
Research Article
Cost Benefit Analysis of Incorporating Security and Evaluation of
Its Effects on Various Phases of Agile Software Development

Sushil Kumar ,1 Avinash Kaur ,1 Ashish Jolly,2 Mohammed Baz ,3

and Omar Cheikhrouhou 4

1Department of Computer Science and Engineering, Lovely Professional University, Jalandhar, Punjab, India
2Department of Computer Science, Government PG College, Ambala Cantt, Haryana, India
3Department of Computer Engineering, College of Computer and Information Technology, Taif University, PO Box. 11099,
Taif 21994, Saudi Arabia
4CES Laboratory, National School of Engineers of Sfax, University of Sfax, Sfax 3038, Tunisia

Correspondence should be addressed to Omar Cheikhrouhou; omar.cheikhrouhou@isetsf.rnu.tn

Received 3 July 2021; Accepted 22 July 2021; Published 3 August 2021

Academic Editor: Dilbag Singh

Copyright © 2021 Sushil Kumar et al. (is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

(is article addresses the costs and benefits of integrating security into the development of applications and gives formulas for
calculating security costs and benefits. (e lack of safe application might lead to safety issues. Increasingly, there are accidents
recorded that expose security flaws in manymajor software systems. It results in significant losses for consumer companies. While
software businesses are working to produce secure software, the utility of secure software is quite limited. In contrast to the
traditional manufacturers of commodities, for example, automakers, software developers have no legal responsibility if their
products include flaws. (e market reacts adversely to software manufacturers with serious vulnerabilities in their products. (is
is because of the loss of credibility, cost of patches, and so on.(e study shows that the market is ready to penalize the supplier for
insecurity and therefore offers the chance to deliver safer technologies. To improve cost/efficiency, the vulnerabilities are
connected by accessible fixes. Significant savings are gained when security shortcomings are corrected during designing re-
quirements instead of fixing security failures after deploying software. For suppliers, updates are more expensive to produce and
publish. In addition, development costs can be reduced by plugging security issues in the early stages of development.

1. Introduction

(e major hurdles in determining the cost of building safe
software are a lack of accurate data, a lack of agreement on
measuring methods, and a relatively new focus on safety. In
addition, considerable quantification and software devel-
opment cost assessments are being undertaken. Work began
with the COCOMO (Constructive Cost Model) [1]. Security
costs are directly commensurated with software quality. In
general, improved software quality involves better design,
aggressive testing, and validation, all of which have a direct
impact on costs.(e advantages of such transactions may, in
addition, nevertheless exceed the expenses. (e costs for
greater quality are divided into “compliant” and “non-
compliant.” Compliance means the specified quality may be

achieved. To attain the proper quality, either (1) remove the
origin of defects (improved training, meetings on quality
improvement, and design reviews) or (2) remove flaws
through product evaluation and monitoring (code inspec-
tion, screening, and software calibration activities)

(e financial return assessment for improved quality is
done on the basis of the data used by the company and shows
that this ROI is promising and significant.

Sadly, any cost metric for software quality is a challenge
because these activities are often brand, technology, or or-
ganization-specific and so impossible to identify. Rather, it
has been proven that intelligent employees, the use of case
tools, and the considerably more transparency in planning,
design, and so on boost product quality [2, 3]. Greater
quality minimizes the frequency of bugs, but it does not

Hindawi
Mathematical Problems in Engineering
Volume 2021, Article ID 7837153, 10 pages
https://doi.org/10.1155/2021/7837153

mailto:omar.cheikhrouhou@isetsf.rnu.tn
https://orcid.org/0000-0002-3369-5561
https://orcid.org/0000-0003-3534-4121
https://orcid.org/0000-0003-2417-4374
https://orcid.org/0000-0002-9898-3898
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/7837153

influence the product size, does not affect the product’s
complexity, and so on. Improving the product nevertheless
can entail more or less product complexity, more or less size,
and more or less product flexibility. (erefore, the design of
the product can incur indirect costs that exceed the cost of
compliance, such as the costs of case tools [4].

To comprehend the benefits of safe software, we focus on
research that explains methodologies and frameworks to
support customer information security decision-making,
i.e., from the viewpoint of an IT-based organization that
wishes to defend itself against cyber-assault. (is research is
relevant as long as secure software development is another
option to invest in information safety [5, 6].

We adapt this approach to the nature of software de-
velopment and to evaluate investment returns for secure
software development techniques. In general, the benefits
are computed as the defined cash worth of losses saved by
safe production methods of software. (e principal dis-
crepancies in the results are how the averted losses are
measured. (e data required to evaluate damage (including
potentially safe software development strategies) with or
without security expenses were based on operational data.
Bypass rate calculation here is a crucial issue. Current se-
curity methods prohibit bypass rates from estimating the
fraction of failure (for example, invasion of privacy, assault,
virus infections, and internal theft) and thus not recorded in
administrative data on detected intrusions or losses. To
determine the average rate of that sort of loss event, the
identified rate of a particular loss incident is multiplied by
the inversion of the bypass rate. (e amount of damage
experienced by a company in relation to the loss case,
computed in dollars, is measured by administrative statistics
or other means (such as assessments by managers) inde-
pendently [4].

(e manner in which loss data are produced is another
important difference. (is literature is based on the ap-
proach to the interpretation of the importance of the market
by recognizing that the major advance of safe software
development is that software users may have a greater risk
avoidance compared with baseline [7]. (erefore, the value
of secure software includes parts equivalent to that of in-
vestment in the protection of information.

(e collection of the data will be tough. In general, al-
though the developer is a member of an organization, it is
unclear if the developer would be able tomake an assessment
of the frequency and related losses of failures in adminis-
trative records [8, 9]. Developers too cannot estimate these
amounts. In addition, developers will not be able to evaluate
the proportion of the benefits they have generated. Vendors
are likely to be more concerned about the loss of credibility
and a loss of potential revenue.

Other prospective advantages are also available. It is also
important because fewer software bugs will require fewer
fixes and improvements in security. As a result, a second
component of the benefit of safe software development is the
decrease in patching expenses. (e risk mechanism for this
may be altered while there is no established technique for
determining the averted patching cost. (e gain should
therefore be estimated as the difference between the basic

patching cost and the anticipated patching cost [10]. (e
basic cost of patches is calculated by the reported number of
vulnerabilities per thousand lines of code per year multiplied
by the detection rate, multiplied by the average vulnerability
cost of patches. (e discovery rate is needed in this scenario
because not all vulnerabilities in the system are likely to be
identified.

Consequently, our suggested method is versatile,
allowing users to quantify the value in other ways. However,
we are careful to reduce the chance of duplication.

2. Calculating Security Benefits

Most companies are now going towards agile applications.
(e financial impact of Agile encourages other businesses to
move to agile practices. CIOs today are also highly con-
cerned about the financial analysis of Agile vs. Waterfall. (e
important elements that cause many ITcompanies to get rid
of the traditional waterfall process are costs, benefits, ROI,
NPV, and ROA [11]. Some statistics from a recognized study
are presented below to highlight the advantages of agile
software development over conventional software devel-
opment [12, 13].

2.1. Costs. (e project needs to be accomplished by an
organization within the budget. As the recent product in-
troduction becomes faster than ever, projects under bud-
getary limitations are increasingly vital.

2.2. Benefits. (e agile is more effective because there are
fewer defects in the end output. As the quality of the product
becomes good with several revisions, the product is tested
for a number of times due to iterations that lead to greater
product quality.

2.3. ROI. Agile offers more benefits than the traditional
strategy at a low cost. (e higher profit-cost differential
makes ROIs (return on capital) approximately seven times
higher than the traditional solution possible.

2.4. NPV. NPV is the difference between cash influx and
cash outflow for a period of time. (is is about 200% higher
than traditional NPV.

2.5. ROA. It offers us an indication of the properties being
used efficiently. (e assets are only utilized for the project in
the typical way.(is reduces the idle period of the capital of a
project. However, the items are utilized at the optimum level
due to their adaptable character. (e increase in idle time
would put the project at risk. ROA will therefore also allow
us to understand the hazards of any undertaking. Agile
reduces the project load by almost 140% compared with
conventional techniques.

Figure 1 shows the security benefit analysis in terms of
traditional and agile software development.

To estimate the advantages of using security for a
software project [14], the following details must be collected:

2 Mathematical Problems in Engineering

(1) Size of Software. It is the number of source code lines.
(2) Bug Rate. (e number of bugs per thousand source

code lines occurred in the software (tsloc) (both for
security and nonsecurity bugs).

(3) Costs for Errors. It is the average error cost. (e bug
costs are separated into the costs of prerelease and
postrelease [15].

(4) Prerelease Component. It is the rate at which flaws are
detected and addressed prior to release, or the av-
erage cost of bug fixing prior to software release.

(5) Postrelease Component. It is the percentage of se-
curity bugs that attackers believe to discover and use
[18].

(5a) Overheads for media relations, including man-
month and any additional costs.

(5b) Legal fees, including man-month expenditures
and any additional costs incurred.

(5c) Man-month cost of customer service—the ef-
fect on future income lost because of security
infringement [16]. Revenues are anticipated to
return within one year.

(5d) Extraincidental expenses in dollars.
(5e) Extraincidental expenses in dollars—Total cost

of postrelease diagnosis and incidental costs.

(5f) (e whole postrelease patching costs for
humans including accidentals.

(5g) (e overall expense for months of software
postrelease testing and incidentals.

(5h) (e average cost of each user per person per
month.

(6) Postsecurity Component. Bug detection in prerelease
increases on average when protection and checks are
enhanced. (e advantage is measured by two al-
ternative calculations as follows:

(6a) (e approximate decrease (by age) in the overall
number of defects caused by enhanced security
standards and procedures [17] is measured. One
evaluates the projected losses prior to adding
security, whereas the other calculates the an-
ticipated expenditures after adding security.

(e prerelease components can be computed as follows:

C[pr] � B[per d] ∗F[cpr]. (1)

Here, C[pr] defines the prerelease component; B[per d]

represents the percentage of bugs discovered; and F[cpr]
shows the fixed cost during prerelease.

C[e] �
N[sb]

N[sb] + N[nsb]
⎛⎝ ⎞⎠∗ 1 − B[pd] ⎛⎝ ⎞⎠∗ B[PC] ∗T[c] ⎛⎝ ⎞⎠. (2)

Here, C[e] defines the exploit component; N[sb] repre-
sents the number of securities [18] with bugs; N[nsb] is the
number of nonsecurity bugs; B[pd] is the percentage of bugs
discovered; B[pe] represents the percentage of bugs exploited;
and T[c] is the total cost and can be computed as follows:

T[c] � T[prc] + T[lc] + T[csc] + P[l] + C[o], (3)

where T[prc] represents the total public relation cost; T[lc]
shows the total legal cost; T[csc]shows the total client support
cost; P[l] represents the profit lost; and C[o]shows the other
costs as follows:

P[l] � S[pl] ∗R[ts] ∗ P[m] . (4)

0
10
20
30
40
50
60
70
80
90

100

Cost Benefit ROI NPV ROA
Sc

al
e

Traditional so�ware development
Agile so�ware development

Figure 1: Security benefit analysis in terms of traditional and agile software development.

Mathematical Problems in Engineering 3

Here, S[pl] shows the percentage of sales lost;R[ts] represents
the revenue from total sales; and P[m] depicts the profit margin.
Component postrelease can be computed as follows:

C[por] � 1 − D[ppor] ∗T[cpor]. (5)

Here, C[por] shows the postrelease component; D[ppor]
represents the percent discovered postrelease; and T[cpor]
defines the total cost postrelease.

T[cpor] � T[dc] + T[pc] + T[ttc]. (6)

Here, T[dc] shows the total diagnostic cost; T[pc] rep-
resents the total patch cost; and T[tc] defines the total testing
cost. Expected cost presecurity [19] can be computed as
follows:

C[eps] � C[pr] + C[e] + C[por] ∗B[n] ∗ S[p]. (7)

Here, C[eps] defines the expected cost presecurity; C[pr]
shows the component prerelease; C[e] represents the com-
ponent exploit; C[por] defines the component postrelease;
B[n] represents the number of bugs; S[p] defines the size of
project; B[n] can be computed as B[s] + B[ns] where B[s]

represents the security bugs and B[ns] denotes the non-
security bug; and S[p] represents the size of the project and
can be computed using S[p] � N[loc]/1000 where N[loc] de-
fines the no of the lines of code. Prerelease constituents can
be computed as follows:

C[pr] � B[pd] ∗ 1 + B[ipd] ∗C[prf] . (8)

Here, C[pr] shows the prerelease constituent; B[pd] de-
fines the percentage of bugs discovered prerelease; B[ipd]

shows the percentage of increase in bug prereleases; and
C[prf] shows the prerelease fix cost. Exploit constituents can
be computed as follows:

C[e] �
N[sb]

N[sb] + N[nsb]
⎛⎝ ⎞⎠∗ 1 − B[pd] ∗ B[pe] ∗T[c] .

(9)

Here, C[e] shows the exploit constituent; N[sb] defines
the number of security bugs; N[nsb] demonstrates the
number of nonsecurity bugs; B[pd] shows the percentages of
bugs discovered prerelease; B[pe] shows the percentages of
bugs exploited; and T[c] shows the total cost and can be
computed as T[c] � T[prc] +T[lc] + T[csc] + P[l] + C[o], where
T[prc] shows the total public relation cost, T[lc] represents the
total legal cost, T[csc] demonstrates the total client support
cost, P[l] depicts the profit lost, C[o] represents the other
costs, and P[l] can be computed as (S[pl] ∗R[ts])∗ (P[m]), in
which S[pl] shows the percentages of sales lost, R[ts] shows the
revenue from total sales, and P[m] shows the profit margin. It
can be computed as follows:

C[epos] � C[pr] + C[e] + C[por] ∗B[n] ∗ S[p]. (10)

Here, C[epos] shows the expected cost postsecurity; C[pr]
demonstrates the prerelease component; C[e] defines the
component exploit; C[por] shows the postrelease component;

B[n] is the number of bugs; and S[p] defines the project size.
B[n] � B[s] +B[ns], where B[s] shows the security bugs and
B[ns] denotes the nonsecurity bug. S[p] � N[loc]/1000, where
S[p] shows the size of project and N[loc] represents the
number of lines of code.

Figure 2 shows the value of various cost drivers with
reference to security incorporated prerelease or postrelease.
It distinguishes between the security prerelease and security
postrelease.

3. Calculation of Security Costs

To estimate the cost of secure development, we modify the
current models to include security aspects. Recent work in
the development of secure software tries to embed security
features in proven cost estimating models [20, 21] (partic-
ularly COCOMO-II). (e main idea behind this method is
that enhancing safety is likely to increase the effort necessary
to make the product. Most conceptually, as Eα−E� Eβ, where
E signifies the amount of effort in the person month and ΔE,
supplementary effort is needed to create a secure item, Eα is
the effort required with security, and Eβ is the effort required
without security. Eα is evaluated with a certain certainty even
though COCOMO-II is widely used in computing Eβ and
customers are accustomed to these models. (e effort level E
formula (in person months) is provided as
E (estimated) � aKLOCSFxΠ (EM), where KLOC denotes
the number of 1000 code lines and SF denotes the scaling
factor. SF� 1.01 + 0.01 SUM (WI), where 5 scaling factors are
used forWI. EM is a multiplier of effort. EveryWI and EM is
classified at a very low, nominal, moderate, and very high
level. (e sensitivity of each factor is calculated and tends to
develop on the basis of the particular project setup.

3.1. Major Items of Cost.

(i) Using innovative CASE tools for the development of
secure applications.

(ii) User Training. Security requirements [22] will allow
the company to provide the developers with more
training. (e cost will increase because of the
following:

(a) (e cost of direct training, i.e., recruitment and
payment for the training of employees by others.

(b) An opportunity cost in terms of time while
employees are attending training sessions. (ey
all need to be combined.

(iii) Raising the amount of effort due to added safety,
thereby increasing the cost.

(iv) (e impact of product delivery delay is due to in-
creased surveillance.

More work could lead to a project delay; the details
required from the right project personnel are as follows:

(a) (e percentage difference is determined in code
size by adding encryption [23, 24]. Team mem-
bers, for example, will expect that improved

4 Mathematical Problems in Engineering

security protocols would increase the size of the
device by 5% in terms of the number of lines of
code.

(b) (e approximation of the software project’s com-
plexity (from very low to very high) before and after
encryption is implemented. For example, a team
member may believe that the complexity of the
software project was low prior to the implementation
of security protocols but then increased to moderate
or extreme.

(c) (e necessary amount of program documents before
and after security measures is predicted.

(d) System analyst ability is approximated prior to and
after safety implementation.

(e) An expected ability of the programming team before
and after security is implemented.

(f) A rough estimate of experience on the tools needed
to add protection to projects.

(g) (e anticipated change in production time prior to
and following the implementation of safety measures
is estimated.

(h) An approximation of the overall commitment (in
men’s months) is mandatory to construct the soft-
ware prior to implementing protection.

(i) (e total expense per worker per month is predicted,
which is the amount charged for 30 days of working
time on average.

(j) (e reliability parameters prior to and after pro-
tection are assessed. Customer-required training
costs are estimated. (e parameters considered for
calculating training costs are total on-job employees,
time spent on training by an individual employee,
and per day, the cost of training.

An estimate of the losses incurred as a result of delayed
business entry is depicted by the following equation:

C[e] � E[n] ∗C[ppm]. (11)

Here, E[n] � E[o] +E[c]; C[e] shows the effort cost; E[n]

depicts the new effort; C[ppm] defines the cost per person
month; E[o] defines the effort old; and E[c] shows the effort
change. (e effort change can be computed as follows:

E[c] � 1 + C[psi] ∧1.15 ∗
C[b]

C[a]

 ∗
D[b]

D[a]

 ∗
AC[b]

AC[a]

∗
PC[b]

PC[a]

 ∗
TO[b]

TO[a]

 ∗
T[b]

T[a]

 ∗
R[b]

R[a]

 .

(12)

Here, E[c]shows the effort change; C[psi] defines the
percentage code size increase; C[b] shows the complexity
before; C[a] represents the complexity; D[b] shows the
documentation before; D[a] defines the documentation;
AC[b] represents the analyst capability before; AC[a] defines
the analyst capability; PC[b] shows the programmer capa-
bility before; PC[a] represents the programmer capability;
TO[b] defines the tools before; TO[a] represents the tools;
T[b] defines the time before; T[a] represents the time; R[b]

defines the reliability before; and R[a] shows the reliability.
(e numerator and denominator for each of the words in

the “Effort-Change” equation are taken from the developer’s
responses to the respective standards above and assigned a
numeric value accordingly. We have selected COCOMO
because it is well established and nonproprietary [25].

Figure 3 depicts the approximate complexity of the
project before and after the security is integrated. It dis-
tinguishes between the complexity of presecurity and the
complexity of the project postsecurity cost scale.

Figure 4 shows the estimation of the expected shift in
development time before and after the introduction of se-
curity processes. It distinguishes between the development
time presecurity and development time postsecurity.

Figure 5 shows the approximation of the amount of
documentation needed beforehand and afterward the in-
tegration of security. It distinguishes between the docu-
mentation required presecurity and documentation required
postsecurity.

Figure 6 depicts the approximate system analyst capa-
bility when presecurity and postsecurity are implemented. It
compares between the analyst capability presecurity and
analyst capability postsecurity values.

Figure 7 shows the approximate programmer capability
when presecurity and postsecurity are implemented. It
compares between the programmer capability presecurity
and programmer capability postsecurity cost scales.

Figure 8 depicts an estimate of the resources needed to
add security to the given project. (e experience of team
members with these resources presecurity and postsecurity
deployment was taken into consideration.

Figure 9 shows an estimation of the reliability specifi-
cations presecurity and postsecurity incorporation.

Figure 10 demonstrates the corresponding value of each
cost driver for each option (very low to very high) whichever
is appropriate. (e cost scale is very high, high, moderate,

0

0.2

0.4

0.6

0.8

1

1.2

1.4

COP DT DR AC PC TR RR

C
os

t s
ca

le

Security prerelease
Security postrelease

Figure 2: Cost drivers with reference to security incorporated
prerelease or postrelease.

Mathematical Problems in Engineering 5

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Ve
ry

 h
ig

h

H
ig

h

M
od

er
at

e

Lo
w

Ve
ry

 lo
w

C
os

t s
ca

le

Complexity of project presecurity
Complexity of project postsecurity

Figure 3: Complexity of the project with reference to cost scale.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Ve
ry

 h
ig

h

H
ig

h

M
od

er
at

e

Lo
w

Ve
ry

 lo
w

C
os

t s
ca

le

Development time presecurity
Development time postsecurity

Figure 4: Development time of project with reference to cost scale.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Ve
ry

 h
ig

h

H
ig

h

M
od

er
at

e

Lo
w

Ve
ry

 lo
w

C
os

t s
ca

le

Documentation required presecurity
Documentation required postsecurity

Figure 5: Documentation required in software development with
reference to cost scale.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Ve
ry

 h
ig

h

H
ig

h

M
od

er
at

e

Lo
w

Ve
ry

 lo
w

C
os

t s
ca

le

Analyst capability presecurity
Analyst capability postsecurity

Figure 6: Analyst capability in software development with refer-
ence to cost scale.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Ve
ry

 h
ig

h

H
ig

h

M
od

er
at

e

Lo
w

Ve
ry

 lo
w

C
os

t s
ca

le

Programmer capability presecurity
Programmer capability postsecurity

Figure 7: Programmer capability in software development.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Ve
ry

 h
ig

h

H
ig

h

M
od

er
at

e

Lo
w

Ve
ry

 lo
w

C
os

t s
ca

le

Tools required presecurity
Tools required postsecurity

Figure 8: Tools required in software development.

6 Mathematical Problems in Engineering

low, and very low, whereas the cost drivers are COP
(complexity of project), DT (development time), DR
(documentation required), AC (analyst capability), PC
(programmer capability), TR (tools required), and RR (re-
quired reliability).

Figure 11 shows the correlation between cost and various
components affecting it, like the number of bugs which will
increase in case of security incorporated prerelease because
of improved protection and control; subsequently, the size of
the project, the effort required, and development time will be
more as security is incorporated prerelease, thereby in-
creasing the overall cost. (e maintenance of the project will
be less in case the security incorporated [26] prerelease,
thereby the maintenance cost will be less compared with
postrelease incorporation of security. (e planning and
quality of the final product will be better in case of prerelease
incorporation of security. Opportunity costs can be com-
puted as follows:

C[o] � E[it] ∗T[l] ∗
C[aec]

365
 . (13)

Here, C[o] represents the opportunity cost; E[it] defines
the number of employees in training; T[l]Is the average
length of training; and C[atc] is the average training cost. (e
cost of tools can be computed as follows:

C[to] � E[c]. (14)

Here, C[to] defines the cost of case tools/hardware or
software; E[c] shows the capital expenses for purchasing
hardware or software for a project. (e total cost can be
computed as follows:

C[t] � C[e] + C[tr] + C[o] + C[to] + C[d]. (15)

Here, C[t], C[e], C[tr], C[o], C[to], and C[d] represent the
total cost, cost of effort, cost of training, cost of opportunity,
cost of tools, and cost of delay to market.

Figure 12 shows that risk analysis is the best security
activity, coding rule is the worst, and threat modeling is the
average security activity to be incorporated during the
planning phase.

Figure 13 shows that coding rule is the best security
activity, role matrix is the worst, and vulnerability testing is
the average security activity to be incorporated during the
coding phase.

Figure 14 shows that security testing is the best security
activity, operational planning is the worst, and identifying
trust boundaries is the average security activity to be in-
corporated during the testing phase.

Figure 15 shows the best, worst, and average security
activities during the planning, coding, and testing phases of
software development. Table 1 demonstrates the best,
worst, and average security activities for the planning,
coding, and testing phases of software development. Fig-
ure 15 and Table 1 clearly indicate the various risks as-
sociated during the various phases of software
development.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

COP DT DR AC PC TR RR

C
os

t s
ca

le

Impact of various cost drivers in SDLC

Very high
High
Moderate

Low
Very low

Figure 10: Visualization of the corresponding value of each cost
driver and cost scale.

0

1

2

3

4

5

6

Bu
gs

Si
ze

Ef
fo

rt

D
ev

elo
pm

en
t

M
ai

nt
en

an
ce

Pl
an

ni
ng

Q
ua

lit
y

Sc
al

e

Presecurity
Postsecurity

Figure 11: Correlation of various components affecting the cost of
software development.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Ve
ry

 h
ig

h

H
ig

h

M
od

er
at

e

Lo
w

Ve
ry

 lo
w

C
os

t s
ca

le

Reliability required presecurity
Reliability required postsecurity

Figure 9: Impact of reliability on the cost of software development.

Mathematical Problems in Engineering 7

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

In
iti

al
 ed

uc
at

io
n…

Se
cu

rit
y…

Id
en

tif
y

tr
us

t…

Ro
le

 m
at

rix

Ri
sk

 an
al

ys
is

Th
re

at
 m

od
el

in
g

St
at

ic
 co

de
…

C
od

in
g

ru
le

s

Se
cu

rit
y

te
sti

ng

Vu
ln

er
ab

ili
ty

…

O
pe

ra
tio

na
l…

Se
cu

rit
y

ex
pe

rt
 an

al
ys

is

Security activities

Planning phase

Planning

Figure 12: Best, worst, and average security activities in the planning phase.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

In
iti

al
 ed

uc
at

io
n…

Se
cu

rit
y…

Id
en

tif
y

tr
us

t…

Ro
le

 m
at

rix

Ri
sk

 an
al

ys
is

Th
re

at
 m

od
el

in
g

St
at

ic
 co

de
…

C
od

in
g

ru
le

s

Se
cu

rit
y

te
sti

ng

Vu
ln

er
ab

ili
ty

…

O
pe

ra
tio

na
l…

Se
cu

rit
y

ex
pe

rt
 an

al
ys

is

Security activities

Coding phase

Coding

Figure 13: Best, worst, and average security activity in the coding phase.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

In
iti

al
 ed

uc
at

io
n

an
d

tr
ai

ni
ng

Se
cu

rit
y

re
qu

ire
m

en
t (

SE
)

Id
en

tif
y

tr
us

t b
ou

nd
ar

y

Ro
le

 m
at

rix

Ri
sk

 an
al

ys
is

Th
re

at
 m

od
el

in
g

St
at

ic
 co

de
 an

al
ys

is

C
od

in
g

ru
le

s

Se
cu

rit
y

te
sti

ng

Vu
ln

er
ab

ili
ty

 te
sti

ng

O
pe

ra
tio

na
l p

la
nn

in
g

Se
cu

rit
y

ex
pe

rt
 an

al
ys

is

Security activities

Testing phase

Testing

Figure 14: Best, worst, and average security activity in the testing phase.

8 Mathematical Problems in Engineering

4. Conclusion

(e cost and benefit of each project will differ. Further-
more, cost and benefit can be divided into two categories:
tangible and intangible cost and benefit. Hardware prices,
professional wages, and software expenditures are all ex-
amples of tangible costs. (ey are measured and evaluated.
Examples of tangible costs include the acquisition of
hardware or software, employee training, and staff com-
pensation. Intangible costs are those that cannot be
quantified. (e expense of a malfunction of an online
system during banking hours will result in the bank losing
money. Benefits are also tangible or intangible. For ex-
ample, more customer satisfaction, improved company
status, and so on are all intangible benefits whereas im-
proved response time and producing error free output such
as producing reports are all tangible benefits. Both tangible
and intangible costs and benefits should be considered in
the evaluation process.

(is article describes the economic advantage of adding
security during several agile software processes. (e ex-
amination of the cost benefits is divided in two parts: the
prerelease portion and the postrelease section. (e general
bug identification rate is increasing in prerelease due to
improved security and control. Two distinct methods are
used to calculate the benefit. (e total number of bugs was
projected to reduce due to the higher safety standards and
controls. First, the estimated losses are computed before the
security is added, and second the expected costs are cal-
culated after the security is added. We should presume that
the benefits of security integration outweigh the risks. It has
been discovered that addressing security concerns during
the initial phase costs up to 100x times less than addressing

flaws in the released software. (e article also defines each
person’s role, from the top of management down the hi-
erarchy, in promoting the model and establishing a sus-
tainable application [27–30].

Data Availability

(e data that support the findings of this study are available
upon request to the corresponding author.

Conflicts of Interest

(e authors declare that they have no conflicts of interest.

Acknowledgments

(e authors thank Taif University Research Supporting
Project (TURSP-2020/239), Taif University, Taif, Saudi
Arabia.

References

[1] M. Siponen, R. Baskerville, and T. Kuivalainen, “Integrating
security into agile development methods,” in Proceedings of
the 38th Annual Hawaii International, Big Island, Hawaii,
January 2005.

[2] S. Sonia and S. Archana, “Integration analysis of security
activities from the perspective of agility,” IEEE, vol. 9,
pp. 40–47, 2012.

[3] A. Arora, D. Hall, C. A. Piato, D. Ramsey, and R. Telang,
“Measuring the risk-based value of IT security solutions,”
IEEE IT Professional, vol. 6, no. 6, pp. 35–42, 2004.

[4] M. S. Krishnan, C. M. Howard, and S. Lipner, 9e Security
Development Lifecycle – SDL: A Process for Developing

Table 1: (e best, worst, and average security activities for the planning, coding, and testing phases of software development.

Best security activity Worst security activity Average security activity
Planning phase Risk analysis Coding rule (reat modeling
Coding phase Coding rules Role matrix Vulnerability testing
Testing phase Security testing Operational planning Identify trust boundaries

0 0.2 0.4 0.6 0.8 1
Initial education and training

Security requirement (SE)
Identify trust boundary

Role matrix
Risk analysis

�reat modeling
Static code analysis

Coding rules
Security testing

Vulnerability testing
Operational planning

Testing
Coding
Planning

Figure 15: Best, worst, and average security activities during the planning, coding, and testing phases of software development.

Mathematical Problems in Engineering 9

Demonstrably More Secure Software, Microsoft Press,
Washington, DC, USA, 2006.

[5] B. Boehm, J. R. Brown, and J Lipow, “Quantitative evaluation
of software quality,” in Proceedings of the 20th International
Conference on Software Engineering, Washington, DC, USA,
May 1976.

[6] B. Boehm, E. Colbert, Y. Chen, D. Wu, and D. Reifer, Costing
the Development of Secure Systems Eighth Annual PSM Users’
Group Conference: Measurement for Enterprise Excellence,
Keystone, CO, USA, 2004.

[7] H. Cavusoglu, B. Mishra, and S. Raghunathan, “(e effect of
internet security breach announcements on market value:
capital market reactions for breached firms and internet se-
curity developers,” International Journal of Electronic Com-
Merce, vol. 9, pp. 69–104, 2004.

[8] S. Butler, Security Attribute EvaluationMethod: A Cost-Benefit
Approach, IEEE, Orlando, FL, USA, 2002.

[9] K. Campbell, L. A. Gordon, M. P. Loeb, and L. Zhou, “(e
economic cost of pub-licly announced information security
breaches: empirical evidence from the stock market,” Journal
of Computer Security, vol. 11, no. 3, pp. 431–448, 2003.

[10] K. B. Hendricks and V. R. Singhal, “Delays in new product
introductions and the market value of the firm: the conse-
quences of being late to the market,” Management Science,
vol. 43, no. 4, pp. 422–436, 1997.

[11] C. Kemerer, “An empirical validation of software cost esti-
mation models May 1987, 416 quality and user satisfaction of
software products: an em-pirical analysis,” ACM, Technical
Report, 1997.

[12] M. S. Krishnan, C. H. Kriebel, S. Kekre, and
T. Mukhopadhyay, “An empirical analysis of productivity and
quality in software products,” Management Science, vol. 46,
no. 6, pp. 745–759, 2000.

[13] MSDN, “Microsoft security development lifecycle (SDL),”
Measurable Im-Provements for Flagship Microsoft Products,
vol. 99, 2008.

[14] E. Rescorla, Is Finding Security Holes a Good Idea? the 9ird
Workshop on Eco-Nomics and Information Security, IEEE,
Minneapolis, MN, USA, 2004.

[15] M. Zulkernine and I. A. Sheikh, Software Security Engineering:
Towards Unifying Software Engineering and Security Engi-
neering, Queen’s University, Kingston, Canada, 2009.

[16] W. Wang, K. Reddy Mahakala, A. Gupta, and N. Hussein,
Data on Security Requirements in Open-Source Software
Projects, Data in Brief, Elsevier, Amsterdam, Netherlands,
2018.

[17] W. Wang, K. Reddy Mahakalaa, A. Guptaa, and N. Husseina,
A Linear Classifier Based Approach for Identifying Security
Requirements in Open Source Software Development Journal of
Industrial Information Integration, Elsevier, New York NY,
USA, 2018.

[18] A.Mohammad, Ja’far Alqatawna, andM. Abushariah, “Secure
software engineering: evaluation of emerging trends,” in
Proceedings of the International Conference on Information
Technology, pp. 814–818, IEEE, Hyderabad, India, April 2017.

[19] M. Kaur, D. Singh, V. Kumar, B. B. Gupta, and A. A. A. El-
Latif, “Secure and energy efficient based E-health care
framework for green internet of things,” IEEE Transactions on
Green Communications and Networking, vol. 99, p. 1, 2021.

[20] Z. ÁdámMann, Secure Software Placement and Configuration
Future Generation Computer Systems, Elsevier, Amsterdam,
Netherlands, 2020.

[21] S. Hosseinzadeh, S. Laurén, J.-M. Holvitie, J. M. Mäkelän,
S. Hyrynsalmi, and V. Leppänen, “Diversification and

obfuscation techniques for software security: a systematic
literature review,” Information and Software Technology,
vol. 104, pp. 72–93, 2018.

[22] P. Liu and Su Jin, Research on Software Security Vulnerability
Detection Technology International Conference on Computer
Science and Network Technology, IEEE, Harbin, China, 2011.

[23] M. Kaur and D. Singh, “Multiobjective evolutionary opti-
mization techniques based hyperchaotic map and their ap-
plications in image encryption,” Multidimensional Systems
and Signal Processing, vol. 32, no. 1, pp. 281–301, 2021.

[24] M. Kaur, D. Singh, and V. Kumar, “Color image encryption
using minimax differential evolution-based 7D hyper-chaotic
map,” Applied Physics B, vol. 126, no. 9, p. 147, 2020.

[25] M. Saito, A. Hazeyama, N. Yoshioka et al., “A case-based
management system for secure software development using
software security knowledge,” Procedia Computer Science,
vol. 60, pp. 1092–1100, 2015.

[26] K. Tuma, G. Calikli, and R. Scandariato, “(reat analysis of
software systems: a systematic literature review,” Journal of
Systems and Software, vol. 144, pp. 275–294, 2018.

[27] C. A. Pinto, A. Arora, D. Hall, and E. Schmitz, “Challenges to
sustainable risk management,” 2004.

[28] K. Soo Hoo, A. W. Sadbury, and A. R. Jaquith, “Return on
security investments,” Secure Business Quarterly, vol. 1, p. 2,
2001.

[29] N. M. Mohammeda, N. Mahmood, and M. Alshayeba, Ex-
ploring Software Security Approaches in Software Development
Lifecycle: A Systematic Mapping Study, Computer Standards
and Interfaces, Elsevier, New York NY, USA, 2016.

[30] K. Rindell, J. Ruohonen, H. Johannes, and S. Hyrynsalmi,
Security in Agile Software Development: A Practitioner Survey
Information and Software Technology, Elsevier, New York NY,
USA, 2020.

[31] M. Kaur, D. Singh, and V. Kumar, “Color image encryption
using minimax differential evolution-based 7D hyper-chaotic
map,” Applied Physics B, vol. 126, no. 9, p. 147, 2020.

10 Mathematical Problems in Engineering

