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*e liquidity risk factor of security market plays an important role in the formulation of trading strategies. A more liquid stock market
means that the securities can be bought or soldmore easily. As a sound indicator ofmarket liquidity, the transaction duration is the focus
of this study. We concentrate on estimating the probability density function p(Δti+1 | Gi), where Δti+1 represents the duration of the
(i+1)-th transaction and Gi represents the historical information at the time when the (i+1)-th transaction occurs. In this paper, we
propose a new ultrahigh-frequency (UHF) duration modelling framework by utilizing long short-term memory (LSTM) networks to
extend the conditional mean equation of classic autoregressive conditional duration (ACD) model while retaining the probabilistic
inference ability. And then, the attentionmechanism is leveraged to unveil the internal mechanism of the constructedmodel. In order to
minimize the impact ofmanual parameter tuning, we adopt fixed hyperparameters during the training process.*e experiments applied
to a large-scale dataset prove the superiority of the proposed hybrid models. In the input sequence, the temporal positions which are
more important for predicting the next duration can be efficiently highlighted via the added attention mechanism layer.

1. Introduction

Market liquidity refers to the degree to which an asset can be
bought and sold easily for a fair price [1]. In other words,
market liquidity can be regarded as the speed at which
transactions can be concluded while maintaining a basically
stable price [1]. *erefore, market liquidity risk is one of the
most common factors considered by security investors es-
pecially by high-frequency traders in building a trading
strategy.

With the rapid development of computer storage
technology, transaction by transaction financial trading
data is accessible to researchers. Let ti stand for the time at
which the i − thtrade occurs so that the duration between
the (i + 1)-th and i-th trade is Δti+1 � ti+1 − ti, which can

directly measure the transaction speed of financial trad-
ing. *e autoregressive conditional duration (ACD)
model proposed by Engle and Russell has been the pri-
mary framework used for analyzing trading durations of
ultrahigh-frequency (UHF) data, which are irregularly
time-spaced and convey meaningful information [2]. In
ACDmodels, the transaction duration is decomposed into
the multiplicative product of two components: the con-
ditional (expected) duration and the unexpected duration.
*e expected component is the portion of transaction
duration that is linearly conditional on past durations,
whereas the unexpected duration is the fraction of du-
ration beyond that which could be predicted from past
durations and is usually characterized by an exponential
distribution.
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Based on the work of Engle and Russell [2], many works
tried to improve the ability of capturing the relation between
the conditional duration and the lagged durations. For
example, the logarithmic version of ACD model was pro-
vided in [3], the threshold autoregressive conditional du-
ration model was proposed in [4], the asymmetric
autoregressive conditional duration model was put forward
in [5], and the smooth transition ACD model and the time-
varying ACD model were introduced in [6]. *ere are also
many other works focusing on choosing a suitable distri-
bution to characterize the unexpected duration. *e dis-
tributions which have been applied to the ACD models
include the generalized Gamma distribution in [7], gener-
alized F distribution in [8], the mixture of two exponential
distributions in [9], the regime-switching Pareto distribu-
tion in [10], and the mixture of an exponential and a
generalized beta of type 2 (GB2) distribution in [11]. Like
many other statistical models, the ACD family models re-
quire strong assumptions which are difficult to satisfy in
realistic situations [12].

In recent years, machine learning methods have been
widely applied to image identification and natural language
processing problems. Compared with traditional statistical
models, machine learning methods have looser model as-
sumptions and better generalization ability. *e artificial
neural network (ANN), inspired by the biological neural
network, is one of the most widely used machine learning
methods. According to Universal Approximation theorem
[13], feedforward neural networks can approximate a Borel
measurable function to any desired degree of accuracy if
sufficiently many hidden units with arbitrary squashing
functions are provided. Recurrent neural networks (RNNs)
are a family of specially designed artificial neural network
networks capable of extracting temporal information via the
cycle architecture [14]. For the development in optimization
techniques and computation hardware, RNNs have been
widely used in many different domains recently [15]. To
solve the vanishing/exploding gradient problem of simple
RNNs, Hochreiter S. proposed the long short-term memory
(LSTM) neural networks which can help us to utilize a
longer sequence of historical information [16]. Although
having the merit of strong fitting ability, LSTMs cannot
provide probabilistic output compared with ACD family
models.

Inspired by the work from Kristjanpoller and Minutolo
[17], we propose a new architecture called LSTM-ACD to
predict the UHF transaction durations by combing the ANN
networks and ACD framework. We take a fully data-driven
approach to extend the mean equation of classic ACD
models while retaining the probabilistic inference ability. In
addition, attention layer is added into our model to make a
visualization of the proposed network and to improve the
interpretability. *e proposed architecture is applied to real-
world stock duration datasets. *e result shows that the
proposed model produces more accurate estimation and
prediction, outperforming the traditional ACD family
models.

*e rest of this paper is organized as follows: Section 2
introduces the methodology in detail, while Section 3

contains the experiment design and the corresponding re-
sults in this study. Section 4 concludes this paper and points
out the possible direction of future research.

2. Methodology

In Section 2, the ACD framework is integrated with LSTM
networks to propose a new LSTM-ACD model for pre-
dicting the trading durations of UHF data. *is section is
organized as follows. Section 2.1 introduces the classic ACD
model. Section 2.2 describes the proposed LSTM-ACD ar-
chitecture in detail. In addition the attention mechanism
layer is utilized to unveil the internal mechanism of the
proposed model.

2.1. Traditional ACD Family Models. A classic ACD model
assumes that the durations are conditionally exponentially
distributed with a mean that follows an ARMA process [2].
As shown in (1), the duration Δti between the i-th and
(i− 1)-th trade is the multiplicative product of μi and εi,
which represents expected and unexpected portion of the
transaction duration, respectively. In the conditional mean
equation, μi linearly depends on the lagged durations and the
lagged terms of itself. p and q in formula (2) represent the
lagged order:

Δti � μiεi, (1)

μi � ω + 􏽘

p

j�1
αjΔti−j + 􏽘

q

j�1
βjμi−j. (2)

By adding the lagged terms of error term εi as the in-
dependent variables, Hautsch proposed the Additive and
Multiplicative ACD (AMACD) [18] model, as follows:

μi � ω + 􏽘

p

j�1
αjxi−j + 􏽘

r

j�1
]jεi−j + 􏽘

q

j�1
βjμi−j. (3)

A major limitation of basic ACD model and AMACD
model is the assumption that the variables in the conditional
mean equation behave in strict stationarity and linearity, but
the duration sequences are usually in a nonlinear or non-
stationary state. Based on power transformation, a nonlinear
Box–Cox ACD model was proposed in [19], as follows:

μδ1i � ω + 􏽘

p

j�1
αjε

δ2
i−j + 􏽘

r

j�1
βjμ

δ1
i−j. (4)

*is paper also extends the linear conditional mean
equation by LSTM networks to propose a new LSTM-ACD
framework due to the strong fitting ability of deep learning
techniques.

2.2. 9e Proposed Attention-LSTM-ACD Model

2.2.1. LSTM-ACD Model. It has been generally known that
the LSTM cell is able to store information over longer time
range compared with simple RNNs. As depicted in Figure 1,
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the information flow propagating across timesteps is con-
trolled by three LSTM gates: the forget gate, the input gate,
and the output gate.

Assuming that Wf, Wi, Wo, and Wc represent the LSTM
weight matrices, and bf, bi, bc, and bo represent the bias

vectors. *e input vector, output vector, and cell state vector
at time t are denoted as xt, ht, andCt, respectively [20]. *e
operating process of a LSTM cell can be mathematically
described as follows:

forget gate: ft � σ Wf · ht−1, xt􏼂 􏼃 + bf􏼐 􏼑,

input gate: it � σ Wi · ht−1, xt􏼂 􏼃 + bi( 􏼁,

output gate: ot � σ Wo · ht−1, xt􏼂 􏼃 + bo( 􏼁,

candidate state values calculation: 􏽥Ct � tanh WC · ht−1, xt􏼂 􏼃 + bC( 􏼁,

Ct � ft × Ct−1 + it × 􏽥Ct,

ht � ot · tanh Ct( 􏼁.

(5)

As a type of RNNs specially designed to avoid the
exponentially fast decaying factor, the LSTM networks
can effectively prevent the gradient vanishing/explosion
problem. Due to their ability to learn long-term depen-
dencies, LSTMs are particularly suitable for financial
prediction problems. Hence, we have the conjecture that
extending the linear mean equation to LSTM network will
improve the ability of extracting long-term dependencies
for duration sequence. To verify this hypothesis, we take
the Δti−1 and ln 􏽢μi−1 as the input for the LSTM cell at the
time point of i-th transaction where Δti−1 is the duration
of last transaction and ln 􏽢μi−1 is the logarithmic value of
the output of the proposed LSTM-ACD model at time
i − 1. To retain the ability of probabilistic inference, the
objective function is still the log likelihood function of
Δti � μiεi which follows an exponential distribution. *e
log-likelihood function can be mathematically described
as follows:

l � 􏽘
​
ln

1
􏽢μi

exp −
1
􏽢μi

Δti􏼠 􏼡, (6)

ln 􏽢μi � φ Δti−1, ln 􏽢μi−1, hi−1( 􏼁, (7)

where φ represents a mapping from Δti−1, ln 􏽢μi−1, hi−1 to
ln 􏽢μi by a LSTM cell.

2.2.2. Visualization and Promotion by Attention Mechanism.
Attention mechanism was firstly proposed to improve the
image processing accuracy by mimicking the perceptual system
of human beings [21]. In the work of [22], attentionmechanism
was introduced to extend the basic encoder-decoder architec-
ture and enhance the interpretability on the task of machine
translation. Unlike the sequence-to-sequence modelling in
sentence translation, the problem we focus on in this paper is to
predict the financial duration one-step ahead. *e attention
weights which help automatically search for import hidden

Ct–1

Forget gate Output gate

tanh

ht–1

Ct–1

ht

Ct

xtht–1xt

ht–1xt

It

ht–1xt

Candidate state
value calculationInput gate

Figure 1: Structure of LSTM cell.
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states of the sequence-to-one LSTM architecture can be cal-
culated by the following formulas:

ei−k � v
T
α tanh wαhi−k( 􏼁,

αi−k �
exp ei−k( 􏼁

􏽐
T
k�1 exp ei−k( 􏼁

,

(8)

where hi−k represents the hidden state lagged k timesteps and
αi−k represents the attention weight of hi−k.*ewα and vα are
parameter matrices in the attention mechanism. By allo-
cating different attention weights for different hidden states,
a new vector ci is produced as the input of a feedforward
network f for predicting the target variable yi:

ci � 􏽘
T

k�1
αkhi−k,

yi � f ci( 􏼁.

(9)

In this study, the attention layer is integrated with LSTM
to characterize the dynamics of ln μi in the abovementioned
mean equation of ACD model. *e proposed Attention-
LSTM-ACD model can be described by the following
equations:

hi−k
′ � LSTM hi−k−1′ , si−k−1′ , Δti−k−1, ln 􏽢μi−k−1( 􏼁,

ci
′ � 􏽘

T′

k�1
αk
′hi−k
′ ,

ln 􏽢μi � f′ ci
′( 􏼁,

(10)

where si−k−1′ represents the cell state of LSTM lagged k + 1
timesteps. Figure 2 shows the Attention-LSTM-ACD model
in more detail.

3. Experiment

3.1. Data Description

3.1.1. Data Source. *e Shenzhen Stock Exchange 100
Index (SZSE 100) is the first index designed for reflecting
the multiple level market conditions of Chinese stock

market. *e constituent stocks of SZSE 100 represent the
core high-quality assets in the Shenzhen A-share market,
with strong growth, low valuation, and high investment
value. In this paper, we collect duration data of the first
100,000 transactions which has excluded the transactions
during premarket opening session, for each constituent
stock from SZSE 100. *e readers can acquire the data
from the Transend DataBase System of Wind Information
Co., Ltd (https://www.wind.com.cn/). Since the stock
Tianjin Zhonghuan Semiconductor Co., Ltd., which is
coding in 002129.SZ has no transactions during 2017, we
totally have 99 stocks listed in SZSE COMP on December
31st, 2016, as our research dataset, which sums to
9900,000 transactions.

3.1.2. Data Characteristics. As the box plots in Figure 3
demonstrate, transaction durations of each constituent stock
from SZSE 100 Index reveal a very long tail compared with
the interquartile range. *e large amount of data located in
the tail means the existence of liquidity risk.

To further dig the dynamic characteristics of the
duration sequence, the averaged coefficients of auto-
correlation function (acf) and partial correlation func-
tion (pacf) coefficients are plotted. As shown in the
following Figure 4, we can see that time series duration
data show a longer memory in that both acfcoefficients
and pacf coefficients decay very slowly as the lagged term
increases. Hence, the higher complexity of the UHF
duration data requires a forecasting algorithm with
strong fitting ability.

3.2. Evaluation Criteria

3.2.1. Mean Absolute Error (MAE) and Mean Squared
Logarithmic Error (MSLE). As two frequently used metrics,
MAE and MSLE are both used to directly evaluate the
performance of duration prediction and can be calculated by
the following formulas:

MAE �
1
N

􏽘

N

i�1
durationforecasti − durationreali

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

MSLE �
1
N

􏽘

N

i�1
loge 1 + durationforecasti􏼐 􏼑 − loge 1 + durationreali􏼐 􏼑􏼐 􏼑

2
.

(11)

A smaller MAE or MSLE means that we have a more
precise forecast of the transaction duration.

3.2.2. Performance Measure for Quantile Prediction. To
evaluate the forecasting performance of quantile points, we

utilize the loss function in quantile regression minimization
problems [23]. Let TaRi: i � 1, . . . , h􏼈 􏼉 be the prediction
quantile points of the probability level α, xi be the realistic
duration of the i − th transaction, and the I represent an
indicative function, and the performance measure QLα,t [11]
can be calculated as follows:
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QLα,t � 􏽘
T+h

i�T+1
xi − TaRi,α􏼐 􏼑 α − I xi <TaRi,α􏼐 􏼑􏽨 􏽩. (12)

3.2.3. Experiment Models. In Section 2, we have created a
new framework for the one-step ahead prediction. *e
sequence of 50 lagged durations (1 feature, 50 timesteps)
is firstly chosen as the input data, and we hence construct
the LSTM-ACD model and Attention-LSTM-ACD
model, which are presented in Sections 2.2.1 and 2.2.2,
respectively. *e only difference between the two models
is the attention layer. To further utilize the information of
transaction by transaction data, one-dimensional dura-
tion feature is extended to multidimensional feature
vector by adding the transaction volume and transaction
type information. And then, two other models are con-
structed, named as the Attention-LSTM-ACD (M) model
and the LSTM-ACD (M) model. *e experiments will be
performed with the following seven models: the ACD
model, the AMACD model, the BACD model, the LSTM-
ACD model, the Attention-LSTM-ACD model, the At-
tention-LSTM-ACD (M) model, and the LSTM-ACD (M)
model.

3.3. Training. During the training process, configurations
are determined with as few exogenous inputs as possible
because of the various drawbacks of manual tuning. We
adopt fixed hyperparameters including learning rate,
number of neurons of each layer, batch size, and timesteps
for each constituent stock of SZSE 100.

3.3.1. Generation of Training Sets, Validation Sets, and Test
Sets. As mentioned above, the sample used in this study is
the 100,000 durations in 2017 for each stock collected from
SZSE 100. We select the last 30% of data as the test set, while
the remaining data are divided into training set and vali-
dation set according to the ratio of 8 : 2.

3.3.2. Training Process. During the experiment, fixed
hyperparameter combination is selected for each model
based on LSTM-ACD framework. Table 1 lists the hyper-
parameters used in our experiment. *e attention size
represents the height of the tensor wα in formula (6). *e
initial learning rate is 0.5, and it is reduced by 50% after 1000
training steps. Besides the selection of hyperparameter
combination, the remaining parameters of the proposed
hybrid models are learned by taking advantage the early-
stopping technique to avoid the overfitting problem. We
evaluate model performance on the validation set every 100
training steps, and the early-stopping patience represents the
number of times that there is continuously no improvement
in the log likelihood function calculated on the validation
set.

In this paper, the four models based on LSTM-ACD
framework are coded in Tensorflow1.0, and the traditional
ACD family methods are modelling by the ACDm package
based on R language.

3.4. Experiment Results

3.4.1. Comparison of Different Models in MAE and MSLE.
*e out-of-sample forecasting errors of the seven types of
experiment models are calculated. Table 2 lists the average

... LSTM cellLSTM cellLSTM cell

Attention layer

Fully connected layer

Ouput: ln μ⌃i

c′i

h′ih′i–k–1h′i–k–2

h′i–k–2, s′i–k–2

Δti–k–2, ln μ⌃i–k–2 Δti–k–1, ln μ⌃i–k–1 Δti–1, ln μ⌃i–1

h′i–k–1, s′i–k–1

Figure 2: Architecture of Attention-LSTM-ACD model.
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Figure 3: Box plots of durations of 99 stocks from SZSE 100 (minimum time unit: millisecond).*e 99 stocks are listed in the x-axis, and the
y-axis represents the duration dimension.
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Table 1: *e hyperparameters of each model.

Attention-LSTM-ACD (M) and LSTM-ACD (M) Attention-LSTM-ACD and LSTM-ACD
Input layer 3 features, 50 timesteps 1 feature, 50 timesteps
LSTM layer 5 hidden neurons 5 hidden neurons
Attention size 2 (for model Attention-LSTM-ACD (M)) 2 (for model Attention-LSTM-ACD)
Fully connected layer 2 hidden neurons 2 hidden neurons
Batch size 300 300
Start learning rate 0.5 0.5
Decay steps 1000 1000
Decay rate 50% 50%
Early stopping patience 10 10
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Figure 4: Averaged (a) acf and (b) pacf.

Table 2: *e average MAE and MSLE on SZSE 100 Index constituent stocks of each model.

Average MAE Average MAElagged Difference Average MSLE Average MSLElagged Difference
Attention-LSTM-ACD(M) 2.0264 1.9762 0.0502 0.7088 0.6892 0.0195
LSTM-ACD(M) 1.7990 1.7602 0.0388 0.5947 0.5677 0.0270
Attention-LSTM-ACD 1.9758 1.9367 0.0390 0.6935 0.6629 0.0306
LSTM-ACD 1.8964 1.8368 0.0596 0.6520 0.6043 0.0477
ACD 1.8641 1.6612 0.2030 0.6285 0.5184 0.1100
BACD — — — 0.6980 0.5928 0.1052
AMACD 1.8149 1.6446 0.1702 0.6007 0.4988 0.1019
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MAE and average MSLE in the test sets when the seven
models are applied to SZSE 100 Index constituent stocks,
respectively. *e LSTM-ACD (M) model has the minimum
average MAE and average MSLE, while the remaining three
models based on LSTM-ACD framework all perform a bit
worse than the traditional ACD family models in the two
metrics. As mentioned above, uniform hyperparameter
combination is chosen when applying the hybrid models. If
we select different hyperparameters when focusing on dif-
ferent stocks, the performance of these hybrid models will be
much better. In BACDmodel (see equation (4)), εi � (xi/μi)

and we calculate 􏽢εi by (Durationreali /Durationforecasti ) during
the process of iterated prediction. *e estimation value of δ1
could be much smaller than δ2, so we will get an extremely
large forecasted value if Durationreali is much larger than

Durationforecasti . *is situation appears when we are applying
BACD model to some stocks and results in extremely large
average MAE and average quantile loss. Hence, the average
MAE and average quantile loss of BACDmodel are not listed
in this paper.

As the AMACD model places second in both average
MAE and average MSLE, we compare LSTM-ACD (M)
model with AMACD model in detail. We can see from
Figure 5 that the LSTM-ACD (M) is also superior to the
AMCD model on more stocks in both metrics of MAE and
MSLE.

In addition, we calculate the MAE and MSLE one-step
lagged of each model for the durations by the following
formulas:

MAElagged �
1
N

􏽘

N

i�1
Durationforecasti − Durationreali−1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

MSLElagged �
1
N

􏽘

N

i�1
loge 1 + Durationforecasti􏼐 􏼑 − loge 1 + Durationreali− 1􏼐 􏼑􏼐 􏼑

2
.

(13)

Suppose there are two models A and B for the same
duration prediction task. We get MAEA

lagged,MAEA for
model A and get MAEB

lagged,MAEB for model B. If
MAEA � MAEB and MAEA

lagged <MAEB
lagged, we can de-

duce that model B is more likely to extract the long-term
dependency in the time series data because model A
utilizes a higher proportion of Durationreali−1 value to
forecast Durationreali . In an extreme situation that
MAEA � MAEB and MAEA

lagged � 0<MAEB
lagged, obvi-

ously, model A just uses Durationreali−1 as the value of

Durationforecasti . By an extension of this logic, if
MAEA − MAEA

lagged >MAEB − MAEB
lagged, we can also

deduce that model B has a stronger ability in capturing
the long-term dependency relationship. Similarly, a
smaller MSLE − MSLElagged also indicates a higher ability
in modelling long-term dependency. *e results in col-
umns 4 and 7 of Table 2 show that the average MAElagged
and average MSLElagged of each traditional ACD model
are significantly smaller than the average MAE and av-
erage MSLE, respectively. It means the four models based

LSTM-ACD (M)

64.65%

35.35%

AMACD

(a)

LSTM-ACD (M)

AMACD

41.41%

58.59%

(b)

Figure 5: *e contrasts between LSTM-ACD (M) and AMACD in (a) MAE and (b) MSLE (the proportion of each slice in a pie chart
represents the quantity of stocks on which the corresponding model performs better than the other).
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on LSTM-ACD framework are superior to the traditional
ACD family models in reflecting the long-term rela-
tionship of the sequential data.

Further detail for MAE and MSLE is provided in Fig-
ure 6. It can be seen that the LSTM-ACD (M) and LSTM-
ACD are both superior to the previous ACD family models
on more stocks in the metric of MAE. Moreover, LSTM-
ACD (M) also has the minimumMSLE on more stocks than
all other models. BACD model and LSTM-ACD model
performs best on 21.21% and 22.22% of the assets, respec-
tively, in terms of MSLE. Take the unstable performance of
BACDmodel into consideration, the LSTM-ACDmodel still
places second overall.

3.4.2. Comparison of Different Models in Quantile Forecasts.
Table 3 lists the quantile forecast measure QL of different
upper quantile levels for the seven models. It can be found
that the Attention-LSTM-ACD (M) model is the supreme
one at all three quantile levels among the models based on
LSTM-ACD framework. In terms of the Attention-LSTM-
ACD model, it also provides a better quantile forecasting
than LSTM-ACD model at all quantile levels. Although our
proposed models are not superior to the traditional ACD
family models in extreme quantile forecasting, these results
still indicate that the attention layer can improve the ac-
curacy in conditional distribution forecasting. *e QL of
BACD model is not presented in Table 3 due to the extreme
large values of QL. Besides, the performance of our proposed
models can be further improved by selecting different
hyperparameters for different stocks.

3.4.3. AttentionWeights of Different Lag Orders. *is section
makes visualization for the Attention-LSTM-ACD model
and Attention-LSTM-ACD (M) model. As can be seen in
Table 4 and Figure 7, the weights learned by the attention
layer in both the two models decrease exponentially with the
increase in lag order. *is means that the closer transaction

LSTM-ACD (M)

ACD

Attention-LSTM-ACD

Attention-LSTM-ACD (M)

LSTM-ACD

BACD

AMACD

39.39%

7.07%

19.19%
0.00%

28.28%

2.02%
4.04%

(a)

LSTM-ACD (M)

ACD
Attention-LSTM-ACD

Attention-LSTM-ACD (M)

LSTM-ACD

BACD

AMACD

38.38%

12.12%

22.22%
1.01%

21.21%

2.02%
3.03%

(b)

Figure 6: Detailed comparison of the 7 models in MAE and MSLE (the size of each pie slice represents the quantity of stocks on which the
corresponding model achieves the best performance). (a) Minimum MAE. (b) Minimum MSLE.

Table 3: Quantile loss for the models at different upper quantile
levels.

Model
Upper quantile level

0.1 0.05 0.01
Attention-LSTM-ACD (M) 23323.42 17772.65 8964.29
LSTM-ACD (M) 24252.67 18974.48 10296.03
Attention-LSTM-ACD 24423.39 19732.88 11523.59
LSTM-ACD 24691.75 19866.13 11676.77
ACD 20040.66 14566.03 6484.51
BACD — — —
AMACD 20084.59 14713.16 6663.78

Table 4: Average weights of the Attention-LSTM-ACD (M) model
and the Attention-LSTM-ACD model on SZSE 100 Index con-
stituent stocks.

Attention-LSTM-ACD (M) Attention-LSTM-ACD
Lag order Weight Lag order Weight
Lag 1 0.034797791 Lag 1 0.078697926
Lag 2 0.028296111 Lag 2 0.034143126
Lag 3 0.024825037 Lag 3 0.027711418
Lag 4 0.023690568 Lag 4 0.025372255
Lag 5 0.022575405 Lag 5 0.023460835
Lag 6 0.022012244 Lag 6 0.022699354
Lag 7 0.02148028 Lag 7 0.021109585
Lag 8 0.020997523 Lag 8 0.020365109
Lag 9 0.020678233 Lag 9 0.02006378
Lag 10 0.020491562 Lag 10 0.01944402
. . .. . . . . .. . . . . .. . . . . .. . .

Lag 41 0.018665664 Lag 41 0.017536173
Lag 42 0.018792729 Lag 42 0.017302261
Lag 43 0.018596823 Lag 43 0.017404814
Lag 44 0.018732648 Lag 44 0.017530387
Lag 45 0.018695344 Lag 45 0.017503974
Lag 46 0.018753901 Lag 46 0.017434779
Lag 47 0.018770904 Lag 47 0.017377114
Lag 48 0.01898069 Lag 48 0.017801802
Lag 49 0.018924108 Lag 49 0.017549126
Lag 50 0.018977175 Lag 50 0.01779628
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has amore important effect on the current duration, which is
consistent to our intuition.

4. Conclusion and Future Research

In this paper, we review the studies of transaction duration
modelling based on ACD framework and find that these
studies can be classified into two categories: (a) propose a
new nonlinear equation form to describe the dynamics of
conditional (expected) duration; (b) choose a more flexible
distribution for the unexpected portion of the duration.

*is study constructs a new framework for transaction
duration modelling from the perspective of extending the
mean equation of ACD model by machine learning
methods. Firstly, we build a LSTM-ACD model by com-
bining the LSTM networks with classic ACD model to
characterize the complexity of the conditional mean process
while retaining the advantage of providing probabilistic

output. And then, attention layer is added to construct the
Attention-LSTM-ACD model with the ability of unveiling
importance of each hidden state in the LSTM networks.

Our proposed new framework is applied to a large-scale
dataset. *e fixed hyperparameters are chosen for all con-
stituent stocks of SZSE 100 Index to reduce the impact of
manual tuning, and the parameters (and consequently the
underlying distributions) are learned via maximize the log-
likelihood function. *e results show that LSTM-ACD (M)
model can present highest accuracy on the task of fore-
casting on real-world financial datasets among all the pre-
sented models. Although Attention-LSTM-ACD model and
Attention-LSTM-ACD (M) model could not provide a more
accurate performance inMAEmetric, the attention layer
vividly depicts the importance of different temporal points
of the input sequence and outperforms the corresponding
LSTM-ACD model and LSTM-ACD (M) model in QL loss
metric, respectively. In addition, the average MAElagged of
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Figure 7: Attention weights of the (a) Attention-LSTM-ACD (M)model and (b) Attention-LSTM-ACDmodel of different lags on SZSE 100
Index constituent stocks (each blue line represents the attention weight sequence of a stock for the corresponding model, and each red line
represents the average attention weights on SZSE 100 Index constituent stocks for the corresponding model.
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ACD model is significantly smaller than the average MAE,
which means the predictions of the LSTM-ACD framework
models to some extent convey more meaningful informa-
tion. As a suitable chosen residual distribution does matters,
the exponential distribution used in our framework can be
extended to more flexible distributions in future research.
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