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Cantilever with an asymmetrically attached tip mass arises in many engineering applications. Both the traditional method of
separation of variables and the method of Laplace transform are employed in the present paper to solve the eigenvalue problem of
the free vibration of such structures, and the effect of the eccentric distance along the vertical direction and the length direction of
the tip mass is considered here. For the traditional method of separation of variables, tip mass only affects to the boundary
conditions, and the eigenvalue problem of the free vibration is solved based on the nonhomogeneous boundary conditions. For
the method of Laplace transform, the effect of the tip mass is introduced in the governing equation with the Dirac function, and
the eigenvalue problem then can be solved through Laplace transform with homogeneous boundary conditions. (e computed
results with these two methods are compared well with the numerical solution obtained by finite element method and ap-
proximate analytical solutions, and the effect of tip mass dimensions on the natural frequencies and correspondingmode shapes is
also given.

1. Introduction

In engineering practices, the problem of a beam carrying a
concentrated mass at its end or middle may arise. For in-
stance, offshore wind turbines [1], mast antenna structures,
wind tunnel stings carrying an airplane or a missile model,
large aspect ratio wings carrying heavy tip tanks, or launch
vehicles with payload at the tip [2], and all these structures
can be modeled as a beam carrying a concentrated mass at its
end or middle. In these applications, the concept of an ideal
concentrated mass or moment of initial is often not ap-
plicable, as the attachment point does not coincide with the
center of gravity of the mass. Researchers had paid more
attention to the free vibrations of this subject. Generally, two
approaches are adopted to solve this free vibration problem:
the traditional method of separation of variables (MSV) and
the method of Laplace transform (MLT).

(e most widely used approach solves the homogeneous
partial differential equation that describes the free vibration
with separation of variables to yield a pair of ordinary

differential equations, and then, with the requirement of the
nontrivial solution of the linear equations based on the
introduction of nonhomogeneous boundary conditions,
frequency equation and mode shape can be obtained con-
sequently. (is approach is described as the traditional
method of separation of variables (MSV), as it mainly de-
pends on the nonhomogeneous boundary conditions. Bhat
et al. gave the natural frequencies of a uniform cantilever
with a tip mass slender in the axial direction based on the
perturbation procedure, in which rotary inertial is also
considered [2, 3]. Recently, Mousavi Lajimi and Heppler
corrected some errors in Bhat and Wagner’s paper [4], and
Bhat responded back with a closure [5]. Wang et al. also
proposed an improved analytical method of calculations for
natural frequencies and mode shapes of a uniform cantilever
beam carrying a tip mass under base excitation [6]. It is
noted that they did not consider the effect of the eccentric
distance along the vertical direction of the tip mass [6].
Anderson pointed out that due to the importance in airplane
and missile design, it is of interest to consider the problem
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that the centroid of the tip mass does not coincide with
its point of attachment to the beam which offsets an
arbitrary distance perpendicular to the extended neutral
axis of the beam [7]. Anderson also showed that the
longitudinal and transverse deflections in the beam be-
come coupled through the boundary conditions because
of the presence of the asymmetrically attached tip mass.
Natural frequencies and mode shapes of a cantilever
beam with a base excitation and asymmetric tip mass
were given by To [8]. Many other researchers also used
this approach to investigate the vibrations of a cantilever
with concentrate mass under different boundary condi-
tions [9–16].

(e other approach introduces the tip mass by means of
a Dirac function to make the constant density beam a
variable density one [17], and the governing partial differ-
ential equations can be solved based on the method of
separation of variables and the Laplace transform under
homogeneous boundary conditions. (is approach is de-
scribed as the method of Laplace transform (MLT), as it
mainly depends on the Laplace transform to solve the dif-
ferential equation. (e advantage of this method is that if
there are many concentrated mass located along the length
direction of the beam, it is unnecessary to solve the
problem by considering many individual spans separated
by these concentrated masses. Chen adopted this method
to solve the free vibration and forced vibration problem of
a simply supported beam with a middle concentrated mass
[18], and the concentrated mass is just considered as a
point mass. When the dimensions of the concentrated
mass are too big to be ignored, the problem of how to
consider the tip mass effect arises. Goel investigated vi-
brations of a beam carrying a concentrated mass that one
end of the beam is free and the other end is hinged by a
rotational spring of constant stiffness with this method
[19, 20]. Liu and Huang [21] and Chang [22] investigated
the free vibration and forced vibration of a beam carrying
a concentrated mass at the beam tip and another con-
centrated mass at an intermediate point, respectively.
Park et al. investigated a Bernoulli–Euler beam fixed on a
moving cart and carrying a concentrated mass attached to
an arbitrary position along the beam length [23].

It should be pointed out that, most of the investigations
either ignore the rotational inertia of the tip mass or ignore
the eccentric effect of the tip mass, and in some situations,
these effects cannot be neglected. (erefore, the purpose of
this paper is to conduct the free vibration analysis of the
cantilever with an asymmetrically attached tip mass with
both the conventional method of separation of variables and
method of Laplace transform and to clarify the introduction
of concentrate force and moment in the method of Laplace
transform.

2. Mathematical Model

A schematic sketch of the cantilever is shown in Figure 1,
and Lb and Lm denote the length of the beam and the tip
mass, respectively, eh and eL � Lm/2 are the distance be-
tween point of attachment A and the center of gravity of

the tip mass C along the vertical and length direction,
respectively, and hb and hm denote the heights of the beam
and the tip mass, respectively. (e tip mass and the beam
are assumed to have the same width b. (e total mass of
the tip mass is m.

2.1. Method of Separation of Variables. In this section, the
homogeneous partial differential equation which describes
the free vibration of the cantilever beam is solved by the
MSV. For the method of separation of variables, the effect of
tip mass to the free vibration is introduced by the nonho-
mogeneous boundary conditions [24].

Hamilton’s principle is applied here to obtain the gov-
erning equations of the system:

􏽚
t1

t0

δ(T − V)dt � 0, (1)

where T and V denote the kinetic and potential energies,
respectively, δ is the variation operator, and t0 and t1 are
arbitrary times. (e potential energy is given by

V �
1
2

􏽚
Lb

0
EIw″dx. (2)

(e total kinetic energy consists of the contributions
from the beam Tb and the tip mass Tm:

T � Tb + Tm, (3)

Tb �
1
2
ρbA 􏽚

Lb

0
_w
2dx, (4)

Tm � 􏽚
Lb+Lm

Lb

􏽚
eh+ hm/2( )

eh− hm/2( )

1
2
ρmbmv

2
mdxdy, (5)

where the velocity of the representative elemental volume vm

is given by

vm �

������������������������

_wL
′y( 􏼁

2
+ _wL + _wL

′ x − Lb( 􏼁( 􏼁
2

􏽱

. (6)

In the above formulations, primes and dots denote
differentiation with regard to coordinate x and time t, re-
spectively, E denotes Young’s modulus for the beam ma-
terial,A and I are constant cross-section area andmoment of
inertia, respectively, and ρb and ρm denote density of the
beam and tip mass material, respectively. (e flexural de-
flection of the beam is denoted by w, and wL is the deflection
of the beam at x � Lb.
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Figure 1: Schematic of a cantilever with an asymmetrical tip mass.
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Substituting equations (2)–(6) into equation (1) and
carrying out the necessary variations, the following equation
for undamped free vibration under small deflection is
obtained:

EIw
‴′ + ρbA €w � 0. (7)

(e corresponding boundary conditions at the fixed end
x� 0 are

w(0, t) � 0, (8)

w′(0, t) � 0, (9)

and at the tip x � Lb are

EIw
‴

Lb, t( 􏼁 − m€w Lb, t( 􏼁 − meL €w′ Lb, t( 􏼁 � 0,

(10)

EIw″ Lb, t( 􏼁 + Jm + m e
2
L + e

2
h􏼐 􏼑􏼐 􏼑€w′ Lb, t( 􏼁 + meL €w Lb, t( 􏼁 � 0,

(11)

where I � (bh3
b/12) and Jm � (m(L2

m + h2
m)/12) are

the moment of inertia of the beam cross-section and the
tip mass, respectively. (ese vibration equation and
corresponding boundary conditions are the same as in
[7].

For undamped free vibration of natural frequency ω, one
may assume that

w(x, t) � ϕ(x)η(t). (12)

Substituting equation (12) into equation (7), we have

EIϕ″″(x)η(t) + ρbAϕ(x)€η(t) � 0, (13)

or

ϕ‴′ −
ρbAω2

EI
ϕ � 0, (14)

€η + ω2η � 0. (15)

(e general solution for equation (14) is given by

ϕ(x) � A sin λx + B cos λx + C sinh λx + D cosh λx,

(16)

where A, B, C, and D are constants to be determined by
boundary conditions (8)–(11) and λ4 � (ρbAω2/EI).

Substituting equation (16) into boundary conditions
(8)–(11), we have

ϕ(0) � 0, (17)

ϕ′(0) � 0, (18)

ϕ‴ Lb( 􏼁 +
meLω

2

EI
ϕ′ Lb( 􏼁 +

mω2

EI
ϕ Lb( 􏼁 � 0, (19)

ϕ″ Lb( 􏼁 −
Jm + m e

2
L + e

2
h􏼐 􏼑􏼐 􏼑ω2

EI
ϕ′ Lb( 􏼁 −

meLω
2

EI
ϕ Lb( 􏼁 � 0.

(20)

Considering equation (17) and (18), we have

ϕ(x) � A(sin λx − sinh λx) + B(cos λx − cosh λx).

(21)

Substituting equation (21) into boundary conditions (19)
and (20), then they can be written in matrix form:

Ω11 Ω12
Ω21 Ω22

􏼢 􏼣
A

B
􏼨 􏼩 �

0

0
􏼠 􏼡, (22)

where Ω11 � −λ3 (cos λLb + cosh λLb) + c2λ( cos λLb−

cosh λLb) + c1(sin λLb − sinh λLb), Ω12 � λ3(sin λLb−

sinh λLb)− c2λ(sin λLb + sinh λLb)+ c1(cos λLb−

cosh λLb), Ω21 � −λ2(sin λLb + sinh λLb) − c3λ(cos λLb−

cosh λLb) − c2(sin λLb − sinh λLb), and Ω22 � −λ2
(cos λLb + cosh λLb) +c3λ(sin λLb + sinh λLb) − c2
(cos λLb − cosh λLb) and c1 � (mω2/EI), c2 � (meL

ω2/EI), and c3 � ((Jm + m(e2L + e2h))ω2/EI).
Based on the untrivial solution condition of equation

(22), the frequency equation can be obtained, in principle, by
setting the coefficient determinant to zero:

Ω11Ω22 −Ω12Ω21 � 0. (23)

(e roots of equation (23) gives the natural fre-
quencies ωi(i � 1, 2, 3, . . .); then, by substituting ωi into
equations (22) and (21), one can obtain the constant A and
B and the corresponding mode shape ϕi(x). It is also noted
that the natural frequencies were determined by a trial and
error method based on interpolation and the bisection
approach with MATLAB.(e iterative computations were
terminated when the value of ωi reached the relative error
of 10−5.

2.2. Method of Laplace Transform. In order to describe the
effect of the asymmetrically attached tip mass, the Dirac
δ-function is used in the differential equation which is
defined by the following equation:

􏽚
+∞

−∞
δ x − Lb( 􏼁dx � 1. (24)

(e effect of the tip mass is introduced by the con-
centrated equivalent force Fm and moment Mm at the at-
tachment point A of the beam, and then, the undamped free
vibration equation under small deflection is

EIw′‴ + ρbA €w + Fmδ x − Lb( 􏼁 + Mmδ′ x − Lb( 􏼁 � 0,

(25)

where
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Fm � m€w Lb, t( 􏼁 + meL €w′ Lb, t( 􏼁,

Mm � −meL €w Lb, t( 􏼁 − Jm + m e
2
L + e

2
h􏼐 􏼑􏼐 􏼑€w′ Lb, t( 􏼁.

(26)

With this treatment, the boundary conditions become
homogeneous, which is given by

w(0, t) � 0, (27)

w′(0, t) � 0, (28)

w
‴

Lb, t( 􏼁 � 0, (29)

w″ Lb, t( 􏼁 � 0. (30)

Based on separation of variables, for undamped free
vibration of natural frequency ω, one may assume that

w(x, t) � ϕ(x)sin ωt. (31)

Substituting equation (31) into equations (25)–(30), we
have

ϕ″″ − λ4ϕ − δ x − Lb( 􏼁 c1ϕ Lb( 􏼁 + c2ϕ′ Lb( 􏼁( 􏼁

+ δ′ x − Lb( 􏼁 c2ϕ Lb( 􏼁 + c3ϕ′ Lb( 􏼁( 􏼁 � 0,
(32)

ϕ(0) � 0, (33)

ϕ′(0) � 0, (34)

ϕ‴ Lb( 􏼁 � 0, (35)

ϕ″ Lb( 􏼁 � 0, (36)

where λ4 � (ρbAω2/EI) and c1 � (mω2/EI), c2 �

(meLω2/EI), and c3 � ((Jm + m(e2L + e2h))ω2/EI).
Equations (32)–(36) define an eigenvalue problem, and

the solution can be obtained by the Laplace transform
method. Let the transformed function of ϕ be denoted by ϕ,
and the definition of the Laplace transform is given by

ϕ(s) � L(ϕ(x)) � 􏽚
+∞

−∞
ϕ(x)e

− sxdx. (37)

(en, we have

L ϕ″″( 􏼁 � s
4ϕ − ϕ‴(0) − sϕ″(0) − s

2ϕ′(0) − s
3ϕ(0),

(38)

L −λ4ϕ􏼐 􏼑 � −λ4ϕ. (39)

Considering the boundary conditions (33) and (34), we
have

L ϕ″″( 􏼁 � s
4ϕ − ϕ‴(0) − sϕ″(0). (40)

(e shifting property of the Dirac δ-function is given by

􏽚
+∞

−∞
ϕ(x)δ x − x0( 􏼁dx � ϕ x0( 􏼁, (41)

and then, we have

L −c1δ x − Lb( 􏼁ϕ Lb( 􏼁( 􏼁 � −c1ϕ Lb( 􏼁 􏽚
+∞

−∞
δ x − Lb( 􏼁e

− sxdx

� −c1ϕ Lb( 􏼁 e
− sx

( 􏼁|x�Lb
� −c1ϕ Lb( 􏼁e

− sLb ,

(42)

L −c2δ x − Lb( 􏼁ϕ′ Lb( 􏼁( 􏼁 � −c2ϕ′ Lb( 􏼁 􏽚
+∞

−∞
δ x − Lb( 􏼁e

− sxdx

� −c2ϕ′ Lb( 􏼁 e
− sx

( 􏼁|x�Lb
� −c2ϕ′ Lb( 􏼁e

− sLb .

(43)

(e definition of the derivatives of the Dirac δ-function
is given by

􏽚
+∞

−∞
ϕ(x)δ′ x − x0( 􏼁dx � −ϕ′ x0( 􏼁, (44)

and then, we have

L c2δ′ x − Lb( 􏼁ϕ Lb( 􏼁( 􏼁 � c2ϕ Lb( 􏼁 􏽚
+∞

−∞
δ′ x − Lb( 􏼁e

− sxdx

� −c2ϕ Lb( 􏼁 e
− sx

( 􏼁′|x�Lb
� −c2ϕ Lb( 􏼁se

− sLb ,

(45)

L c3δ′ x − Lb( 􏼁ϕ′ Lb( 􏼁( 􏼁 � c3ϕ′ Lb( 􏼁 􏽚
+∞

−∞
δ′ x − Lb( 􏼁e

− sxdx

� −c3ϕ′ Lb( 􏼁 e
− sx

( 􏼁′|x�Lb
� −c3ϕ′ Lb( 􏼁se

− sLb .

(46)
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Substituting equations (39)–(46) into equation (32), then
we have

ϕ �
s

s
4

− λ4
ϕ″(0) +

1
s
4

− λ4
ϕ‴(0)

+ c1ϕ Lb( 􏼁 + c2ϕ′ Lb( 􏼁( 􏼁
e

− sLb

s
4

− λ4

− c2ϕ Lb( 􏼁 + c3ϕ′ Lb( 􏼁( 􏼁
se

− sLb

s
4

− λ4
.

(47)

(en, the inverse Laplace transform is defined by

ϕ(x) � L
− 1

(ϕ(s)) �
1
2πj

􏽚
+j∞

−j∞
ϕ(s)e

− sxdx. (48)

(rough the inverse Laplace transform, we have

L
− 1 s

s
4

− λ4
􏼠 􏼡 �

1
2λ2

(cosh λx − cos λx), (49)

L
− 1 1

s
4

− λ4
􏼠 􏼡 �

1
2λ3

(sinhλx − sin λx), (50)

L
− 1 e

− sLb

s
4

− λ4
􏼠 􏼡 �

1
2λ3

sinh λ x − Lb( 􏼁 − sin λ x − Lb( 􏼁( 􏼁H x − Lb( 􏼁, (51)

L
− 1 se

− sLb

s
4

− λ4
􏼠 􏼡 �

1
2λ2

cosh λ x − Lb( 􏼁 − cos λ x − Lb( 􏼁( 􏼁H x − Lb( 􏼁, (52)

where H(x − Lb) is the unit step function at x � Lb. Substituting equations (49)–(52) into equation (47), then
we have the general solution of equation (32) as follows:

ϕ(x) �
ϕ″(0)

2λ2
(cosh λx − cos λx) +

ϕ‴(0)

2λ3
(sinh λx − sin λx)

+
c1ϕ Lb( 􏼁 + c2ϕ′ Lb( 􏼁

2λ3
sinh λ x − Lb( 􏼁 − sin λ x − Lb( 􏼁( 􏼁H x − Lb( 􏼁

−
c2ϕ Lb( 􏼁 + c3ϕ′ Lb( 􏼁

2λ2
cosh λ x − Lb( 􏼁 − cos λ x − Lb( 􏼁( 􏼁H x − Lb( 􏼁,

(53)

ϕ′(x) �
ϕ″(0)

2λ
(sinh λx + sin λx) +

ϕ‴(0)

2λ2
(cosh λx − cos λx)

+
c1ϕ Lb( 􏼁 + c2ϕ′ Lb( 􏼁

2λ2
cosh λ x − Lb( 􏼁 − cos λ x − Lb( 􏼁( 􏼁H x − Lb( 􏼁

−
c2ϕ Lb( 􏼁 + c3ϕ′ Lb( 􏼁

2λ
sinh λ x − Lb( 􏼁 + sin λ x − Lb( 􏼁( 􏼁H x − Lb( 􏼁,

(54)

ϕ″(x) �
ϕ″(0)

2
(cosh λx + cos λx) +

ϕ‴(0)

2λ
(sinh λx + sin λx)

+
c1ϕ Lb( 􏼁 + c2ϕ′ Lb( 􏼁

2λ
sinh λ x − Lb( 􏼁 + sin λ x − Lb( 􏼁( 􏼁H x − Lb( 􏼁

−
c2ϕ Lb( 􏼁 + c3ϕ′ Lb( 􏼁

2
cosh λ x − Lb( 􏼁 + cos λ x − Lb( 􏼁( 􏼁H x − Lb( 􏼁,

(55)
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ϕ‴(x) �
λϕ″(0)

2
(sinh λx − sin λx) +

ϕ‴(0)

2
(cosh λx + cos λx)

+
c1ϕ Lb( 􏼁 + c2ϕ′ Lb( 􏼁

2
cosh λ x − Lb( 􏼁 + cos λ x − Lb( 􏼁( 􏼁H x − Lb( 􏼁

−
λ c2ϕ Lb( 􏼁 + c3ϕ′ Lb( 􏼁( 􏼁

2
sinh λ x − Lb( 􏼁 − sin λ x − Lb( 􏼁( 􏼁H x − Lb( 􏼁.

(56)

It is noted that items with δ(x − Lb), δ′(x − Lb), and
δ″(x − Lb) are ignored in equations (54)–(56), as they will
not affect the final results.

Substituting equations (55) and (56) into boundary
conditions’ equations (35) and (36), then the constants
ϕ″(0) and ϕ‴(0) can be obtained by

ϕ″(0) �
λb1 cosh λLb + cos λLb( 􏼁 + b2 sinh λLb + sin λLb( 􏼁

λ 1 + cos λLbcosh λLb( 􏼁
,

ϕ‴(0) �
λb1 sin λLb − sinh λLb( 􏼁 − b2 cosh λLb + cos λLb( 􏼁

1 + cos λLbcosh λLb

,

(57)

where b1 � c2ϕ(Lb) + c3ϕ′(Lb) and b2 � c1ϕ(Lb) + c2ϕ′(Lb).
Substituting equation (57) into equations (53) and (54),

let x � Lb, and the following two equations are obtained:

Λ11 Λ12
Λ21 Λ22

􏼢 􏼣
ϕ Lb( 􏼁

ϕ′ Lb( 􏼁
􏼨 􏼩 �

0

0
􏼠 􏼡, (58)

where Λ11 � λ3(1 + cos λLbcosh λ Lb) + c1(cos λLb

sinh λLb − cosh λLb sin λLb) − c2λ sin λLbsinh λLb, Λ12 �

c2(sinh λLb cos λLb − cosh λLb sin λLb)− c3λ sinh λLb

sin λLb, Λ21 � c2λ(cos λLbsinh λLb + cosh λLb sin λLb)+

c1 sin λLbsinh λLb, and Λ22 � c3λ(cos λLbsinh λLb+

cosh λLb sin λLb) + c2 sin λLbsinh λLb − λ2(1 + cos λLb

cosh λLb).
Based on the untrivial solution condition of equation

(58), the frequency equation can be obtained, in principle, by
setting the coefficient determinant to zero:

Λ11Λ22 − Λ12Λ21 � 0. (59)

(e roots of equation (59) gives the natural frequencies
ωi(i � 1, 2, 3, . . .); then, by substituting ωi into equations
(53) and (58), one can obtain the constant A and B and the
corresponding mode shape ϕi(x).

3. Numerical Results

In this section, numerical results obtained by ANSYS
simulation and analytical solution with the present method
of separation of variables and the method of Laplace
transform are given and compared for different cantilevers.
(e effect of several key parameters on the natural fre-
quencies and mode shapes is also presented.

3.1. Verification of the Present Methods. ANSYS is used here
to determine the natural frequency and mode shape, and the
obtained numerical results are considered as the benchmark

solution. (e cantilever is modeled as a three dimensional
structure and meshed with SOLID186 element. (e con-
vergence test is performed in advance to make sure that the
numerical solution can be treated as the benchmark
solution.

(e approximate analytical solution of the first-order
natural frequency of a cantilever with the tip mass is given by

f
apr
1 �

1
2π

����������������

3EI/L3
b

(33/140)ρbALb + m

􏽳

. (60)

(e geometry and physical parameters used in the
computation are given in Table 1, and three beam structures
with different length Lb are investigated. (e first three
natural frequencies of different beam structures with dif-
ferent methods are given in Table 2.

(e approximate analytical solution of the first-order
natural frequency of the three cantilevers is 15.960Hz,
8.903Hz, and 5.825Hz, respectively. It can be seen that, for
all the other five methods, the first-order natural frequency
results compare well with the approximate analytical solu-
tion, as the inertial effect does not play an important role in
the first-order free vibration. For the second- and third-
order natural frequencies, results with the present MSV and
MLT are the same and in good agreement with the ANSYS
solution. At the same time, the inertial effect plays a very
important role in higher-order natural frequencies for the
cantilever with an asymmetrically attached tip mass, and the
inertial effect makes the structure more flexible. If inertial
effect is ignored, the higher-order natural frequencies can be
unconceivable large. It also can be seen that, although in-
ertial effect is taken into consideration, the eccentric effect is
also nonignorable. For the 100mm length cantilever, the
second- and third-order natural frequencies are 154Hz and
579Hz, respectively. If the inertial effect is neglected, the
natural frequencies increase to 322Hz and 1035Hz, re-
spectively, and even if we consider the inertial effect, but
neglect the eccentricity of the tip mass, the natural fre-
quencies are still as large as 201Hz and 617Hz, respectively,
which are much larger than those of 154Hz and 579Hz,
respectively. (e comparisons of the first three mode shapes
with different methods for different beams are given in
Figures 2–4 , and the mode shapes are normalized by the tip
displacement.

It can be seen from Figures 2–4 that the present results
with both the method of separation of variables (MSV) and
method of Laplace transform (MLT) compare well with
ANSYS results, while both results without eccentric effect
and without inertia effect have an obvious different with the
ANSYS results. It is also noted that both natural frequencies
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Table 1: Geometry and physical parameters for the beam structure.

Parameter Value
Lb 100, 150, and 200mm
Lm 15mm
hb 1mm
hm 30mm
b 10mm
eh 10mm
eL 7.5mm
ρm 8900 kg/m3

ρ b 7800 kg/m3

E 210GPa

Table 2: Comparisons of the first three natural frequencies of different beam structures with different methods.

Lb � 100mm Lb � 150mm Lb � 200mm
f1 (Hz) f2 (Hz) f3 (Hz) f1 (Hz) f2 (Hz) f3 (Hz) f1 (Hz) f2 (Hz) f3 (Hz)

Results from equation (59) 15.960 — — 8.903 — — 5.825 — —
ANSYS 15.849 153.42 576.04 8.9144 103.98 286.84 5.8490 72.251 186.85
Present MSV 15.780 153.98 579.12 8.8868 103.99 288.02 5.8350 72.148 187.36
Present MLT 15.780 153.98 579.12 8.8868 103.99 288.02 5.8350 72.148 187.36
Results without eccentric effect 15.925 200.75 616.90 8.9241 123.41 326.90 5.8344 79.434 217.52
Results without inertial effect 15.960 322.03 1035.0 8.9021 150.85 483.08 5.8246 87.373 278.82
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Figure 2: Continued.
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Figure 2: Comparisons of the mode shapes with the beam length of 100mm. (a) (e first-order mode shape. (b) (e second-order mode
shape. (c) (e third-order mode shape.
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Figure 3: Continued.
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Figure 3: Comparisons of the mode shapes with the beam length of 150mm. (a) (e first-order mode shape. (b) (e second-order mode
shape. (c) (e third-order mode shape.
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Figure 4: Comparisons of the mode shapes with the beam length of 200mm. (a) (e first-order mode shape. (b) (e second-order mode
shape. (c) (e third-order mode shape.
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Figure 5: Variations of the nondimensionless natural frequencies with relative length of the tip mass to the beam. (a)(e first-order natural
frequency. (b) (e second-order natural frequency. (c) (e third-order natural frequency.
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and mode shapes obtained by MSV and MLTare exactly the
same with each other. It is clear that the eccentric effect and
inertial effect play an important role in the free vibration of
the cantilever beam with an asymmetrically attached tip
mass, and the quantitative investigations of some key pa-
rameters on the natural frequencies and mode shapes are
given in the following section.

3.2. Parametric Investigations. (e geometry and physical
parameters of the basic structure used in the parametric
investigations are given in Table 1, and the variations of the
first three natural frequencies and corresponding mode
shapes with relative length of the tip mass to the beam are
given in Figures 5 and 6 , respectively. (e mode shapes are
normalized by the tip displacement, and the natural fre-
quencies are normalized by ωi(i � 1, 2, and 3) given below:

ωi �
βi

Lb
􏼠 􏼡

2 ����
EI

ρbA

􏽳

, (61)

where β1 � 1.875, β2 � 4.694, and β3 � 7.855.
It can be seen from Figure 5 that, with the increment of

the relative length of the tip mass, all the first three orders of
natural frequencies decrease due to the large tip mass effect.
It is also noted that, for all the beams, the first- and third-
order frequencies have the same tendency with respect to the
nondimensionless tip mass length ratio, while for the sec-
ond-order free vibration, the nondimensional natural fre-
quency decreases from 1 to 0.21 with the increment of
nondimensional tip mass length from 0 to 0.2 for the
100mm length beam, while for the 150mm and 200mm
beam, the nondimensional natural frequency decreases from
1 to 0.28 and 0.33, respectively. In other words, longer beam
corresponds to smaller tip mass effect, and the frequency

reduction phenomena with the increment of the tip mass
length is more sensitive for the second-order natural fre-
quency than the first-and third-order frequencies. Figure 6
shows the variations of the first three mode shapes of the
150mm length beam with different nondimensionless tip
mass length ratios, and it is very clear that, for the first-order
free vibration, big tip mass can only reduce the natural
frequency, while the first-order mode shape almost does not
change. For higher-order mode shapes, the tip mass has
more obvious effect, and the accurate mode shapes as well as
the strain nodes are very important for higher-order vi-
bration-based piezoelectric energy harvesting applications
[25].

4. Conclusions

Free vibration analysis of a cantilever beam with an
asymmetrically attached tip mass is performed. Both the
traditional method of separation of variables (MSV) and the
method of Laplace transform (MLT) are employed in the
present paper, and the equivalent concentrate force and
moment of the tip mass in the MLTare clarified. Numerical
results show the accuracy of the present MSV and MLT, and
the effect of the tip mass to the natural frequencies and
corresponding mode shapes is also numerically investigated.
Results show that tip mass has an obvious effect on the
natural frequencies and mode shapes of the cantilever, other
than the first-order mode shape. (e present approach can
also be used to solve beam structures with other boundary
conditions and many concentrated mass locates at any
position of the beam. It is also noted that it is easy for the
Laplace transform method to obtain the orthogonality re-
lations defined with respect to the variable density beam in
the forced vibration analysis.
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Figure 6: Variations of the nondimensionless mode shapes with relative length of the tip mass to the beam (Lb � 150mm). (a)(e first-order
natural frequency. (b) (e second-order natural frequency. (c) (e third-order natural frequency.
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[11] M. Gürgöze, “On the eigenfrequencies of a cantilever beam
with attached tip mass and a spring-mass system,” Journal of
Sound and Vibration, vol. 190, no. 2, pp. 149–162, 1996.
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