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In this research, a new method based on the equivalence of modal characteristics, differential flatness (DF), and active disturbance
rejection control (ADRC) is proposed for the stabilization control of the long flexible arm (LFA).,ere are two major problems in
the system of the LFA. ,e first problem is that the LFA is very prone to the multiple-mode coupling, while the control systems
need as few sensors as possible. Another problem is that the structure of the LFA in practice is often complex and subject to various
disturbances. ,erefore, in this paper, the equivalent multirigid body dynamic model of a LFA is derived from the modal
information of the equivalent rigid body model of the prototype. ,en, the output values of the three tilt sensors are synthesized
into an output based on the DFmethod. Finally, the effectiveness of the proposedmethod is verified through physical experiments.
Compared with PID, the proposed method has shorter settling time. ,e LFA can be restored within 7 seconds under the ADRC,
while it needs 90 seconds or more to calm down without the control.

1. Introduction

,e application of the long arm structure in industrial and
agricultural production is more and more extensive with the
rapid development of themechanical industry [1–4]. In the field
of agricultural engineering, pruning and harvesting devices for
high canopy are mostly made of lightweight materials to reduce
costs and increase mobility. However, this results in low
structural rigidity. In addition, with the improvement of energy-
saving awareness and high maneuverability design require-
ments, lightweight design is the general trend. ,e vibration
problem caused by significant flexibility brings troubles to the
agricultural and engineering equipment. ,is poses a great
challenge to the stability of long flexible arm structures.

LFA is subject to many disturbances such as working
load, bumping, or wind. It takes too much time to stabilize
by means of self-damping, which will seriously reduce
working efficiency and even lead to serious accidents.
Moreover, in the arm structure, the driving action point is

located at the lower part of the arm, which leads to the
multimode coexistence under the action of variable am-
plitude force. Vibration not only limits the working effi-
ciency of the equipment but also becomes a serious hidden
danger in the production process.

Several studies use the continuum model analysis
method for dynamic modeling and response analysis of
some beam structures. Weldegiorgis et al. [5] derived the
model for a 0.3-metre-long cantilever beam using the system
identification technique and then used the piezoelectric
patches as the sensor and actuator to suppress the vibration
of the beam. However, this method is difficult to be concise
and effective due to the complex structure, uncertain contact
condition, complex interference, and other factors in the real
LFA. He et al. [6, 7] modeled the flexible arm and end-ef-
fector as a homogeneous cantilever beam and a concentrated
mass and used the neural network control method in
conjunction with the lumped spring-mass model to realize
the stability of the flexible beam on the Quanser platform.
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It is a practical goal to give a simple and quick way to get
the dynamic model for the lower fundamental frequency
flexible arm subjected to gravity and impact. In recent years,
the pseudo-rigid body model (PRBM)method is widely used
in the research of flexible body modeling [8, 9]. ,e pseudo-
rigid body method has achieved remarkable achievements in
the exact equivalent deformation of large deformation
structures with flexible bodies [10].We use the PRBM idea to
carry out the dynamic equivalence in order to consider the
complex and large-scale interference factors. Guided by the
PRBM method, the rigid body equivalent of the flexible
beam can be obtained by directly using the measured data as
the output. ,en, the LFA can be simplified by the equiv-
alence of static deformation and the first two modes. ,e
whole LFA is equivalent to three rigid segments, and the
equivalent dynamic model including the single torque input
and three-angle output is constructed to become an
underactuated system.

Ramı́rez-Neria and coresearchers solved several kinds of
underactuated mechanical systems successfully by using the
differential flattening method combined with the ADRC or
generalized proportional integral observer. Successful cases
include the rotary inverted pendulum [11], wheel pendulum
system, and underactuated mobile manipulators [12, 13],
which have fully demonstrated the advantages of combining
the dimension reduction processing of the differential
flattening method with the active disturbance rejection
compensation for internal and external disturbances. Sira-
Ramirez [14] said that the flat output function is rather
elaborate and complicated to give. For the convenience of
engineering applications, we need to explore a relatively
more direct way to obtain flat output variables.

As an important progress in the field of control engi-
neering in the past two decades, ADRC is gradually un-
derstood and recognized by the industry. A large number of
studies have shown that ADRC has good performance on
complex linear or nonlinear systems with uncertainties
[15–17]. In order to deal with the uncertain internal or
external disturbances and the higher-order ones caused by
differential flattening, ADRC method can deal with these
difficulties effectively and skillfully [18].

,e contributions of this manuscript are as follows:

(i) ,e modal equivalent method of transforming the
LFA into the rigid body model is built.

(ii) A differential flat output for the three-bar two-
torsion-spring mechanism is constructed based on
the differential flat principle, and a single-input
single-output system model in the form of differ-
ential equations is established.

(iii) Taking the differential flat output as the system
output, PID and ADRC controllers are used to
suppress the vibration under impact disturbance,
respectively. ,e experiment is carried out on the
long arm experimental device.

,e rest of this paper is organized as follows: in Section 2,
the modeling method of the equivalent rigid body model for

the cantilever section of the LFA is described. In Section 3,
the equivalent dynamic model analysis of three rods and two
springs is carried out. Section 4 discusses the differential
flatness method for the single-input multiple-output system.
In Section 5, a single differential flat output and single torque
input stabilization system with the linear active disturbance
rejected control method is studied. In Section 6, the effec-
tiveness of this method is verified by experiments, and the
manuscript is concluded in Section 7.

2. Equivalent Model of the LFA

According to the principle of the mode superposition
method, the lower modes are the main components of the
dynamic response. ,e internal structure of the LFA is often
so complex that it is difficult to build an accurate kinetic
model according to the mechanism. In order to construct an
algorithm with wide applicability, the LFA on the left side in
Figure 1 is equivalent to the plane multirigid body and
spring system on the right side according to the modal
information. When the LFA is disturbed and shakes, the first
and second modes are the most significant in the dynamic
response process, so the LFA is regarded as a planar hinge
mechanism composed of three rods and two torsion springs,
which is shown in Figure 1. ,e multirigid body dynamic
method is used to get the equivalent dynamic response of the
continuum arm approximately. ,e symbols are defined as
follows: θ0 is the expected elevation of the flexible long arm,
θ1, θ2, and θ3 are the elevations of the equivalent rods relative
to the horizontal plane, and li,mi, Ici, and ki represent the rod
length, mass, moment of inertia according to the mass
centers, and torsion spring stiffness of the ith rod in the
equivalent mechanism, respectively. In order to simplify the
derivation process, the torque at the bottom of the first rod is
used to represent the force Fd acting at point O’.

,e tilt sensor based onMEMS technology has been very
cheap, even the price of the vibration detection type has been
reduced to a hundred dollars, so it is used to collect kine-
matic information of the LFA in the process of vibration. In
order to obtain more valuable dynamic information, we use
the method of arranging tilt sensors at the root, middle, and
top of the LFA to establish the feedback control system. ,e
part between the fixed hinge point O of the LFA and the
action point O’ of the luffing support is usually stronger as
the support part. Because the flexibility of this section is
weak and ignored, it is directly represented as a rigid body.
So, the segmentOO’ is taken as the first rod of the equivalent
multirigid-body and spring (MRB&S) model.

,en, we need to determine the installation position on the
LFA for every tilt sensor. Tilt sensor 1 can be installed at the
root of the LFA at will, while for tilt sensor 3, it can be seen that
the vibration of rod 3 can be obtained more significantly when
it is installed at the end. ,e key task in this stage is to de-
termine the installation location of tilt sensor 2, that is, to
determine the value of lk1. Furthermore, we need to determine
themass and length of each rod in the equivalentmodel and the
stiffness coefficient of the torsion spring.
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,e specific process is as follows: firstly, the length of two
equivalent rigid bars and the sensor installation position on
the LFA are determined by parameter matching according to
the second-order mode shape of the continuous arm. ,e
mass of two rigid bars and the stiffness coefficients of two
equivalent torsion springs are unknown. ,en, the static
deformation of the cantilever section, the static moment at

the root, and the mode shapes of the first twomodes are used
to determine the four undetermined coefficients.

2.1. Dynamic Model of the Two-Rod and Two-Spring
Mechanism. We use the Euler–Lagrange formulism to de-
rive the model of the system. ,e kinetic energy Ti and
potential energy Vi of rod 2 and rod 3 are

T2 �
1
2

Ic2 + m2l
2
c2􏼐 􏼑 _θ

2
2,

V2 � m2glc2 sin θ2,
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1
2
m3 l

2
2
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2
2 + l

2
c3
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(1)

,e elastic potential energy of two equivalent torsion
springs is

Vk �
1
2

k1 θ1 − θ2( 􏼁
2

+ k2 θ2 − θ3( 􏼁
2

􏽨 􏽩. (2)

Substituting the terms in equations (1) and (2) into the
Lagrange operator L(q, _q) � T(q, _q) − V(q, _q),
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Figure 1: ,e LFA is equivalent to a MRBS system.
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According to the principle of Lagrange dynamics,

d
dt

zT

z _qj

􏼠 􏼡 −
zT

zqj

� τj. (4)

,e equilibrium equation about θ2 and θ3 is as follows:

m2l
2
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(5)

Let θi0 be the initial value of the angle when the ith rod is
in the static state, and θi of each rod occurs near its respective
static values, and the angle increment θδi deviating from the
equilibrium position is small. It means that θδi � θi − θi0.

,e differences between the elevation angles of the
adjacent rigid bars are small, generally not more than 0.09
radians in the equilibrium state. Using the small deforma-
tion assumption for linearization, the value of (6) is ap-
proximately determined.
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cos θ1 − θ2( 􏼁 ≈ 1,

cos θ2 − θ3( 􏼁 ≈ 1

sin θ1 − θ2( 􏼁 ≈ θ1 − θ2,

sin θ2 − θ3( 􏼁 ≈ θ2 − θ3,

_θ
2
2 ≈ 0, _θ

2
3 ≈ 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

,en, equation (5) can be simplified as

m2l
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⎪⎩
(7)

2.2. Equivalent of Static Conditions. ,e static balance in-
cludes two aspects: one is the balance state of the static
deformation of the cantilever section, and the other is the
balance between the root bending moment and the moment
caused by the mass of the arm. ,e static equilibrium de-
formation and modal shape information of the actual LFA

can be obtained by experiment, analysis, or finite element
calculation. In the state of static equilibrium, according to
the balance relationship between the torsion of the equiv-
alent springs and the gravity of the rigid rods, the following
equation can be obtained:

k1 θ10 − θ20( 􏼁 �
1
2
m2gl2 cos θ20 + m3g l2 cos θ20 +

1
2
l3 cos θ30􏼒 􏼓,

k2 θ20 − θ30( 􏼁 �
1
2
m3gl3 cos θ30.

⎧⎪⎪⎪⎪⎪⎨
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(8)
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Here, the two expressions can be merged into the
following:

k1 θ10 − θ20( 􏼁 − k2 θ20 − θ30( 􏼁 �
1
2
m2 + m3􏼒 􏼓gl2 cos θ20.

(9)

According to the triangular function formulas, we take
the following approximation:

cos θi ≈ cos θi0 − sin θi0 · θδi. (10)

Equation (7) can be simplified as (11) when the center of
each rod is at the mass center.
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2.3. Equivalent of Two Mode Shapes. ,e characteristic
matrix of the undamped simple harmonic vibration of the
mechanism composed of two rods and two springs can be
expressed as

B � K − ω2M
−k2 − aω2

k1 + k2 − c − bω2

k2 − e − dω2
−k2 − aω2

⎡⎣ ⎤⎦. (13)

For a specific mode of a certain order, ratios R1 and R2 of
the two tilt sensors’ values can also be obtained by exper-
iments, physical operation, or finite element method. ,e
mechanism with two rigid rods and two torsion springs can
be equivalent to the extension of the LFA in the sense of
dynamics. In addition to the equivalent natural angular
frequency, it must also meet the equivalent mode shape. In

the equivalent rigid body model, the natural angular fre-
quency values of the corresponding modes are substituted
into characteristic matrix B in (13), and the adjoint matrix
adjBω(i0)

is obtained. In each adjoint matrix shown in (14),
any row vector of the matrix can be used as the mode vector
expressed by angle values. Corresponding to the LFA in
practice, ratios R1 and R2 of the two amplitudes corre-
sponding to the position of tilt sensor 2 and tilt sensor 3 in
the first two modes can be obtained by modal analysis or
modal experiment.

adjB ωi0( ) �
−k2 − aω2

i0 −k1 − k2 + c + bω2
i0

−k2 + e + dω2
i0 −k2 − aω2

i0

⎡⎢⎣ ⎤⎥⎦. (14)

Two equivalent equilibria (15) can be obtained by
making the ratio of the row vector elements in the equivalent
mode shape and the corresponding mode angle ratio of the
cantilever section of the LFA.

k2 + aω2
10 � k1 + k2 − c − bω2

10􏼐 􏼑R1,

k2 + aω2
20 � k1 + k2 − c − bω2

20􏼐 􏼑R2.

⎧⎪⎨

⎪⎩
(15)

In the state of static balance, to maintain the balance of
the cantilever section, it is necessary to provide a static
moment τc0 at the root, which is equal to the gravity mo-
ment. ,erefore, there is the following equation:

τc0 �
1
2
m2gl2 cos θ20 + m3g l2 cos θ20 +

1
2
l3 cos θ30􏼒 􏼓.

(16)

By combining equations (9), (15), and (16), the mass of
equivalent rods (m2 andm3) and the stiffness coefficients (k1
and k2) of equivalent torsion springs can be obtained by the
numerical solution.

3. Equivalent Rigid Body Dynamic Model

After obtaining the equivalent two-bar and two-spring
mechanism of the cantilever section, the whole equivalent
three-bar and two-spring mechanism can be constructed
by considering the parameters of the root section of the
arm.

3.1. 8e Complete Lagrange Dynamic Model. ,e transla-
tional kinetic energy of the three rods is

Tpi �
1
2
mi

dxci

dt
􏼠 􏼡

2

+
dyci

dt
􏼠 􏼡

2
⎛⎝ ⎞⎠ (i � 1, 2, 3). (17)

,e rotational kinetic energy of the ith rod around mass
centers is

Tri �
1
6
mil

2
ci

_θ
2
i . (18)

,e potential energy of three links is
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V1 �
1
2
m1gl1 sin θ1,

V2 � m2g l1 sin θ1 +
1
2
l2 sin θ2􏼒 􏼓,

V3 � m3g l1 sin θ1 + l2 sin θ2 +
1
2
l3 sin θ3􏼒 􏼓.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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,e elastic potential energy of two equivalent torsion
springs is

Vk1 �
1
2
k1 θ1 − θ2( 􏼁

2
,

Vk2 �
1
2
k2 θ2 − θ3( 􏼁

2
.

⎧⎪⎪⎪⎪⎪⎨
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,e total potential energy of the system is

V � 􏽘
3

1
Vi + 􏽘

2

1
Vki. (21)

Substitute the terms in (17)–(21) into the Lagrange
operator, and then use the Lagrange function to obtain ith
Lagrange (22) for the generalized coordinate θi.
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l2l3 cos θ2 − θ3( 􏼁€θδ2 − sin θ2 − θ3( 􏼁 _θ2 − _θ3􏼐 􏼑 _θ2􏽨 􏽩
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_θ1 _θ3 sin θ1 − θ3( 􏼁 −
m3
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l2l3

_θ2 _θ3 sin θ2 − θ3( 􏼁 +
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(22)

3.2. Linear Approximation. It is assumed that each angle θi

vibrates in a small range near its static position θi0. And
when the springs are in the state of static balance, the fol-
lowing equation exists:

k1 θ10 − θ20( 􏼁 � m2glc2 cos θ20 + m3g l2 cos θ20 + lc3 cos θ30( 􏼁,

k2 θ20 − θ30( 􏼁 � m3glc3 cos θ30.
􏼨 (23)
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,e static balance torque of the first link required to
maintain the balance state is

τ0 � m1glc1 cos θ10 + m2g l1 cos θ10 + lc2 cos θ20( 􏼁 + m3g l1 cos θ10 + l2 cos θ20 + +lc3 cos θ30( 􏼁. (24)

,e torque increment is τδ � τ − τ0. Ignoring the higher-
order infinitesimal and then substituting (23) and (24) into
(22), it will be expressed as

a1
€θδ3 + a2

€θδ2 + a3
€θδ1 + a4θδ2 + a5θδ1 � τδ,

a6
€θδ3 + a7

€θδ2 + a2
€θδ1 + a8θδ3 + a9θδ2 + a4θδ1 � 0,

a10
€θδ3 + a6

€θδ2 + a1
€θδ1 + a11θδ3 + a8θδ2 � 0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(25)

where

a1 �
1
2
m3l1l3, a2 �

1
2
m2 + m3􏼒 􏼓l1l2,

a3 �
1
3
m1 + m2 + m3􏼒 􏼓l

2
1,

a4 � −k1,

a5 � k1 −
1
2
m1 + m2 + m3􏼒 􏼓gl1 sin θ10,

a6 �
1
2
m3l2l3,

a7 �
1
3
m2 + m3􏼒 􏼓l

2
2,

a8 � −k2,

a9 � k1 + k2 −
1
2
m2 + m3􏼒 􏼓gl2 sin θ20,

a10 �
1
3
m3l

2
3, a11 � k2 −

1
2
m3gl3 sin θ30.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(26)

4. Determination of the DF Output

For the single-input multiple-output (SIMO) model, the
DF method is used to find an output, and the general
controller is used to achieve the purpose of LFA vibration
suppression. Under this idea, the dynamic relationship
between the output variables in the underactuated system
can make the system into a SISO form, which can be easily
controlled.

4.1. Combination of 3 Tilt Angles. Equation (25) can be
written as

M€q �

τδ
0
0

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦ − Nq, (27)

while

q �

θδ3
θδ2
θδ1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

€q �

€θδ3
€θδ2
€θδ1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

M �

a1 a2 a3

a6 a7 a2

a10 a6 a1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

N �

0 a4 a5

a8 a9 a4

a11 a8 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(28)

Premultiplying both sides of (27) by the inverse matrix
M− 1, it will be

€q �
􏽥Q

Q

τδ

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
− Nq

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (29)

where

􏽥Q �

a1a7 − a2a6 a3a6 − a1a2 a
2
2 − a3a7

a2a10 − a1a6 a
2
1 − a3a10 a3a6 − a1a2

a
2
6 − a7a10 a2a10 − a1a6 a1a7 − a2a6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Q � a
2
1a7 − 2a1a2a6 + a

2
2a10 + a

2
6a3 − a3a7a10.

(30)

In order to control the arm to be stable in a certain
attitude, the three elevation angles will be balanced at a
special situation under an angle command, so the linear
combination of three tilt angle increments is used to form a
differential flatness output, namely,

F � μ2θδ3 + μ1θδ2 + θδ1. (31)

Premultiplying by μ2 μ1 1( 􏼁 at both sides of (29), the
result is
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€F �
􏽥Q

Q
μ2 μ1 1( 􏼁

τδ

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
− Nq

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (32)

In addition, the second derivative for both sides of (31)
with respect to time is

€F � μ2€θδ3 + μ1€θδ2 + €θδ1. (33)

4.2. Parameters of the DFOutput. ,e core of the DF method
is that the selected flatness output and its continuous multi-
order derivatives can represent them state variables and n input
variables algebraically as a basis vector. It means that the
flatness output and its derivatives are linearly independent,
which can represent all the original state variables and input
variables linearly to satisfy this condition [19]. ,erefore, the
flatness processing is to find an output y and its (m+n−1)
derivatives so that the (m+n)-dimensional basis vector ele-
ments can represent all the state variables and input variables
linearly. Here are three angular outputs and three derivatives of
the angular outputs and a force input in formula (25), a total of
seven variables must be expressed linearly by the vector basis of
the flatness output F. ,erefore, the differential flat output and
at least the six-order differentiations are needed to decouple the
original system.

On the contrary, τδ is the only input; this means, under
the only input, the other six variables must respond con-
currently. In short, θδi must be expressed by the fourth-order
or much lower differential terms of F; otherwise, the second-
order derivative term of angles must be expressed as a linear
combination of more than six-order differential terms of F.
When equation (33) contains only the second derivative of F
and the increment of each angle, the system input cannot be
decoupled in this case. So, the solution to equation (32) is to
use the following constraints:

μ2 �
a
2
6 − a7a10 + a2a10 − a1a6( 􏼁μ1

a2a6 − a1a7
. (34)

Under such a condition, (32) is transformed into (30).

€F � −
a9Q1 + a15Q2( 􏼁θδ3 + a10Q1 + a9Q2( 􏼁θδ2 + a4Q1θδ1

Q
,

(35)

where

Q1 � a3a6 − a1a2( 􏼁μ2 + a
2
1 − a3a10􏼐 􏼑μ1 + a2a10 − a1a6,

Q2 � a
2
2 − a3a7􏼐 􏼑μ2 + a3a6 − a1a2( 􏼁μ1 + a1a7 − a2a6.

⎧⎪⎨

⎪⎩

(36)

Let Q1 � pQ, p ∈ R; we can get

Q2 �
1 − pa2( 􏼁Q

a1
. (37)

In this way, two undetermined coefficients can be rep-
resented only by p in the following equation:

μ1 �
a6 + a1a7 − a2a6( 􏼁p

a1
,

μ2 �
a10 + a1a6 − a2a10( 􏼁p

a1
.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(38)

Substituting (38) into (32), we can get
€F � n3θδ3 + n2θδ2 + n1θδ1, (39)

where

n1 � −pa4,

n2 �
a2a8 − a1a9( 􏼁p − a8

a1
,

n3 �
a2a11 − a1a8( 􏼁p − a11

a1
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(40)

Taking the second derivative of both sides of equation
(39) gives the following result:

F
(4)

� n3
€θδ3 + n2

€θδ2 + n1
€θδ1. (41)

,e first and third forms of (27) are combined with (39)
and are arranged into the following form:

a1
€θδ3 + a2

€θδ2 + a3
€θδ1 � τδ − a4θδ2 − a5θδ1,

a10
€θδ3 + a6

€θδ2 + a1
€θδ1 � −a11θδ3 − a8θδ2,

p a1a6 − a2a10( 􏼁 + a10􏼂 􏼃€θδ3 + p a1a7 − a2a6( 􏼁 + a6􏼂 􏼃€θδ2 + a1
€θδ1 � a1

€F

.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(42)

By solving equation (42), €θδi can be expressed by
θδi , τδ in the formula which contains the unknown
variable p. Substitute €θδi into equation (41) to obtain

the expression of F(4). According to the need of
solving, only the coefficient of τδ in this expression is
listed here.
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a1a6 a8 + a1a9p( 􏼁 − a11 a2a6 − a1a7( 􏼁 a2p − 1( 􏼁 + a10 a1a4a7p + a
2
2a8p − a2 a8 + a1a9p( 􏼁􏽨 􏽩

a3a
2
6 − 2a1a2a6 + a7a

2
1 + a10 a

2
2 − a3a7􏼐 􏼑

. (43)

Taking the sameway as (34), let coefficient (43) be zero to
eliminate the possible decoupling relationship between the

fourth derivative of output F and the input torque. ,en, we
can get

p �
a1a7a11 + a2a8a10 − a2a6a11 − a1a6a8

a1a2a7a11 − a1a2a9a10 + a1a4a7a10 − a1a4a
2
6 + a

2
2 a8a10 − a6a11( 􏼁 + a

2
1 a6a9 − a7a8( 􏼁

. (44)

,e explicit expression of F can be obtained by
substituting the value of p into (33), and then substitute the
value of p into (41) to get the following equation:

F
(4)

� n6θδ3 + n5θδ2 + n4
€F , (45)

where

n4 �
a4a6a11 − a4a8a10 + a1a

2
8 − a1a9a11

a1a7a11 + a2a8a10 − a2a6a11 − a1a6a8
,

n5 �
a8

a1
b4 +

a4 a1a7a11 + a2a8a10 − a2a6a11 − a1a6a8( 􏼁

a1a4 a7a10 − a
2
6􏼐 􏼑 + a

2
2 a8a10 − a6a11( 􏼁 + a

2
1 a6a9 − a7a8( 􏼁 + a1a2 a7a11 − a9a10( 􏼁

⎡⎢⎣ ⎤⎥⎦,

b6 �
a11b5

a8
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(46)

Taking the second derivative on both sides of (46),

F
(6)

� n6
€θδ3 + n5

€θδ2 + n4F
(4)

. (47)

By solving equations (31), (33), (39), (41), (45), and (47)
simultaneously, the results can be obtained.

€θδ3 �
−n1n5

€F + n2n4 + n5 − n1n4μ1( 􏼁F
(4)

+ n1μ1 − n2( 􏼁F
(6)

n3n5 − n2n6 + n1n6μ1 − n1n5μ2
,

€θδ2 �
n1n6

€F + n1n4μ2 − n3n4 − n6( 􏼁F
(4)

+ n3 − n1μ2( 􏼁F
(6)

n3n5 − n2n6 + n1n6μ1 − n1n5μ2
.

€θδ1 �
n3n5 − n2n6( 􏼁 €F + n3n4 + n6( 􏼁μ1 − n2n4 + n5( 􏼁μ2􏼂 􏼃F

(4)
+ n2μ2 − n3μ1( 􏼁F

(6)

n3n5 − n2n6 + n1n6μ1 − n1n5μ2
.

θδ3 �
−n1n5F + n2n4 + n5 − n1n4μ1( 􏼁F

(2)
+ n1μ1 − n2( 􏼁F

(4)

n3n5 − n2n6 + n1n6μ1 − n1n5μ2
,

θδ2 �
n1n6F + n1n4μ2 − n3n4 − n6( 􏼁F

(2)
+ n3 − n1μ2( 􏼁F

(4)

n3n5 − n2n6 + n1n6μ1 − n1n5μ2
,

θδ1 �
n3n5 − n2n6( 􏼁F + n3n4 + n6( 􏼁μ1 − n2n4 + n5( 􏼁μ2􏼂 􏼃F

(2)
+ n2μ2 − n3μ1( 􏼁F

(4)

n3n5 − n2n6 + n1n6μ1 − n1n5μ2
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(48)
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Substituting the variables in (48) into the first formula in
(25), we can get

F
(6)

+ d1F
(4)

+ d2
€F + d3F � d4τδ, (49)

where

d1 �
a2 b1b4 + b6( 􏼁 − a1 b2b4 + b5( 􏼁 − a4b3 + a5b3 + a1b1b4 − a3 b3b4 + b6( 􏼁􏼂 􏼃μ1 + a4b1 − a2b1b4 − a5b2 + a3 b2b4 + b5( 􏼁􏼂 􏼃μ

a1b2 − a2b3 + a3b3 − a1b1( 􏼁μ1 + a2b1 − a3b2( 􏼁μ2
,

d2 �
a4 b3b4 + b6( 􏼁 + a3 b2b6 − b3b5( 􏼁 + b1 a1b5 − a2b6( 􏼁 − a5 b6 + b3b4( 􏼁μ1 + a5b5 + a5b2b4 − a4b1b4( 􏼁μ2

a1b2 − a2b3 + a3b3 − a1b1( 􏼁μ1 + a2b1 − a3b2( 􏼁μ2
,

d3 �
a5b2b6 − a5b3b5 − a4b1b6

a1b2 − a2b3 + a3b3 − a1b1( 􏼁μ1 + a2b1 − a3b2( 􏼁μ2
,

d4 �
b2b6 − b3b5 − b1b6μ1 + b1b5μ2

a1b2 − a2b3 + a3b3 − a1b1( 􏼁μ1 + a2b1 − a3b2( 􏼁μ2
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(50)

So far, all the angles and their second derivatives in the
dynamic model of the three-bar and two-spring mechanism
can be expressed linearly by F and its first six derivatives; that
is, when F is used as the controlled variable, the system is flat,
that is, the system is controllable.

5. The ADRC System Based on the DF Output

,e research of ADRC has experienced 30 years of explo-
ration. A large number of studies have proved that dynamic
systems, linear or nonlinear, under some conditions can be
transformed into the canonical form of cascade integrators
via feedback [20, 21]. ,is makes the control system have
excellent ability to resist internal and external disturbances,
even if the information of the model is very scarce.

,e vibration-suppressing control system for the LFA
based on ADRC, as shown in Figure 2, is constructed after

the output of the controlled object is synthesized into the DF
output.

We are more focused on the fast stabilization method of
the low-frequency large-amplitude oscillation. In order to
avoid the more complex response caused by substituting the
high-order terms into the controller and make full use of
ESO’s strong points [16], the high-order term together with
the error caused by the linearization of the model and other
neglected unmodeled uncertainties (ψ) and unknown ex-
ternal disturbance (D) are regarded as the integrated dis-
turbance; that is, f � D + ζ + d1F

(4) + F(6).
,en, formula (49) can be written as

€F � b0τδ − b1F + f D,ζ ,F(4) ,F(6)( ), (51)

where

b1 �
a5 n2n6 − n3n5( 􏼁 − a4n1n6

a4n3n4 + a1n1n5 − a3n3n5 + a4n6 − a2n1n6 + a3n2n6 − a5n6 + a5n3n4( 􏼁μ1 + a5b5 + a5n2n4 − a4n1n4( 􏼁μ2
,

b0 �
n2n6 − n3n5a5 − n1n6μ1 + n1n5μ2

a4n3n4 + a1n1n5 − a3n3n5 + a4n6 − a2n1n6 + a3n2n6 − a5n6 + a5n3n4( 􏼁μ1 + a5b5 + a5n2n4 − a4n1n4( 􏼁μ2
.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(52)

5.1.8eExtended StateObserver (ESO). We refer to the basis
of linear ADRC theory [22, 23]; consider f as an extended
state, and it is differentiable; that is, _f � h, h ∈ R.

,en, the extended system can be expressed as

_x � Ax+Bτδ + Eh,

y � Cx,
􏼨 (53)

where
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x �

F

_F

f

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

A �

0 1 0

−b1 0 1

0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

B �

0

b0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

C � 1 0 0􏼂 􏼃,

E � 0 0 1􏼂 􏼃
T
.

(54)

,e Luenberger observer shown in equation (55) is used
to observe the state of system (53) and the extended state
variable f.

_􏽢z � A􏽢z+Bτδ + L(y − 􏽢y),

􏽢y � C􏽢z.

⎧⎨

⎩ (55)

,e linear ADRC structure is used to place the poles at
(−ωo), while ωo is named as the bandwidth of the observer. It
means |λI-(A-LC)| � (λ + ωo)3.

,en, the observer gain is

L1 � 3ωo,

L2 � 3ω2
o − b1,

L3 � ω3
o.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(56)

5.2. 8e Controller. Based on observer (55) configured by
(56), the system (A-BK) is asymptotically stable, which
means that the generalized disturbance estimated by the
observer can be used for compensation in the controller so
that the generalized disturbance itself can be rejected. By
using the reasonable control law for the feedback control, the
system will be simplified as a canonical form of cascade
integrators.

F(t) ≈Bτ0(t)dt. (57)

,erefore, the control law is designed as

τδ(t) � 􏽥Kz. (58)

Use (59) to set the eigenvalue of the feedback controller
(A-BK) at (−ωc).

􏽥K�
1
b0

ω2
c − b1􏼐 􏼑 2ωc 1􏽨 􏽩. (59)

By substituting right model information into the
controller, the tuning range will be smaller; more

importantly, the burden of the observer can be effectively
reduced [24, 25]. ,e tuning of system parameters be-
comes simple; only ωc and ωo need to be adjusted. To a
certain extent, the wider the stability threshold of the
observer is, the more stable the system is. ,is method,
also known as the grey box method, is a way to utilize
model information as much as possible in the model-free
control process, which is also a beneficial development of
ADRC thinking.

6. The Prototype Experiment Based on the
DF Output

Equipment required for mechanized pollination of high
branches in agricultural production is shown in Figure 3.
,e working scenarios of the LFA include high crown
pruning, flower thinning, and picking. ,e overall arm
length is 4.9m, the length of the cantilever section above the
hinge point of the electric cylinder is 4.2m, the hollow
square aluminum tube used is 30mm in section width,
20mm in section height, and 2mm in wall thickness, and the
section moment of inertia is I � 1.1125 × 10− 8 m4.

6.1. 8e Equivalent of the Cantilever Part

6.1.1. Determination of the Rod Length and Sensor Instal-
lation Position. ,e cantilever section of the research object
is a structure with uniform material and constant cross
section, and the first two natural frequencies are obtained by
using the partial differential equation method [26].

ωi0 �
βil( 􏼁

2

l
2

���
EI

m

􏽲

, (60)

where material elastic modulus is E� 27GPa, length density
is m � 0.502 kg/m, and the constant terms β1l � 1.875
and β2l � 4.694. It can be concluded that the natural angular
frequencies of the first two modes are

ω10 � 4.88 rad/s,

ω20 � 30.6 rad/s.
􏼨 (61)

,e function of the first two modes is

r

K
LFA
Plant

τ(t)

ESO

FDifferential
Flatness

θδ1

θδ2

θδ3

-Z⌃3
-Z⌃2-Z⌃1

Figure 2: DF-based ADRC implementation framework.
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Wi(x) � cosh βix − cos βix −
cosh βil + cos βil

sinh βil + sin βil
sinh βix + sin βix( 􏼁, x ∈ [0, 1], i � 1, 2. (62)

,e mode function of the second mode and its first and
second derivative curves are shown in Figure 4. ,e first de-
rivative of the secondmode equation is zero at pointA1 with an
extension of 1.98m. ,en, according to the point where the
second derivative of the second mode function is zero, the
point with the most significant change of the rotation angle in
the vibration process is determined as the installation position
of tilt sensor 2.,e second derivative of the second-ordermode
curve equation of the beam is zero at the A2 point which is
0.91m away from zero; it means lk1� 0.91m, and tilt sensor 3 is
installed at the end of the beam.

6.1.2. Determination of Equivalent Model Parameters.
,e static deformation of the cantilever part of the LFA
under the effect of self-weight can be obtained by finite
element analysis or direct analysis or experimental mea-
surement for the beam with constant cross section. In this
paper, a statically balanced attitude is selected randomly.,e
optional elevation angles corresponding to each sensor
position are

θ10 � 0.88094 rad,

θ20 � 0.80419 rad,

θ30 � 0.77453 rad.

(63)

According to the Euler beam theory, the derivative of the
deflection curve of the beam can express the angle of the
section, so the derivative of the mode function can express
the natural mode of vibration in the form of angle. ,e first
derivative of the first-order mode function of the cantilever
section of the LFA is calculated by using (62), and the ratio of
angular mode function at A2 and A1 is R1 � 1.47. Similarly,
taking the first derivative of the second-order mode func-
tion, the angle ratio between A2 and A1 is R2 � −2.05.

Equations (9), (16), and (18) contain two equivalent
masses and two equivalent torsion spring stiffness. In ad-
dition, the part between the two hinged joints at the bottom
of the long arm is relatively strong, so it is regarded as a rigid
segment, and its mass and length are directly measured. In
this way, eight necessary parameters of the equivalent model
for the rods and springs of the LFA are determined quickly
and effectively, as shown in Table 1.

6.2. 8e Experiment and Result

6.2.1. Determination of the Parameter for the DF Output.
By substituting the constants in Table 1 into (44), the value of
p is 0.3562, and the coefficients of DF can be obtained:
μ1 � 2.544 and μ2 � 0.879. Due to the influence of elevation,
operating load, and other conditions, the static balance
condition under different attitudes is not easy to specify
continuously and accurately. It is unrealistic and unreliable
to set the target angle for the sensor position corresponding
to each equivalent bar. Under the assumption that the vi-
bration process is small angle deformation, an overall target
elevation angle θ0 is used as the unified target for the three
rods. In this way, we can get the differential flat output as
F � θ1 − θ0 + 2.544(θ2 − θ0) + 0.879(θ3 − θ0). ,e purpose
is to make F close to zero as soon as possible by controlling
the torque τδ.

6.2.2. Uncontrolled Free Vibration. An impact is applied in
the middle of the LFA, and a swing of about 9° amplitude is
produced at the endpoint while keeping the drive motor
locked during the experiment. Figure 5 depicts the process of
free vibration and gradual attenuation. Since there is no
complete constraint between the track chassis and the
ground, it can be seen from the data of tilt sensor 1 that the

TILT
SENSOR 1

TILT
SENSOR 2

TILT
SENSOR 3

ELECTRIC 
CYLINDER

LFB
MICRO

CONTROLLER

CRAWLER 
CHASSIS

Figure 3: Experimental prototype of the LFA.
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Figure 4: ,e second mode curve and its derivative curve.

Table 1: Parameters of the equivalent mechanism.

Symbol Value Unit
m1 5.85 kg
m2 1.4235 kg
m3 0.663 kg
l1 0.7 m
l2 1.98 m
l3 2.22 m
k1 779.8012 N·m/rad
k2 946.1959 N·m/rad
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Figure 5: Free vibration curve with no control.
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whole arm vibrates significantly under the severe impact at
the initial stage, which even causes the chassis to swing.
Another problem is that the effect of damping is not con-
sidered in the process of control model derivation, but the
actual experimental object has its own weak distributed
damping characteristics, so the LFA stabilizes slowly without
any control. After being impacted, the arm needs about 90
seconds to stabilize slowly until the end vibration amplitude
is less than 1°.

6.2.3. PID Controller Experiment. ,e control factors of a
traditional PID controller are obtained by using the turn
tool. ,e PID controller coefficients are as follows:

proportion coefficient of 8, differential coefficient of 4, and
integral coefficient of 0.2. ,e Bode diagram of the closed-
loop system is shown in Figure 6. We can see that the phase
margin is 69. In order to suppress the low-frequency residual
vibration rapidly, the system can be stable between the first
and second natural frequencies.

,e PID controller with a proportion coefficient of 8,
differential coefficient of 4, and integral coefficient of 0.2 is
adopted. It can be seen from the response curve of Figure 7
that the initial impact makes the endpoint vibrate with an
amplitude of about 8°. It takes 9 seconds for the terminal to
reach the state of amplitude close to 1°. After that, the
relatively stable stage is in the state of small-amplitude high-
frequency vibration. In order to prevent more violent
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Figure 6: Bode diagrams for closed-loop systems with the PID controller.
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Figure 7: Vibration curve with the PID controller.
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dynamic response, the gain used in this experiment is rel-
atively small. ,e PID controller uses high-frequency re-
sponse to compensate the angle deviation. Comparing
Figures 5 and 6, it is obvious that although this method can
eliminate the jitter of large amplitude, the vibration fre-
quency of small amplitude is more than twice that of free
vibration.

6.2.4. ADRC Experiment. It is an attractive advantage of
ADRC to substitute model information into the controller to
reduce the burden of the observer. Here, eight values of the
mass and length of the equivalent rigid body model and the
stiffness coefficient of the equivalent torsion spring are
substituted into (51), and the two important results are
obtained here: bo � 0.326 and b1 � −3.701.

Take these two values into controller (60), and set the
observer bandwidth as 1.1 and the controller bandwidth as
1.32. ,e experimental effect is shown in Figure 8. ,e
impact load is also applied in the middle of the LFA, which
makes the end jitter about 10°. It took six seconds for the
control system to reduce the amplitude to less than 3°. It is
worth noting that, in this way, the records of the second and
third tilt sensors show that the oscillation frequency is less
than 1Hz. After 9 seconds, the amplitude dropped to less
than 1°.,e duty cycle of the controller output is close to 0.9,
which shows that the torque capacity of the motor is utilized
well.

7. Conclusion

It is simple and effective to establish a multibody dynamic
model to characterize the LFA by means of statics and mode
equivalence. ,e linear independence method is used to
obtain the differential flat output from the three outputs,

which makes the system a SISO structure. ,e controller
based on the ADRC principle makes full use of the infor-
mation of the model and skillfully uses the high-order dy-
namic model obtained from the differential flat output in the
form of the extended state observer. ,e effectiveness and
superiority of themethod are shown in the experiment of the
physical model. ,e control system based on the equivalent
rigid body model, differential flatness, and ADRC can give
full play to the ability of driving components and signifi-
cantly reduce the switch frequency of the motor.
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