of the small-scale
dataset used to test. Small-scale setting is that the training
set of the small-scale dataset is trained with the ResNet50
model to get the pretrained model.

3.2. Attention Graph Convolutional Network for Zero-Shot
Learning (AGCNZ). In zero-shot learning tasks, we con-
sider the relationship between the training set (seen
classes) Dtr and the testing dataset (unseen classes) Dte in
dataset D and Dte ∩Dtr � ∅. -e ground-truth is trained
on the training set to get the classifier parameters. -e
knowledge graph is established by using the classes of
ImageNet and AWA2, which reflects the relationship
between each class.

In the GCN, we introduce the attention mechanism and
use cosine distance to calculate the similarity between nodes.
-e propagation formula [34] of the first layer is given as
follows:

H
(1)

� σ XW
(0)

􏼐 􏼑, (4)

where H(0) � X. -e introduced parameter θ(l) ∈ R in the
layer is guided by the attention mechanism, and the rule [34]
of AGCNZ propagation for the attention layer is

H
(l+1)

� Att
(l)

H
(l)

, (5)

where Att(l) is the propagationmatrix and l denotes the layer
index. -e output row vector [34] of node i is recorded as

Att
(l)
i � softmax θ(l) cos H

(l)
i , H

(l)
j􏼐 􏼑􏽨 􏽩

j∈E(i)∪ i{ }
􏼒 􏼓, (6)

where E(i) is the neighborhood of node i. In order to ensure
that the sum of each row of the propagation matrix is 1, the
softmax function is used so that the influence of nodes
adjacent to the central node is 1. In summary, the attention
[34] between node i and node j is

LionClassify

Predictive classifier

Graph

Image
ResidualNetwork

Attention-based Graph Convolutional Network

New classifier

Loss

Figure 2: Structure of attention-based graph convolutional network for zero-shot learning. Each node in the knowledge graph is rep-
resented by the word embedding vector of each category. -e word embedding vector is output by the GloVe model trained in Wikipedia.
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Att
(l)
ij �

1
C

􏼒 􏼓e
θ(l) cos H

(l)

i
,H

(l)

j􏼐 􏼑
, (7)

where C � 􏽐j∈E(i)∪ i{ }e
θ(l) cos(H

(l)

i
,H

(l)

j
). It calculates the simi-

larity between node i and node j, and pays more attention to
nodes with more similar central nodes. -e AGCNZ algo-
rithm is shown in Algorithm 1. Meanwhile, the architecture
of the attention is shown in Figure 5.

3.3. Attention Dense Graph Propagation for Zero-Shot
Learning (ADGPZ). GCN is limited to shallow layer; that is,
in the experiment, only two-layer GCN is the best, so the
central node cannot receive the information from the remote
node. To solve this problem, Kampffmeyer et al. [7] pro-
posed a dense graph propagation (DGP) model to solve this
problem and achieved good performances. However, we
hope that we can better balance the weight relationship
between different neighbors. Because not all edges represent
the same degree of association, it is desired to focus on those
nodes that are more related to the center node. At this time,

the attention mechanism tends to choose those neighbor
nodes with the same class as the central node, giving stronger
association strength.

Instead of directly processing the knowledge graph with
GCN, the DGP model transforms the knowledge graph into
a graph in which ancestors and descendants are directly
connected with the central node, and then, the dense graph
is processed by the GCN. For a given graph, the DGP layer to
layer propagation mode [7] is

H � σ D
−1
a Aaσ D

−1
d A dXW d􏼐 􏼑Wa􏼐 􏼑, (8)

where Aa ∈ RN×N and A d ∈ RN×N are used to denote the
adjacency matrix directly connected to ancestors and de-
scendants, respectively. -e ADGPZ propagation rule of the
attention layer is

H
lden+1( ) � Atta AttdH

lden( )􏼒 􏼓, (9)

where lden represents the layer index; Attd(ij) represents the
attention of descendants:

Input: Adjacency matrix A, Number of nodes N, Input node features X, Pretrained ResNet50 model classifier parameters Pp

Output: Classifier parameter Pag, Predicted categories of Unseen classes Ytep.
(1) Initializes: the graph convolutional network parameters.
(2) while not converged do
(3) Update by equation (4);
(4) for Attention-layer do
(5) Update by equation (7);
(6) Update by equation (5);
(7) end for
(8) Loss� LossFunction (Pag, Pp), LossFunction update by equation (2) or (3);
(9) Loss.backward;
(10) end while
(11) return Pag
(12) Ytep is obtained by using Pag as classifier parameter of classification Xte.

ALGORITHM 1: AGCNZ algorithm.

Input: Graph G, Number of nodes N, Input node characteristics X, Pretrained ResNet50 model classifier parameters Pp

Output: Classifier parameter Pagd, Predicted categories of Unseen classes Ytep.
(1) Initializes: the graph convolutional network parameters.
(2) Change the Graph G to a dense Graph GD, get the adjacency matrix A.
(3) while not converged do
(4) Update by equation (4);
(5) for Attention-layer do
(6) Update by equation (10);
(7) Update by equation (9);
(8) end for
(9) Loss� LossFunction (Pagd, Pp), Loss Function update by equation (2) or (3);
(10) Loss.backward;
(11) end while
(12) return Pagd
(13) Ytep is obtained by using Pagd as classifier parameter of classification Xte.

ALGORITHM 2: ADGPZ algorithm.
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Attd(ij) �
1
C

􏼒 􏼓e
θd cos Hd(i) ,Hd(j)( 􏼁

, (10)

where C � 􏽐j∈E(i)∪ i{ }e
θd cos(Hd(i) ,Hd(j)). In the same way, we can

get Atta(ij) � (1/C)eθa cos(Ha(i) ,Ha(j)) and C � 􏽐j∈E(i)∪ i{ }

eθa cos(Ha(i) ,Ha(j)).
-e introduction of attention into the model provides

some explanation information. At the same time, the ac-
quired propagation matrix Attd(ij) can also reflect the at-
tention of center node i to neighbor node j in the process of
feature aggregation, which represents the influence of node j

on node i in the classification process. -e ADGPZ algo-
rithm is shown in Algorithm 2, and the architecture of the
attention is shown in Figure 6.

4. Experiment

4.1. Datasets. We carried out several groups of experiments
on both of large-scale and small-scale datasets. ImageNet
dataset [36] contains 140 million images, which are divided
into more than 20 000 classes (synsets), including 1000

training sets. We used 2-hops for the test, with 1549 classes.
Animals with Attributes 2 (AWA2) [9] contains 50 kinds of
animal species, of which 40 species are training sets and 10
species are test sets.-e training set contains 29 409 pictures,
and the test set contains 7913 pictures. Attribute Pascal and
Yahoo (aPY) [9] are 32 classes, 20 classes from Pascal are
used as training, and 12 classes are from Yahoo as test.
Experimental settings are guaranteed that the ImageNet
dataset training set does not contain unseen classes of the
testing set and that the classes of the dataset are in the
knowledge graph. -ree classes from ImageNet and AWA2
are added as a supplement for the unavailable data in the
split aPY testing set.

4.2. Experimental Settings. -e knowledge graph of the
relationship between classes is established by using the
ImageNet dataset and AWA2 dataset class names and
WordNet. -e GloVe [37] text model trained with the
Wikipedia dataset represents that each class represents word
embedding vectors. In the experiment, we only use a half of
the graph without attributes and reconcile the words by

Small-scale setting

Layer
parameters

ResNet

ResNet

Trai
n

Trai
n

Sm
all

-sc
ale

 data
set

s

Larg
e-s

cal
e d

ata
set

s

Large-scale setting
ZSL Model Pre-training

Classifier
is used to get new predicted

classifier

Classifier
is used to get new predicted

classifier

Layer
parameters

Classifier setting

Trai
n

ge

Trai
n

cal
e

ets

Figure 4: -e architecture of the proposed three pre-Training settings for zero-shot learning.

Layer l

Hi
(l)

Hj
(l) Hk

(l)

Hi
(l+1)

Hj
(l+1) Hk

(l+1)

Attention

= atentioni + attentionj + attentionk

Layer l+1

Figure 3: Attention mechanism is used to make the central node obtain different contribution degrees from neighbor nodes.
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WordNet. Our models are trained and tested in PyTorch
using an Adam optimizer [38], the learning rate of 1 × 10− 3

and the weight decay of 5 × 10− 4. -e nonlinear activation
function uses the ReLU function with dropout set to 0.5. We
use a two-layer model in the GCN model. In the ADGPZ
model and DGPmodel, we only consider the different effects
within 5-hop neighbors on the central node. To better
compare and discuss the effect of attention mechanism and
pre-training for ZSL in the experiment, the fine-tuning
method in this article [7] is not used in the full-text
experiment.

4.3. Results on Small-Scale Datasets. -e results of all the
comparisons are shown in Table 1 and show that our
models outperform the baseline and other methods, where
the annotation ⋆ means from [9] and † means from [7].
OL and ML stands for original loss and modified loss.
-ese methods use pretrained models that have been
trained on the ImageNet datasets. It can be seen from the
table that the classification effect is significantly improved
in ImageNet setting with the attention mechanism. Our
model AGDPZl outperforms the best model DGP by 4.8%
on the AWA2 dataset, and AGCNZl shows better per-
formance on the aPY dataset.

To demonstrate the effectiveness of our methods, we
compare the results in different settings. In Tables 2 and 3, all
is small-scale setting and classifier is classifier setting on the
small-scale dataset. We compared the accuracy of the four
methods in the classification of unseen classes under the
small-scale setting and classifier setting. No matter AGCNZl

or AGDPZl, the classification accuracy of 50.7%, 37.0%,

55.6%, and 39.6% under the two settings is better than that of
baseline (43.9% and 36.5%) on the AWA2 dataset. Similar
performances can be found for the aPY testing set. -e
classification accuracy of AGCNZl and AGDPZl( 66.8%,
50.8%, 65.6% and 48.3%) is better than that of the baseline
method. Among them, the best model is 6.8% better than
baseline method.

4.3.1. Effect of Pre-Training on the Model. We further design
comparative experiments to demonstrate the effect of
pre-training for ZSL. Compared with Tables 1–3, we can find
that the accuracy of the ADGPZl model can go up to 82.1%
on the AWA2 dataset and around 91% on the aPY dataset.
Among the three settings, the classification accuracy of the
large-scale setting is the best one. -e results show that the
effect of classifier parameters trained with small-scale
datasets is not as good as that of pre-training with the large-
scale datasets. -e model parameters pretrained with
ImageNet training set are actually equivalent to training with
1000 classes. Although the 1000 classes do not contain the
same class in the test set, it is clear that the effect on the
classification of unseen classes is affected. To more intui-
tively compare the influence of pre-training on the model,
we show it in Figure 7. It is clear that under the three
pre-training settings, no matter on the AWA2 dataset or aPY
dataset, the classification accuracy of classifier setting is
higher than that of small-scale setting, and the classification
accuracy of large-scale setting is higher than that of classifier
setting. In contrast, different pre-training settings will
produce different results for ZSL, which further indicates
that pre-training has an impact on the model. In future, it is

Graph

Propagation layer Propagation layerAttention

Graph

Figure 5: Part attention-based graph convolutional network of AGCNZ. -e knowledge graph composed of word embedding vectors of
each category is used as input through the propagation layer and then output to get the predicted classifier after passing through the
attention layer.

Graph Graph
Propagation layer Propagation layerAttention

Dense
Graph

Figure 6: Part attention-based graph convolutional network of ADGPZ. Before AGCNZ processes the knowledge graph, ADGPZ has to
densify the knowledge graph, that is, connect the ancestors and descendants of each central node of the knowledge graph directly with the
central node and then use them as input.
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necessary to consider different pre-training settings in the
evaluation of model competence.

4.3.2. Effect of Modified Loss Function on the Model. In
Table 1, when theDGPmodel used themodified loss function,
its classification accuracy is improved by nearly 4%. In all the
tables, it is clear that the model with the optimized loss
function is better than the original loss function. Without the
modified loss function, the accuracy of ADGPZ classification
was improved by 3% over the baseline method. -e attention
mechanism introduced in the baseline method is significantly
better than the baseline method as exhibited in Tables 2 and 3.
It is proved that when calculating the errors of the predicted
classifier and the ground-truth, the modified loss function by
adding a parameter to adjust the errors between them to
obtain the classifier of the unseen classes can better improve
the performance of classification of the unseen classes. -e
accuracy is also shown in Figure 8. It is clear that on the two
datasets, the classification accuracy of the modified loss
function of eachmethod is higher than that of the original loss
function. -e experimental results show that the relaxation
factor by introducing the loss function can make the model
better classify in ZSL.

4.4. Discussion on Large-Scale Datasets. We further test the
proposed models on large-scale datasets, and the experi-
mental results of AGCNZl and ADGPZl were not as good as
those of GCN and DGP, and the experimental results of
ADGPZl were the worst, shown in Table 4.-e reason is that
in a large-scale datasets, the number of classes of the training
set is more than that of the small-scale dataset. For AGDPZ,
its model is the most complex, and the number of added
parameters will be more than that of the small-scale datasets;
thus, the model overfits. In Table 4, using the model of the
modified loss function improves the accuracy of unseen
classes, where ‡, ∗, and ≀ indicate the results from
[20, 39, 40].

4.5. Further Analysis. We further analyzed which pa-
rameters were more sensitive to changes using the
modified loss function model. We implemented experi-
ments with the learning rate and the weight decay, where
the implementation details are kept consistent except for
the more important parameters. -e experimental results
show that the model is more sensitive to changes in the
learning rate. Meanwhile, the ADGPZ model is more
sensitive on parameter variation, which is due to the more

Table 1: Top-1 accuracy of different models on the AWA2 and aPY datasets in large-scale setting using the ImageNet dataset.

Method AWA2 (%) aPY (%)

OL

Con SE† 44.5 26.4
DeViSE † 59.7 37.0
SSE† 61.0 35.0

SE-GZSL⋆ 69.2 —
GCNZ⋆ 70.7 —
DGP⋆ 77.3 91. 2(ours)
AGCNZ 79.0 91.2
ADGPZ 80.3 90.4

ML
DGPl 81.7 91.5

AGCNZl 78.3 91.4
ADGPZl 82.1 90.6

Table 2: Top-1 accuracy of different models on the AWA2 test set.

Method
Accuracy (%)

Original loss Modified loss
Classifier All Classifier All

GCN 38.7 34.8 40.2 35.7
DGP 43.9 36.5 52.2 38.0
AGCNZ 49.7 36.0 50.7 37.0
ADGPZ 50.2 38.4 55.6 39.6

Table 3: Top-1 accuracy of different models on the aPY test set. To observe the effect of pre-training classes for ZSL, the ImageNet samples of
aPY 20 training classes were used as the training set.

Method
Accuracy (%)

Original loss Modified loss
Classifier All Classifier All

GCN 48.0 43.6 64.8 45.4
DGP 60.0 43.5 64.2 47.5
AGCNZ 66.1 49.9 66.8 50.8
ADGPZ 62.3 45.9 65.6 48.3
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Figure 7: Continued.
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Figure 7: Comparison of classification accuracy of the small-scale setting, classifier setting, and large-scale setting. Among them, (a)–(d) are
the results on the aPY dataset, and (e)–(h) are the results on the AWA2 dataset.

0

ae
ro

pl
an

e

ba
g

bu
ild

in
g

bo
at

ce
nt

au
r

do
nk

ey

m
on

ke
y

go
at

m
ug

st
at

ue

w
ol

f

sh
ee

p

20

40

60

80

100

Ac
cu

ra
cy

Class

GCN Small-scale setting
GCN Classifer setting
Original loss

GCN Small-scale setting
GCN Classifer setting
Modified loss

(a)

0

ae
ro

pl
an

e

ba
g

bu
ild

in
g

bo
at

ce
nt

au
r

do
nk

ey

m
on

ke
y

go
at

m
ug

st
at

ue

w
ol

f

sh
ee

p

20

40

60

80

100

Ac
cu

ra
cy

Class

DGP Small-scale setting
DGP Classifer setting
Original loss

DGP Small-scale setting
DGP Classifer setting
Modified loss

(b)

0

ae
ro

pl
an

e

ba
g

bu
ild

in
g

bo
at

ce
nt

au
r

do
nk

ey

m
on

ke
y

go
at

m
ug

st
at

ue

w
ol

f

sh
ee

p

20

40

60

80

100

Ac
cu

ra
cy

Class

AGCNZ Small-scale setting
AGCNZ Classifer setting
Original loss

AGCNZ Small-scale setting
AGCNZ Classifer setting
Modified loss

(c)

0

ae
ro

pl
an

e

ba
g

bu
ild

in
g

bo
at

ce
nt

au
r

do
nk

ey

m
on

ke
y

go
at

m
ug

st
at

ue

w
ol

f

sh
ee

p

20

40

60

80

100

Ac
cu

ra
cy

Class

ADGPZ Small-scale setting
ADGPZ Classifer setting
Original loss

ADGPZ Small-scale setting
ADGPZ Classifer setting
Modified loss

(d)

Figure 8: Continued.

10 Mathematical Problems in Engineering



0

sh
ee

p

do
lp

hi
n

ba
t

se
al

bl
ue

 w
ha

le ra
t

ho
rs

e

w
al

ru
s

gi
ra

ffe

bo
bc

at

20

40

60

80

100
Ac

cu
ra

cy

Class

GCN Small-scale setting
GCN Classifer setting
Original loss

GCN Small-scale setting
GCN Classifer setting
Modified loss

(e)

0

sh
ee

p

do
lp

hi
n

ba
t

se
al

bl
ue

 w
ha

le ra
t

ho
rs

e

w
al

ru
s

gi
ra

ffe

bo
bc

at

20

40

60

80

100

Ac
cu

ra
cy

Class

DGP Small-scale setting
DGP Classifer setting
Original loss

DGP Small-scale setting
DGP Classifer setting
Modified loss

(f )

0

sh
ee

p

do
lp

hi
n

ba
t

se
al

bl
ue

 w
ha

le ra
t

ho
rs

e

w
al

ru
s

gi
ra

ffe

bo
bc

at

20

40

60

80

100

Ac
cu

ra
cy

Class

AGCNZ Small-scale setting
AGCNZ Classifer setting
Original loss

AGCNZ Small-scale setting
AGCNZ Classifer setting
Modified loss

(g)

0

sh
ee

p

do
lp

hi
n

ba
t

se
al

bl
ue

 w
ha

le ra
t

ho
rs

e

w
al

ru
s

gi
ra

ffe

bo
bc

at

20

40

60

80

100
Ac

cu
ra

cy

Class

ADGPZ Small-scale setting
ADGPZ Classifer setting
Original loss

ADGPZ Small-scale setting
ADGPZ Classifer setting
Modified loss

(h)

Figure 8: Comparison of classification accuracy of two loss functions. Among them, (a)–8(d) are the results on the aPY dataset, and (e)–(h)
are the results on the AWA2 dataset.

Table 4: Top-k accuracy of different models on the ImageNet dataset.

Method
Accuracy (%)

1 2 5 10 20

OL

Con SE‡ 8.3 12.9 21.8 30.9 41.7
SYNC‡ 10.5 17.7 28.6 40.1 52.0
EXEM∗ 12.5 19.5 32.3 43.7 55.2
GCNZ≀ 19.8 33.3 53.2 65.4 74.6

GCN(ours) 24.5 37.8 57.1 69.7 79.5
DGP(ours) 24.6 37.4 56.7 69.5 79.1
AGCNZ 22.2 34.8 53.6 66.5 77.5
ADGPZ 20.0 31.6 49.4 63.1 74.3

ML

GCN 24.8 38.4 57.5 69.7 79.4
DGP 24.7 38.1 57.1 69.6 79.3

AGCNZ 22.3 34.9 53.6 66.7 77.8
ADGPZ 20.2 31.7 49.3 63.2 74.8
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complex propagation of the ADGPZ attention layer than
AGCNZ.

In the experiments, we found that the effect of unseen
classes classifier obtained by using the large-scale dataset
pretrained parameters is much better than that obtained by
using the small-scale dataset training parameters. Hence, we
hold the opinion that using a large number of training
samples for the pre-training is more likely to improve the
classification of unseen classes.

In real life, we have different application scenarios for
large-scale and small-scale datasets. For small-scale datasets, it
is enough to identify and classify a specific domain; while for
large-scale datasets, it can be applied to a wide range of
scenarios. In the experiments, we found that ResNet50 model
pretrained with the large-scale dataset has 30% higher clas-
sification accuracy for unseen classes than the model trained
with the small-scale training set. It is clear that the more
classes the agent has seen in the training, the better it can
recognize for the unseen classes. More categories stored for
the training of the agents may help identify unseen classes for
later ZSL tasks in an incremental learning paradigm.

5. Conclusion

In this article, we combine the attention mechanism with
GCN, propose two models of AGCNZ and ADGPZ with a
modified loss function, and propose three pre-training
settings for the zero-shot learning. -e experimental results
demonstrate the success of the attention mechanism and the
proposed models with the modified loss function in three
pre-training settings, which is proved to be an influencing
factor for evaluating the model in ZSL. Extended experi-
ments also provide more characteristics of the proposed
approach with detailed discussion. -e emergence of the
ZSL task avoids the cost of labeling and training when new
categories are added and enables the model to have rea-
soning ability to recognize unknown categories, which
promotes the development of the image recognition. Our
future work will consider more ways to improve the loss
function, not just by introducing a relaxation factor. We will
also focus on more applications of the attention-based GCN
aiming at specific fields and algorithm improvement with
online adaptation.
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