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We begin by analyzing, using basic physics considerations, under what conditions it becomes energetically favorable to use
aggressive regenerative braking to reach a lower speed over “coasting” where one relies solely on air drag to slow down. We then
proceed to reformulate the question as an optimization problem to find the velocity profile that maximizes battery charge. Making
a simplifying assumption on battery-charging efficiency, we express the recovered energy as an integral quantity, and we solve the
associated Euler–Lagrange equation to find the optimal braking curves that maximize this quantity in the framework of variational
calculus. Using Lagrange multipliers, we also explore the effect of adding a fixed-displacement constraint.

1. Introduction

Regenerative braking is a process by which some of the initial
kinetic energy of a vehicle, rather than wasted as heat, is instead
recovered by converting it into electrical energywhich in turn is
stored as chemical energy in the battery [1]. In the engineering
literature, this topic is usually approached from a technological
perspective [2–6]. In contrast, here we take a more simplified
yet fundamental approach to the subject drawing from classical
mechanics and the calculus of variations.

(ere has recently been some debate over the benefits of
“1-pedal driving”—this is a mode where as soon as the driver
of an electric vehicle (EV) releases pressure on the accel-
erator pedal, the electric generator is engaged, the battery
charges up, and the EV begins to slow down. Tesla, for
instance, makes this mode standard in all its cars. Other
manufacturers, such as Volkswagen (VW), have opted to
preserve the driving experience of conventional internal-
combustion-engine (ICE) cars, whereby releasing the ac-
celerator pedal allows the car to coast. Coasting means that

neither the motor nor the generator are engaged, and the
vehicle slows down solely due to aerodynamic drag and
other friction. Some people have argued that coasting is, in
fact, always best in terms of efficiency, assuming no con-
straints on the stopping distance [7].

In this paper [8], we start by comparing the two strategies
over the same fixed displacement, and we find that aggressive
regenerative braking is superior to coasting as long as the final
speed is small enough. While it is true that both the electric
motor and the generator do not operate at perfect efficiency
and produce losses, lowering the speed faster lowers the drag
force on the vehicle (relative to coasting). (us, there exists a
trade-off: regenerative braking recovers some of the initial
kinetic energy (though not all of it), but the electric motor then
has to use additional energy to keep the vehicle in motion. Is
more energy initially stored in the battery as is later drawn from
it? As we will see, the answer often is yes.

In the second part of the paper, we reformulate the
question in terms of an optimization problem. Here we ask the
following: what should the speed profile be that leaves the
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battery in the largest state of charge (SOC)? (is recovered
energy is an integral quantity, and we thus formulate the as-
sociated Euler–Lagrange equation whose solution maximizes
this quantity and yields the optimal velocity as a function of
time. Modeling the regenerative-braking efficiency in the
simplest, most tractable way, we solve this non-linear differ-
ential equation numerically, as well as analytically in integral
form. Finally, we examine the effect of adding a fixed-dis-
placement constraint via a Lagrange multiplier.

2. Recoverable Energy Considerations

2.1.Coasting. In this scenario, we would like to rely solely on
air drag and rolling friction to slow our EV down from an
initial speed of vi to a final speed of vf. Here we ignore the
contributions of rolling friction—it only exhibits a weak
dependence on vehicle speed [9] and should thus result in a
similar energy loss when comparing coasting with regen-
erative braking. What is the final state of the battery relative
to its initial state while coasting? It is clear that they are the
same. No energy is transferred to or from the battery.

For the sake of comparison with the regenerative-
braking scenario, let us calculate the accumulated dis-
placement for this coasting process. Let us assume that the
drag force is quadratic in velocity, such that

FD �
1
2
ρACdv

2
� Dv

2
, (1)

where A is the cross-sectional area, ρ is the density of air, and
Cd is the drag coefficient, and we have combined these
parameters into a single constant, D. (is form of the drag
force is valid for relatively high speeds, such as a car on a
highway, but fails at low speeds. We thus arrive at the
following differential equation governing coasting:

m _v � −Dv
2
, (2)

where m is the car mass. Equation (2) has the well-known
analytical solution

1
v(t)

�
1
vi

+
D

m
 t. (3)

(e displacement, Δx � 
tc

0 v(t)dt, can then be found,
after a few steps.

Δx �
m

D
ln

vi

vf

 . (4)

It is clear from equation (4) that we cannot use the
quadratic-drag assumption down to a vf of zero.

2.2. Regenerative Braking. Instead of coasting, let us now try a
different strategy: we will slow the EV down quickly from vi to
vf using regenerative braking, and then we will continue to
drive at vf until we have covered the same distance, Δx, as we
did in the coasting scenario. For sake of simplicity, let us further
assume that in the braking phase, the speed drops linearly in
time, and that we accomplish this part in a time, tr, as shown in
Figure 1. As we will see in Section 3, this constant-acceleration

strategy is not optimal and can still be improved upon, but it
serves as a good starting point.(e total displacement can now
be expressed as

Δx � vftr +
1
2

vi − vf tr + vf tf − tr  �
1
2

vi − vf tr + vftf.

(5)

Setting this expression equal to equation (4) for coasting
yields

tf �
(m/D)ln vi/vf 

vf

−
vi − vf

2vf

tr. (6)

(is tf must be longer than the coasting time, tc, of
course.

Next, let us look at the battery SOC during the two
stages—the initial regenerative-braking stage, followed by
the constant-speed stage. First, how much energy can be
transferred to the battery during the first stage? Here kinetic
energy is converted to electrical energy and then stored as
chemical energy in the battery. Let us assume that the ef-
ficiency from kinetic to chemical-battery energy is given by
η. We then have that

ΔE(1)
batt � η |ΔT| − W

(1)
fric , (7)

with |ΔT| � (1/2)m(v2i − v2f). Equation (7) can also be
regarded as a definition of η, the regenerative efficiency
[10, 11]. But what is W

(1)
fric for this stage?

We know that W
(1)
fric �  FDdx � D 

tr

0 v3dt, where the
speed is given by

v(t) � vi −
vi − vf

tr

 t, (8)

describing the constant deceleration part shown in Figure 1
(blue line). If we denote vi − vf by w, expand out the cubic
term, and change variables of integration, we can show that

W
(1)
fric � Dtr v

3
i −

3
2
v
2
i w + viw

2
−
1
4
w

3
 . (9)

We can then substitute equation (9) into equation (7).
Now let us turn to the second stage. Here the electric

motor has to simply counteract the drag force. (e work
done by the drag force is given by

W
(2)
fric � Dv

2
fΔx2 � Dv

3
f tf − tr , (10)

with tf given by equation (6).
Assuming that the efficiency of converting chemical

energy stored in the battery to electrical and thenmechanical
energy is ϵ, we arrive at

ΔE(2)
batt � −

1
ϵ
W

(2)
fric, (11)

where W
(2)
fric is given by equation (10), and so

ΔEbatt � ΔE(1)
batt + ΔE(2)

batt. (e problem is then reduced to
determining the sign of ΔEbatt.
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(is expression for ΔEbatt is still fairly complicated and
includes 7 parameters: vi, vf, tr, D, m, η, and ϵ. Let us
simplify things by analyzing the limit of short tr, such that
tr≪ tf. In this limit of tr⟶ 0, the equations simplify
significantly, starting with equation (6), where we can drop
the second term. Furthermore, W

(1)
fric in equation (9) is zero

in this limit, and we arrive at

ΔEbatt �
1
2

m v
2
i − v

2
f η − mv

2
f ln

vi

vf

 
1
ϵ
. (12)

In other words, we have to determine the sign of the
following expression:

M �
v
2
i

v
2
f

− 1⎛⎝ ⎞⎠η − 2 ln
vi

vf

 
1
ϵ
. (13)

Equation (13) is plotted in Figure 2 as a function of speed
ratio for two different sets of efficiencies. We see that for
speed ratios only slightly larger than 1, M is negative. For
larger speed ratios, M always turns positive. (e crossing
depends sensitively on the efficiencies of the motor and
generator, with lower efficiency pushing that break-even
point out to larger speed ratios, vi/vf.

(e conclusion is that coasting is preferable when the final
target speed is not substantially below the initial speed, i.e., for
instances where the desired slowdown is only moderate. For
instances where a more dramatic slowdown is desired, ag-
gressive regenerative braking wins out. A quick calculation
reveals that if we want to slow down to half of our initial speed,
say from 60mph to 30mph, and assuming that η � ϵ, any
efficiency larger than η � ϵ � 68% will favor regenerative
braking.

2.3. A Concrete Example. So far, the treatment has been
theoretical. To make the conclusions more concrete, let us
calculate actual numbers from a speed-down experiment
with a Tesla (Model 3) [12]. For concreteness, consider
decreasing the speed from 50mph (22.35m/s) to 25mph
(11.18m/s) and compare regenerative braking to coasting.
(e parameters of this vehicle are given as follows: the drag
coefficient Cd � 0.23, the frontal area A� 2.22m2, and the
weight of the car (with a driver) m� 1280 kg [13]. (e
density of dry air is ρ � 1.225 kg/m3.

Assuming an efficiency of ϵ � η � 0.75, tf is calculated
from equation (6) as
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Figure 1: Speed as a function of time for the two processes: coasting (red line) and regenerative braking (blue line) from vi to vf. (e
relevant times are indicated on the horizontal axis.

4

3

2

1

0

-1

M

3.02.52.01.51.0
vi/vf

Figure 2:(e expressionM of equation (13) plotted as a function of
the speed ratio. (e red line is for ϵ � η � 0.8, and the blue line is
for ϵ � η � 0.6.
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tf � 253.8 − 0.5tr. (14)

Next, from equations (7) and (11) and ΔEbatt � ΔE(1)
batt

+ΔE(2)
batt, we get

ΔEbatt � 32103.7 − 354.7tr. (15)

According to equations (14) and (15), tf and ΔEbatt have
a linear relationship with tr, and ΔEbatt is positive only when
tr < 92 s. Furthermore, we can also get the time of coasting
tc � 183 s from equation (3), and thus we explicitly verify the
time ordering, tr < tc < tf when ΔEbatt > 0.

In an actual speed-down experiment with a Tesla Model
3 we were able to reach a minimum tr of around 5.0 s. (is is
much below the theoretical cutoff value of 92 s (where
ΔEbatt � 0), as calculated above. We have to remember,
however, that calculated tc and tr are too long compared to
realistic numbers, as the real dissipation is not just in the
form of air drag but also includes rolling friction (tire and
road) and internal friction. Nonetheless, 5 s is significantly
below 92 s, and it is also well below realistic coasting times. It
is thus very likely that this speed-down experiment left the
battery with a larger charge than what coasting would have
accomplished.

3. Optimizing Regenerative Braking

3.1. Charging Efficiency Considerations. From the previous
discussion, and in particular from equation (15), it becomes
clear that without any further consideration of the charging
efficiency involved, the best strategy is to brake very severely
to reach the desired target speed as quickly as possible and
then to remain at that constant speed for the rest of the way.
(is was also embodied in our examined limit of very short
tr. As we now show, a variational calculus formulation of
that problem confirms this observation. In an initial attempt
to shift into this framework, we seek to maximize the fol-
lowing functional:

S � 
T

0
Ldt, (16)

where

L � L[v, _v] � −mv _v − Dv
3
. (17)

(e expression forL is derived from the combination of
|dT| � −mv _vdt and dWfric � Dv3dt (where T denotes the
kinetic energy). (e associated Euler–Lagrange equation,

d
dt

zL

z _v
  �

zL

zv
, (18)

then quickly leads to the result that v(t) � 0.
If we think about it a bit, this result should not be

unexpected. Since we have assumed that the regenerative
efficiency, η, is entirely constant, it makes sense that the
energetically best thing we could do is to immediately slow
down to zero. If we have a constraint that we must travel a
certain distance, i.e., that 

T

0 v(t)dt � d, the analysis can be
modified by adding a Lagrange multiplier, but the end result
is similar: it is best to immediately slow down to a small
constant speed (consistent with the distance, d).

It is clear that the culprit for this trivial answer is our
assumption of constant efficiency. In reality, what EVs do
when they need to slow down quickly is to blend in the
physical brakes to assist the regenerative braking. (e more
severe the required deceleration is, the more heavily the EV
relies on brake pads and rotors. (is means that the effi-
ciency of converting kinetic energy into battery energy goes
down significantly as the braking action quickens. (e
battery can only accept so much power delivered to it, and
this maximum power also depends sensitively on the battery
SOC and temperature. Even before we reach that power
limit, Ohmic losses tend to increase with charging power to
reduce efficiency [11, 14], and friction braking is often
blended in [4, 5, 10].

How should we model these effects on efficiency? To
start, it is clear that the efficiency is a monotonically de-
creasing function of the braking power that the battery
ideally would be expected to “absorb.” (is power, in turn,
could be approximated by the reduction in kinetic energy of
the vehicle, P ≈ − dT/dt � −mv _v. (us, we can write
η � η(p) � η(v, _v). We will later choose a linearly decreasing
function. Such choice of η(P), while not accounting for the
full complexity, does capture the overall effect on efficiency
heuristically and keeps the mathematics tractable.

3.2. Optimal Braking Curves without Distance Constraints.
Informed by these considerations, we now seek to maximize
the following functional:

S � 
T

0
η(v, _v) −mv _v − Dv

3
 dt. (19)

(e function, η(v, _v), should be close to η0 for low v _v and
then decrease for larger v _v.

Let us next substitute this new L of equation (19) into the
Euler–Lagrange equation, equation (18), and this returns a
fairly complicated equation with several terms:

zη
zv

−
d
dt

zη
z _v

   −mv _v − Dv
3

  � η 3Dv
2

  − _ηmv +
zη
z _v

−mv€v − m( _v)
2

− 3Dv
2

_v . (20)
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It is interesting to note that the first part of equation
(20) is in the form of an Euler–Lagrange equation in-
volving η as the functional. We must now specify a
functional form for η to proceed. To keep things math-
ematically tractable, let us choose the following functional
form for η:

η(v, _v) � η0 + b(mv _v). (21)

Here we have assumed that the efficiency drops linearly
with power; the two parameters are the y-intercept η0 and
the slope, b. Note that b here is positive, since _v is negative. A
side benefit of this choice for η is that it forces the left side of
equation (20) to zero, yielding

zη
z _v

mv€v + m( _v)
2

+ 3Dv
2

_v  + mv _η − 3ηDv
2

� 0. (22)

From equation (21), (zη/z _v) � bmv and (zη/zv) � bm _v,
and we get

mv _η � mv
zη
zv

_v +
zη
z _v

€v  � bm
2
v( _v)

2
+ bm

2
v
2
€v . (23)

Substituting equations (23) and (21) into equation (22)
yields (after a few steps) the following differential equation:

2bm
2
v
2
€v + 2bm

2
v( _v)

2
− 3η0Dv

2
� 0. (24)

Although not imperative, it can be helpful to non-
dimensionalize equation (24). For this purpose, we intro-
duce the non-dimensional quantities u and τ, defined as
τ � t/α, with α � (m/Dvi), and u � α(D/m)v � v/vi.
Inserting these definitions into equation (24), we arrive at
the governing equation:

u
2
u″ + u u′( 

2
− cu

2
� 0. (25)

Here the prime indicates differentiation with respect to
τ, and

c �
3α3η0D

2

2m
3
b

�
3η0

2Dbv
3
i

. (26)

Equation (25) represents a second-order non-linear
differential equation that we can reduce to a first-order one.
Dividing by u2 and introducing w � u′, we can rewrite
equation (25) in the following form:

dw

du
+

w

u
�

c

w
. (27)

We recognize this as a Bernoulli-type equation, which
can be solved to obtain

w(u) � −

��������

2cu
3

+ k1



�
3

√
u

. (28)

Here k1 is a constant of integration that can be computed
from the initial conditions as follows: since
w(1) � u′(τ � 0) � u0′, equation (28) leads to
k1 � 3(u0′)

2 − 2c.
To obtain u(τ), we remember that u′ � w. (us,


u

1

du

w(u)
� 

τ

0
dτ, (29)

and finally

τ � 
u

1

�
3

√
udu

��������

2cu
3

+ k1

 . (30)

(e integral on the right side of equation (30) can be
evaluated in closed form (which would involve hyper-
geometric functions) or numerically integrated.

Alternatively, we could of course solve the original dif-
ferential equation, equation (25), numerically by specifying the
initial conditions (u(0), u′(0)). In either case, it is important
to estimate realistic values of c given by equation (26). Every
constant therein is straightforward with the exception of b. To
get a reasonable estimate of this constant, we can start with
maximum charging rates for the Tesla Model 3 (SR+) of about
100 kW. It is likely that for this vehicle, the maximum re-
generative power is software-limited to the somewhat lower
threshold of around 75kW. In our mathematical model, of
course, the efficiency goes down linearly with power. Let us
assume that we reduce η to η0/2 for 75 kW.(is then implies a
value of b � 5∗ 10−6 s/J, which yields c � 67.5 for η0 � 0.75
and vi � 50mph.

Figure 3(a) shows some typical numerical solutions ob-
tained with Mathematica using the “NDSolve” command [15].
For the blue trace, we set c to 40, and for the red trace, c � 70.
(e initial conditions were u(0) � 1 for both, and u′(0) was
adjusted to obtain the same stopping time, τf � 0.14 (defined
by v(τf) � 0). For the red trace, this implies u′(0) � −7.01,
and for the blue, u′(0) � −5.65. It should be noted that we get
indistinguishable curves by using equation (30) and inverting
the resulting τ(u).

Also shown for comparison in Figure 3(a) is the speed
profile for a run where the extracted power is constant in
time (black trace), with that constant adjusted to again yield
the same stopping time. A straightforward calculation re-
veals that for constant power, v(t) �

������

v20 − κt



.

When comparing the red and black traces, it is evident
that the optimal solution is one where initially, at high
speeds, more power is extracted than for lower speeds. (is
makes sense, since the goal is to minimize losses from air
drag, and drawing out more energy from the available ki-
netic energy during the initial phase is advantageous.

Notice also that, according to equation (26), when the
parameter c is raised, b decreases, assuming the same EV is
driven (identical m, D, η0) and the same starting speed, vi, is
used. For smaller slope, b, governing η(P), the regenerative
braking can be made more severe without incurring addi-
tional efficiency penalties. (is explains the more negative
overall acceleration seen in the red trace at the start, when
compared with the blue trace.

Finally, Figure 3(b) plots the same data as an acceleration
graph, u′ versus τ. As before, the c � 70 solution appears in red,
c � 40 in blue, and the constant-power curve in black. For all
curves, u′ diverges to negative infinity as u⟶ 0.However, it is
also apparent that the optimal solutions for both values of c
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feature more negative accelerations at the beginning and a less
negative acceleration towards the end, compared to the con-
stant-power curve. We again see that air-drag considerations
nudge the optimal solutions in the direction of reducing speed
at the beginning as much as possible.

(is feature of the optimal solution is also present when
the vehicle does not come to a stop but reaches a non-zero
final speed. Mathematically, we need only modify the
endpoint condition to v(T) � vf. Figure 4(a) depicts the
three solutions of the previous figure but now for a final
(reduced) speed of u(τf) � 0.5, with τf � 0.1. In
Figure 4(b), the same data are plotted as an acceleration
graph that accentuates the differences and again showcases
the strategy of making the acceleration as negative as pos-
sible at small times (red trace).

(ese optimized acceleration curves in Figure 4(b) can
be compared to accelerometer data from a real test drive in a
Tesla Model 3 where the speed was reduced from 50mph to
25mph.(is measurement is shown in Figure 5. We see that
both the magnitude of acceleration, |u′|, and the recovered
power are not constant but largest at short times. In that
respect, the result resembles the red curve of Figure 4(b).

We conclude this section by circling back to the original
question: how much energy is added or drawn from the
battery after performing braking actions according to these
optimized solutions?ΔEbatt is, in fact, given by the functional
of equation (19). If this integral, when evaluated for the
numerical solutions found earlier, is positive, the battery
gains charge during the examined time interval. Casting this
definite integral in terms of the non-dimensional variables, u
and τ, we get that η(u, u′) � η0(1 + (3/2c)uu′), and

ΔEbatt � η0 mv
2
i  

τf

0
1 +

3
2c

uu′  −uu′ − u
3

 dτ. (31)

We use the “NIntegrate” command in Mathematica to
evaluate this integral for the traces in Figure 3 (where
τf � 0.14). We thus obtain 0.315 mv2i for the red trace and
0.293 mv2i for the blue trace. Both integrals are therefore
positive and less than η0(Ti − Tf). Both solutions are also

improvements over the constant-power curve; when com-
pared to the red trace, it recovers roughly 2% less energy.

Similarly, we can compare the optimal braking curves in
Figure 4 to the constant acceleration case considered earlier
in Section 2, where the speed drops linearly with time. When
we do this for the c � 70 curve (red trace), for instance, we
find that the optimal solution recovers 0.226 mv2i , which is
only about 0.1% more energy than constant-acceleration
braking. In a sense, this observation retroactively validates
the initial, more simplified approach.

3.3. Adding a Distance Constraint with a LagrangeMultiplier.
We can ask a slightly modified question: what is the optimal
braking curve, v(t), that connects the two points, v(0) � vi

and v(T) � vf, given that the car must cover a specified
distance? Notice that we now have added another condition
at the end. We would like to consider curves of equal dis-
placement, d � 

T

0 vdt. Variational calculus tells us that we
now need to make the following integral stationary:


T

0
(L + λv)dt, (32)

where λ is called the Lagrange multiplier and is related to the
displacement. (e Euler–Lagrange equation now reads

d
dt

zL

z _v
  �

zL

zv
  + λ. (33)

Following similar steps as before, we thus arrive at the
modified non-dimensional governing equation:

u
2
u″ + u u′( 

2
− cu

2
− κλ � 0, (34)

with κ � (c/3η0Dv2i ) such that κλ is non-dimensional.
Employing the same analytical technique of reducing

equation (34) to a first-order equation yields

τ � 
u

1

�
3

√
udu

������������

2cu
3

+ 6κλ + k

 , (35)

with k � 3(u0′)
2 − 2c − 6κλ.
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Figure 3: Numerical solutions for u(τ) such that the stopping time is 0.14. (a) Blue curve shows c � 40, and red curve shows c � 70. For
comparison, the black trace depicts the constant-power curve. (b) (e same data plotted as an acceleration graph. All accelerations become
extremely negative near τ � 0.14, so we plot only to 0.13 to highlight to essential differences between the traces.
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Figure 6 shows the effect of the distance constraint. (e
three traces correspond to three different values of the Lagrange
multiplier and thus braking distances, with c set to 70.We know
that d �  vdt � (m/D)  udτ. (erefore, to find the actual
distance traveled, we numerically integrate the traces in Fig-
ure 6. (en, using the values in Section 2.3, we obtain
d � 307, 295, and 282m, respectively, for the red, black, and
blue traces. Furthermore, T � ατf � α(0.1) � 18.3 s. (e re-
covered energies for the red, black, and blue traces, respectively,

are 0.2243 mv2i , 0.2260 mv2i , and 0.2245 mv2i . Not surprisingly,
the optimal solution without displacement constraint (black
trace) outperforms the other two solutions with the Lagrange
multipliers.

4. Conclusion

We started by comparing two braking strategies—coasting
and regenerative braking—and found that it is advantageous
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Mathematical Problems in Engineering 7



to employ aggressive regenerative braking for cases where
the ratio of initial to final speeds is above a derived threshold
that depends sensitively on the efficiencies of the motor and
generator. In this analysis, we chose a simplified assumption
of a constant regenerative braking acceleration. We then
refined the analysis using variational calculus to optimize the
functional form of the braking curves. More specifically, we
derived acceleration profiles, a(t), that maximize battery
SOC, accounting for reduced battery-charging efficiencies
with braking power. (e optimal braking strategy was de-
rived by finding both numerical and analytical (integral
form) solutions to the associated Euler–Lagrange equation.
Finally, we explored the effect of introducing the constraint
of fixed displacement (distance traveled) via a Lagrange
multiplier.

Not unexpectedly, one lesson from the optimal braking
curves obtained in this manner is that it pays to make the
acceleration as negative as possible at the beginning, in an
effort to reduce air-drag losses as much as possible (without
cutting into charging efficiencies too severely). (e derived
solutions thus balance this inherent trade-off in a way that
recovers the most energy. To keep the problem mathe-
matically tractable, here we used a linear charging efficiency
model, but this model could be refined in a straightforward
way in future work, since the Euler–Lagrange equations were
derived in fair generality and could be explicitly written for
any efficiency model.
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