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Compromising productivity in exchange for energy saving does not appeal to highly capitalized manufacturing industries.
However, we might be able to maintain the same productivity while significantly reducing energy consumption. 0is paper
addresses a flexible job shop scheduling problemwith a shutdown (on/off) strategy aiming tominimize makespan and total energy
consumption. First, an alternative mixed integer linear programmingmodel is proposed. Second, a novel constraint programming
is proposed. 0ird, practical operational scenarios are compared. Finally, we provide benchmarking instances, CPLEX codes, and
genetic algorithm codes, in order to promote related research, thus expediting the adoption of energy-efficient scheduling in
manufacturing facilities. 0e computational study demonstrates that (1) the proposed models significantly outperform other
benchmark models and (2) we can maintain maximum productivity while significantly reducing energy consumption by 14.85%
(w/o shutdown) and 15.23% (w/shutdown) on average.

1. Introduction

Energy consumption is a very important issue for our society
in terms of both environment and economy. U.S. Energy
Information Administration [1] recently reported interna-
tional energy outlook 2019 with projections to 2050. In the
report, the world energy consumption is expected to increase
by approximately 50%, accounting for more than half of the
non-OECD Asian countries, including China and India.
Industrial sectors, such as manufacturing, agriculture, and
construction, are the largest consumer among end users, and
their energy consumption will increase by more than 30%
from 2018 to 2050.0e share of energy consumed by energy-
intensive manufacturing holds steady at 50% from 2018 to
2050. 0ese predictions and phenomena were analyzed in
several studies [2–4].

Manufacturing has enormous potential for energy saving
because 80% of the energy consumed by machines occurs in
the idle state [5]. For this reason, several methods to increase
energy efficiency in manufacturing have been attempted.

0e common method is to optimize a production schedule
by considering green metrics along with traditional per-
formance indicators. 0is approach called energy-aware
scheduling or energy-efficient scheduling has the advantage
of achieving significant performance at no extra cost [6].

In this paper, we deal with energy-efficient scheduling in
the flexible job shop scheduling problem (FJSP).Mouzon et al.
[5] observed that if an idle period is long enough, the energy
could be saved by using shutdown (on/off) strategy to turn the
machine off and on. Che et al. [7] first developed a mixed
integer linear programming (MILP) model for a single ma-
chine scheduling with a shutdown strategy, and themodel was
effectively validated with CPLEX solver. Subsequently, the
shutdown strategy was applied to various production systems,
and the first MILP model for FJSP with a shutdown strategy
was proposed by Zhang et al. [8]. However, the proposed
model was complex and computationally inefficient, so Meng
et al. [9] improved it. However, both studies used only one
type of MILP formulations for FJSP. 0is paper proposes the
most efficient MILP formulation.
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0e contributions of this paper are threefold. First, we
propose an alternative MILP model for FJSP with a shut-
down strategy. Second, we devise a constraint programming
(CP). 0ird, the experimental study demonstrates that we
can reduce energy consumption by 14.85% (w/o shutdown)
and 15.23% (w/shutdown) on average, while not compro-
mising productivity. In addition, we provide benchmarking
instances, CPLEX MIP and CP source codes, and GA code,
in order to promote related-research, thus expediting the
adoption of energy-efficient scheduling in manufacturing
facilities.

0e remainder of the paper is organized as follows:
Section 2 shows the literature review of FJSP, energy-effi-
cient scheduling, and constraint programming. In Section 3,
the problem description and solutionmethods are described.
In Section 4, we compare the performance of proposed
models and existing model through computational experi-
ments. Finally, the conclusion and some directions for future
research are given in Section 5.

2. Literature Review

2.1. Flexible Job Shop Scheduling Problem. 0e FJSP has been
extensively studied over the past 30 years. A variety of
techniques from exact methods to heuristics have been used
in this research. Exact methods include branch-and-bound
algorithm, MILP, and Lagrangian relaxation method among
others, while heuristics include ant colony optimization,
artificial bee colony, artificial immune system, evolutionary
algorithms, greedy randomized adaptive search procedure,
neighborhood search, particle swarm optimization, simu-
lated annealing, Tabu search, hybrid techniques, and so on.
See Chaudhry and Khan [10] for the survey about FJSP. We
focus on the MILP method.

MILP models for FJSP are classified into four different
types by the main binary decision variable. 0e first is the
machine-position formulation (MPF) that determines the
position of the machine, where each operation is processed
[8, 9, 11, 12]. 0e second is the general precedence for-
mulation (GPF) that determines whether one operation
precedes the other operation on the same machine [13, 14].
Note that one operation is not necessarily positioned im-
mediately before the other operation. 0e third is the im-
mediate precedence formulation (IPF) that determines
whether one operation immediately precedes the other
operation on the same machine [15]. 0e fourth is the time
indexed formulation (TIF) that determines the time of the
machine when each operation is started [16]. Demir and
Kürşat Isleyen [17] classified mathematical models by this
criterion and compared the computational results of MILP
models.

2.2. Energy-Efficient Scheduling. 0e studies for energy-ef-
ficient scheduling are classified into four groups based on
saving methods. 0e first is to reduce unnecessary idle time.
0is is a model that extends the existing model to save
energy by reducing unnecessary idle time. 0e second is to
shut down the idle machines. Turning off machines during

the idle can save energy when idle time is long enough. 0e
decision when to shut down a machine is added into the
traditional scheduling model. 0e third is to slow down a
machine speed. Energy consumption depends on a speed of
a machine. We can save energy by adjusting a speed of a
machine without impacting the makespan. 0e fourth is off-
peak production. In the peak time, electricity costs are high.
0erefore, a production at nonpeak time can save a sig-
nificant amount of electricity costs. Table 1 categorizes
studies on energy-efficient scheduling by this criterion. See
Gahm et al. [37] and Gao et al. [38] for reviews of energy-
efficient scheduling.

Our study belongs to the energy-efficient FJSP using the
shutdown option. Among the studies, Dai et al. [25] andWu
and Sun [26] developed a genetic simulated annealing al-
gorithm. Zhang et al. [8] developed MILP model and dis-
covered energy-efficient rules that could be implemented in
real practice. Meng et al. [9, 27] proposed several effective
MILP models and evaluated the performance of these
models. Zhang et al. [8] and Meng et al. [9, 27] used MPF,
while our paper uses IPF. Moreover, we develop constraint
programming and genetic algorithm models.

2.3. Constraint Programming. Hiller and Lieberman [39]
noted that no presentation of the basic ideas of MILP is
complete these days without introducing CP––that is
promising to greatly expand our ability to formulate and
solve various scheduling problems. CP has been applied to
various scheduling problems, demonstrating a rapid com-
putational speed. 0e search within IBM CPLEX CP Op-
timizer is equipped with the presolve functionality, some
constraint propagation algorithms, temporal linear relaxa-
tion used to guide the search, and two search space ex-
ploration strategies that are used concurrently: the large
neighborhood search for producing good quality solutions
and failure-directed search for proving infeasibility or op-
timality [40].

3. Problem Description and Solutions

Consider a flexible job shop environment that consists of a
set of heterogeneous machines (k ∈ K) and a set of jobs
(i ∈ I). Each job i consists of a set of operations
(Ji � 1, . . . , ni􏼈 􏼉). Each operation needs to be processed in a
specific order (known as precedence constraints) for a given
job. A machine can perform at most one operation at a time.
Each operation must be processed by one of qualified
machines. In addition to the standard FJSP problem, an
amount of energy consumption is considered in this energy-
aware scheduling approach. 0e energy is consumed during
production, idle, and shutdown.0e production requires the
highest amount of energy, while the idle does the medium
and the shutdown requires the lowest. In particular, the
shutdown can be enforced when a continuous idle period of
a machine is expected to be long enough to compensate the
shutdown penalty. When idle times are inevitable, the key is
to adjust small-size idle intervals and locate them in a single
large-size interval to turn on a long-size shutdown.
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3.1.Mixed Integer Linear ProgramingModels. Meng et al. [9]
presented sixMILPmodels for our problem and showed that
the second model outperforms all the other models through
the numerical experiments. We term this efficient model
MILP-2. Despite the superiority of MILP-2, we found that it
can be further improved during the implementation by
employing tuples instead of arrays, thus dramatically re-
ducing the number of binary decision variables. For in-
stance, the MILP-2 uses a binary variable Yi,j,k,t that
represents whether the j-th operation of job i is processed at
the t-th position of machine k. 0is variable is a sparse array,
in which most of the elements are zero. Moreover, Meng
et al. [9] set the maximum number of the positions of
machine k (denoted by mk) to the total number of operations
(􏽐i∈Ini), which is excessively large. We set mk to the number
of operations that machine k can process in the instance. By
taking those measures, we were able to reduce the number of
binary variables by 50–60% in the same instances. We term
this efficient model MILP-2A.

MILP-2 is an extension of MPF for FJSP so that energy
consumption can be considered. However, Demir and
Kürşat Isleyen [17] showed that MPF is the slowest model
among alternative models. Choi and Choi [15] proposed a
new immediate precedence formulation (IPF) that decides
whether one operation immediately precedes the other as
shown in Figure 1.

Now, we will propose a new model that improves IPF
and extends it to account for energy consumption. We
mostly use the same notations as Meng et al. [9]. 0e details
are as follows.

Parameters:

I: set of jobs.
ni: number of operations of job i ∈ I.

Ji: set of operations of job i ∈ I, that is, Ji � 1, . . . , ni􏼈 􏼉.

O: set of job and operation pairs, that is,
O � (i, j)|i ∈ I, j ∈ Ji􏼈 􏼉.
K: set of all machines.
Ko: set of machines which can process operation o ∈ O.

po,k: processing time of o ∈ O by machine k ∈ Ko.
Dk: the unit energy consumed at the idle time for
machine k when the shutdown strategy is not used
P0: the unit energy consumed by a facility for lighting,
heating, and cooling during the makespan.
Eo,k: the energy consumed when operation o is pro-
cessed by machine k.
Nk: the maximum times of shutdown strategy for
machine k.

Gk: the energy consumption of machine k when the
shutdown strategy is used.
TBk: the breakeven period of machine k in which the
same amount of energy is consumed during the idle
time whether the shutdown strategy is used or not.
Hence, TBk � Gk/Dk.
Oq: the set of operations which can be processed by the
same machine with operation q ∈ O.
PO: the set of precedence operation pairs in the same
job operations, that is, PO � (o, q)|o � (i,􏼈 j), q

� (i, j + 1), i ∈ I, j � 1, . . . , ni − 1}.

M1 � 􏽐o∈Omax po,k|k ∈ Ko􏽮 􏽯.
M2 � max Dk · TBk|k ∈ K􏼈 􏼉.

Decision variables:

Xo,k: 1 if o ∈ O is processed by machine k ∈ Ko and 0
otherwise.

Table 1: Articles including energy-efficient scheduling models.

Saving method Environment References

Reduce idle time

Single machine Jiang et al. [18]
Hybrid flow shop Li et al. [19]; Zhang et al. [20]

JSP Jiang et al. [21]
FJSP Yin et al. [22]; Jiang et al. [23]

Shutdown idle machines

Single machine Mouzon et al. [5]; Che et al. [7]
Hybrid flow shop Meng et al. [24]

FJSP
Meta Heuristic Dai et al. [25]; Wu and Sun [26]
MILP-MPF Zhang et al. [8]; Meng et al. [9]; Meng et al. [27]
MILP-IPF 0is study

Exploit variable machine speed

Single machine Che et al. [28]
Flow shop Fang et al. [29]; Mansouri et al. [30]

JSP Zhang and Chiong [31]
FJSP Zhang et al. [32]

Shift production soft-enter to off-peak
Single/parallel machine Rager et al. [33]

Hybrid flow shop Schulz et al. [34]
FJSP Moon and Park [35]; Gong et al. [36]
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Figure 1: An illustration of immediate precedence formulation
using a decision variable Wo,q.
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So: start time of o ∈ O.

Co: completion time of o ∈ O.

Cmax: makespan, that is,
Cmax � max co|o � (i, ni) ∈ O􏼈 􏼉.
Vo: idle time after operation o ∈ O.

Ro: energy consumption during Vo.

Wo,q: 1 if o ∈ O immediately precedes q ∈ O on the
same machine and 0 otherwise.
Zo,k: 1 if turning shutdown strategy is implemented
during Vo on machine k ∈ Ko and 0 otherwise.
Qo,k: 1 if o ∈ O is processed last on machine k ∈ Ko and
0 otherwise.

3.1.1. MILP-3 for Energy-Aware Flexible Job Shop Scheduling.

Min 􏽘
o∈O

􏽘
k∈Ko

Eo,kXo,k + 􏽘
o∈O

Ro + P0Cmax, (1)

􏽘
k∈Ko

Xo,k � 1, ∀o ∈ O,
(2)

Co � So + 􏽘
k∈Ko

po,kXo,k, ∀o ∈ O,
(3)

Sq ≥Co, ∀(o, q) ∈ PO, (4)

Cmax ≥Co, ∀o � i, ni( 􏼁 ∈ O, (5)

􏽘
o∈O

Qo,k ≤ 1, ∀k ∈ K, (6)

􏽘
o∈Oq

Wo,q ≤ 1, ∀q ∈ O,
(7)

􏽘
q∈Oo

Wo,q + 􏽘
k∈Ko

Qo,k � 1, ∀o ∈ O,
(8)

Wo,q − 1≤Xo,k − Xq,k, ∀o ∈ O, q ∈ Oo, k ∈ Ko ∩Kq,

(9)

Xo,k − Xq,k ≤ 1 − Wo,q, ∀o ∈ O, q ∈ Oo, k ∈ Ko ∩Kq,

(10)

􏽘
k∈Ko ∩Kq

Xo,k ≥Wo,q, ∀o ∈ O, q ∈ Oo,
(11)

􏽘
k∈Ko ∩Kq

Xq,k ≥Wo,q, ∀o ∈ O, q ∈ Oo,
(12)

Qo,k ≤Xo,k, ∀o ∈ O, k ∈ Ko, (13)

Sq ≥Co + M1 Wo,q − 1􏼐 􏼑, ∀o ∈ O, q ∈ Oo, (14)

Vo ≤M1 1 − 􏽘
k∈Ko

Qo,k
⎛⎝ ⎞⎠, ∀o ∈ O, (15)

Vo ≤ Sq − Co + M1 1 − Wo,q􏼐 􏼑, ∀o ∈ O, q ∈ Oo, (16)

Vo ≥ Sq − Co − M1 1 − Wo,q􏼐 􏼑, ∀o ∈ O, q ∈ Oo, (17)

􏽘
o∈O

Zo,k ≤Nk, ∀k ∈ K, (18)

Vo ≥TBkZo,k, ∀o ∈ O, k ∈ Ko, (19)

Ro ≥GkZo,k, ∀o ∈ O, k ∈ Ko, (20)

Ro ≥DkVo + M2 Xo,k − Zo,k − 1􏼐 􏼑, ∀o ∈ O, k ∈ Ko,

(21)

Zo,k ≤Xo,k, ∀o ∈ O, k ∈ Ko, (22)

Zo,k ≤ 1 − Qo,k, ∀o ∈ O, k ∈ Ko. (23)

Objective (1) is to minimize the total energy, which is
consumed for production, idle (including shutdown), and
common. Constraint (2) ensures that each operation is
processed by exactly one machine. Constraint (3) links the
completion time of an operation with its starting time.
Constraint (4) enforces that each operation starts after its
precedent operation is finished. Constraint (5) indicates
the makespan. Constraint (6) imposes that each machine
has at most one last job. Constraint (7) imposes that each
operation has at most one immediate precedence oper-
ation. Constraint (8) imposes that each operation has an
immediate next operation or it is the last operation on
some machine. Constraints (9)–(12) encode that if o

immediately precedes q, then they should be processed by
the same machine. Constraint (13) imposes that o can be
the last job of machine k only when machine k processes o.
Constraint (14) enforces that operation q starts after the
completion of operation o if it is processed immediately
after operation o on the same machine. Constraint (15)
imposes that idle time of the last job is zero. Constraints
(16)–(17) compute the idle time Vo of o. Constraint (18)
restricts the number of times of shutdown strategy in
machine k. Constraint (19) restricts the minimum length
of Vo when shutdown strategy is used during Vo. Con-
straints (20)–(21) compute the idle energy consumption
during Vo. Constraints (22)–(23) enforce that shutdown
strategy can be turned during Vo on machine k only when
o is processed by machine k and it is not the last operation
of machine k. We term this newly proposed model
MILP-3.

3.2. Constraint Programming. All time durations, such as
makespan, shutdowns, and productions, are explicitly
modeled as the interval variables as shown in Figure 2.
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As Ham [41] pointed out, there is no standard in CP
formulation, unlike a similar MILP formulation. 0erefore,
this paper formulates the model using generic keywords and
syntaxes as we refer to the CP formulations by Laborie et al.
[40] and IBM ILOG CP Optimizer [42].

0e proposed CP model is built upon the following
decision variables:

Zk,s: interval representing s-th shutdown on machine
k ∈ K

Ck : interval representing makespan of k ∈ K

To : interval representing operation o ∈ O

Xo,k: interval representing operation o ∈ O on machine
k ∈ Ko

Seqk← [Xo,k]: collection of variables assigned to ma-
chine k

eS: total energy consumption during shutdowns
eP: total energy consumption during productions
eI: total energy consumption during idles
eC: total common energy consumption

3.2.1. CP-1.

Min eP + eS + eI + eC, (24)

alternative To , Xo,k: k∈Ko
􏽨 􏽩􏼐 􏼑, ∀o ∈ O, (25)

endBeforeStart To , Tq􏼐 􏼑, ∀(o, q) ∈ PO, (26)

noOverlap Seqk( 􏼁, ∀k ∈ K, (27)

span Ck, Xo,k: o∈O,k∈K􏽨 􏽩􏼐 􏼑, ∀k ∈ K, (28)

startOf Zk,s􏼐 􏼑> startOf Ck( 􏼁, ∀k ∈ K, s≤Nk, (29)

endOf Zk,s􏼐 􏼑< endOf Ck( 􏼁, ∀k ∈ K, s≤Nk, (30)

sizeOf Zk,s􏼐 􏼑≥TBk, ∀k ∈ K, s≤Nk, (31)

eP � 􏽘
o∈O

􏽘
k∈Ko

Eo,k sizeOf To( 􏼁,
(32)

eS � Gk 􏽘
k∈Ko

􏽘
s≤Nk

presenceOf Zk,s􏼐 􏼑,
(33)

eI � Dk 􏽘
k∈K

sizeOf Ck( 􏼁 − 􏽘
s≤Nk

sizeOf Zk,s􏼐 􏼑 − 􏽘
o∈O

sizeOf Xo,k􏼐 􏼑⎛⎝ ⎞⎠, (34)

eC � P0 Max
∀o∈O

endOf To( 􏼁􏼈 􏼉. (35)

Objective (24) is to minimize the total energy con-
sumption, which is comprised of production, shutdown,
idle, and common. Constraint (25) ensures that each op-
eration is processed by exactly one machine. Constraint (26)
enforces each operation starts after its precedent operation is
finished. Constraint (27) prevents intervals in a sequence
from overlapping. Constraint (28) determines the makespan
of each machine. Constraints (29)–(30) ensure that a

shutdown can occur during a makespan. Constraint (31)
ensures the minimum length of each shutdown. Constraints
(32)–(35) compute the total energy consumption for pro-
duction, shutdown, idle, and common, respectively. We
term this model CP-1.

During the preliminary study, the CP-1 could not
outperform the MILP-2A model. Here, we explored an al-
ternative CPmodel. In the CP-1, the idle time was computed

Idle
ShutdownProduction

Makespan

Figure 2: Modeling overview.
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based on other interval variables in Constraint (34). We here
present an alternative CP model, which explicitly captures
the idle intervals.

Ik,t: interval representing t-th idle on machine k ∈ K.

eI � Dk 􏽘
k∈K

􏽘
t≤mk

sizeOf Ik,t􏼐 􏼑, (36)

sizeOf Ck( 􏼁 � 􏽘
o∈O

sizeOf Xo,k􏼐 􏼑 + 􏽘
s≤Nk

sizeOf Zk,s􏼐 􏼑

+ 􏽘
t≤mk

sizeOf Ik,t􏼐 􏼑.
(37)

Constraint (36) replaces Constraint (34). 0en, Con-
straint (37) is introduced to ensure that a makespan of the
machine must be packed by productions, shutdowns, and
idles. All other constraints stay in place.We term this revised
model CP-2.

Figure 3 represents an optimal schedule for a small
benchmark instance (mfjs07). Figure 3(a) shows the detailed
production schedule per machine with an objective of
makespan minimization, and Figure 3(b) depicts the
schedule with an objective of energy minimization, while
maintaining the same productivity. 0e proposed model
merges the small-size idles enough to turn on shutdown
strategy. For instance, the two idles that occurred in machine
4 are replaced by a single shutdown in the same machine.
0e energy-aware scheduling saved the energy consumption
by 1.35% without hurting productivity in the mfjs07
instance.

4. Computational Experiments

In this section, the effectiveness of the proposed models is
examined. 0e MILP, CP, and flow control models are all
coded in IBM OPL 12.8.0 on a personal computer with an
Intel® Core i7-4770 CPU with 16GB of RAM. All the test
instances, MILP codes, CP codes in IBM OPL, and GA code
can be found online at https://github.com/hamcruise/FJSP-
Shutdown.

4.1. Problem Instances. Meng et al. [9] proposed a set of test
instances derived from the known benchmark instances
SFJS01-10 and MFJS01-10 [12] by considering energy
consumption. We adopted the same test instances. SFJS01-
10 are small-sized, and MFJS01-10 are medium-sized. We
also adopted another FJSP benchmark test instance sug-
gested by Behnke and Geiger [43]. Among their extensive 60
instances, we adopted the first 10 instances and added energy
parameters in the same way Meng et al. [9] did. Finally, we
also used another FJSP benchmark test instance suggested by
Kacem et al. [44], which has been adopted by Singh and
Mahapatra [45]. 0e detailed size of the instance (a/b/c) is
recorded in Table 2, where index a denotes the number of
jobs, b denotes the maximum number of operations for a
job, and c denotes the number of machines.

For all instances, the common power (P0) and maxi-
mum times of shutdown (Nk) are set to be 5 and 3, re-
spectively. 0e processing powers are drawn from the

uniform distribution [3, 5].0e idle power (Dk) is randomly
generated from the set {1, 2, 3}, and the energy consumption
during shutdown (Gk) is generated from the set {10, 30, 60}.

4.2. Experimental Results. Figure 4 shows the ratio of the
number of binary variables of MILP models to MILP-2. As
the size of MILP-2 increases, the binary variables of MILP-
2A andMILP-3 decrease. In particular, it is observed that the
reduction ratio of the binary variable of MILP-3 sharply
decreases as the size increases.

In this subsection, we implemented a genetic algorithm
to compare the performance between proposed methods
and metaheuristic. Genetic algorithm (GA) is known as an
effective metaheuristic to solve flexible job shop scheduling
problems [46–49]. 0e overall GA framework in Zhang et al.
[50] was adopted. We had conducted a preliminary test for
tuning hyperparameters with respect to the quadruple
(popSize, numGen, crRate, mutRate), where popSize is the
population size (popSize ∈ {100, 200, 400}), numGen is the
maximum number of generations (numGen ∈ {50, 100,
200}), crRate is the crossover rate (crRate ∈ {0.6, 0.7, 0.8, 0.9,
1.0}), and mutRate is the mutation rate (mutRate ∈ {0.0, 0.1,
0.2, 0.3}). 0e best GA hyperparameters that were obtained
from the preliminary test were as follows: popSize� 100,
numGen� 50, crRate� 0.7, and mutRate� 0.1. 0e increas-
ing population size and number of generations did not
ensure obtaining better solutions. 0e value of the fitness
function converged fast in practice.

Tables 3 and 4 compare the proposedMILP and GAwith
CP models in terms of the objective function value (total
energy consumption) and computation times within 600
seconds for Fattahi and Behnke’s instances, respectively.
Column 1 identifies the name of the instance, columns 2–7
include the total energy consumption, and columns 8–13
report the computation times. 0e bold font indicates the
optimality.

Table 3 reports the results based on Fattahi’s instances.
For small-sized instances (SFJS01-10), all approaches found
the optimal solutions, except GA. In computation times, all
approaches, except CP-1, terminated in one second. For
medium-sized instances (MFJS01-10), CP-2 yielded the best
results on average. In computation times, GA significantly
outperforms all other approaches seconds. However, MILP-
2, MILP-2A, and MILP-3 terminated at a similar time.

Table 4 reports the results based on Behnke’s instances.
0e proposedMILP-2A performed the best in average. GA is
significantly faster than the MILP and CP approaches.
However, the total energy consumption is increased up to
8.1% on average.

In order to determine if the means of two sets of data are
significantly different from each other, we conducted the t-
test: Paired Two-Sample for Means at an alpha level of 0.05.
Table 5 indicates that, for medium-sized Fattahi’s instances,
there is a statistically significant difference between CP-2 vs.
CP-1 and GA, while there is no statistically significant
difference between CP-2 vs. MILP-2,MILP-2A, andMILP-3.
For Behnke’s instances, there is a statistically significant
difference between MILP-2A vs. CP-1, MILP-2, MILP-2A,
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MILP-3, and GA methods, while there is no statistically
significant difference between MILP-2A and CP-2.

0e previous tables compared the performance of models
with a fixed computation time. It is necessary to check how the
performance changes according to different computation
times. Table 6 summarizes the total energy consumption in
terms of computational run time for the Kacem’s instances.
Both CP and MILP models proved the optimality of Kacem1
instance within 60 s. CP managed to prove the optimality of

Kacem2 instance within 60 s, while MILP spent 150 s. In the
Kacem3 instance, the CP-2 found an optimal solution within
60 s, while MILP-2A could not find an optimal solution within
600 s. In addition, the CP-2 found a much better solution, in
just 10 seconds, than the one MILP-2A found in 600 seconds.
0is experiment demonstrates that CP is quick to generate
efficient (or optimal) solutions.

0e energy saving does not appeal to highly capitalized
manufacturing industries, such as automobiles and
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Figure 3: Schedules for the mfjs07 instance. (a) Traditional scheduling to minimize Cmax. (b) Energy-aware scheduling to minimize energy
consumption while keeping the same productivity.

Table 2: Characteristics of the test instances.

Fattahi instances Behnke instances
Name Size Name Size Name Size
sfjs01 2/2/2 mfjs01 5/3/6 Behnke1 10/3/20
sfjs02 2/2/2 mfjs02 5/3/7 Behnke2 10/3/20
sfjs03 3/2/2 mfjs03 6/3/7 Behnke3 10/3/20
sfjs04 3/2/2 mfjs04 7/3/7 Behnke4 10/3/20
sfjs05 3/2/2 mfjs05 7/3/7 Behnke5 10/3/20
sfjs06 3/3/2 mfjs06 8/3/7 Behnke6 20/3/20
sfjs07 3/3/5 mfjs07 8/4/7 Behnke7 20/3/20
sfjs08 3/3/4 mfjs08 9/4/8 Behnke8 20/3/20
sfjs09 3/3/3 mfjs09 11/4/8 Behnke9 20/3/20
sfjs10 4/3/5 mfjs10 12/4/8 Behnke10 20/3/20

Kacem instances
Name Size Name Size Name Size
Kacem1 8/4/8 Kacem2 10/3/10 Kacem3 15/4/10
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semiconductors, because the total energy cost is not even
comparable to the revenue the manufacturers yield, so their
sole goal is to maximize productivity. However, if we can

maintain the same productivity, while significantly reducing
energy consumption, the energy-aware production sched-
uling will be embraced by the industries. 0is type of
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Figure 4: Comparison of the number of binary variables of MILP models.

Table 3: Comparison of models in terms of total cost and computation times on Fattahi instances.

Instance
Total energy consumption Computation time (second)

CP-1 CP-2 MILP-2 MILP-2A MILP-3 GA CP-1 CP-2 MILP-2 MILP-2A MILP-3 GA
sfjs01 815.2 815.2 815.2 815.2 815.2 815.2 54.6 0.3 0.0 0.0 0.0 0.2
sfjs02 1362.2 1362.2 1362.2 1362.2 1362.2 1362.2 65.4 0.3 0.0 0.0 0.0 0.2
sfjs03 2806.2 2806.2 2806.2 2806.2 2806.2 2806.2 507.3 0.3 0.0 0.0 0.0 0.2
sfjs04 4560.3 4560.3 4560.3 4560.3 4560.3 4560.3 600.1 0.3 0.0 0.0 0.0 0.2
sfjs05 1405.4 1405.4 1405.4 1405.4 1405.4 1405.4 547.7 0.3 0.0 0.0 0.0 0.2
sfjs06 4304.6 4304.6 4304.6 4304.6 4304.6 4420.6 600.1 0.3 0.1 0.0 0.0 0.3
sfjs07 5256.0 5256.0 5256.0 5256.0 5256.0 5345.2 600.0 0.3 0.1 0.0 0.0 0.3
sfjs08 3429.7 3429.7 3429.7 3429.7 3429.7 3477.7 600.0 0.3 0.3 0.1 0.0 0.3
sfjs09 2848.0 2848.0 2848.0 2848.0 2848.0 3023.2 600.2 0.4 0.1 0.1 0.1 0.3
sfjs10 8877.0 8877.0 8877.0 8877.0 8877.0 8877 600.0 0.4 0.1 0.0 0.0 0.4
mfjs01 9380.7 9380.7 9380.7 9380.7 9380.7 9981.2 600.0 600.1 2.9 0.8 1.6 0.5
mfjs02 8642.0 8642.0 8642.0 8642.0 8642.0 9082 600.0 600.0 2.8 1.1 1.9 0.5
mfjs03 10799.4 10762.8 10757.8 10757.8 10757.8 11700 600.0 600.0 35.3 4.7 10.8 0.6
mfjs04 13075.9 13038.6 13038.6 13038.6 13038.6 13696 600.0 600.1 117.5 27.3 82.3 0.6
mfjs05 12744.4 12600.1 12600.1 12600.1 12600.1 13579.1 600.0 600.1 93.3 23.7 426.8 0.6
mfjs06 15169.7 14960.1 14960.1 14960.1 14960.1 16257.5 600.0 600.1 49.6 16.7 52.0 0.7
mfjs07 20842.1 20542.1 21098.3 20990.3 21179.6 21884.9 600.0 600.0 607.5 600.2 600.3 1.0
mfjs08 24295.0 23763.8 24289.6 23999.0 23993.4 25812.3 600.0 600.1 601.8 600.3 600.3 1.0
mfjs09 30999.4 29788.1 31386.7 30882.5 30846.4 32237.1 600.1 600.0 601.1 600.5 600.1 1.2
mfjs10 34946.8 34410.7 36794.5 35168.6 37136.6 37293.6 600.0 600.1 600.4 601.6 600.8 1.5
Average 10828.0 10677.7 10930.7 10804.2 10910.0 11380.8 538.8 300.2 135.7 123.9 148.9 0.5

Table 4: Comparison of models in terms of total cost and computation times on Behnke instances.

Instance
Total energy consumption Computation time (second)

CP-1 CP-2 MILP-2 MILP-2A MILP-3 GA CP-1 CP-2 MILP-2 MILP-2A MILP-3 GA
Behnke1 1839.2 1795.8 1795.8 1795.8 1795.8 1889.3 600.0 600.1 600.1 104.6 600.1 1.1
Behnke2 1787.8 1768.0 1763.9 1763.9 1763.9 1884.6 600.0 600.1 318.3 167.3 180.8 1.1
Behnke3 1752.4 1749.9 1749.9 1749.9 1749.9 1902.6 600.0 600.2 332.6 55.3 309.2 1.1
Behnke4 2012.4 1964.2 1961.4 1945.9 1950.4 2082.9 600.0 600.1 600.2 379.7 600.1 1.1
Behnke5 1928.2 1865.7 1867.3 1865.7 1872.6 2101.1 600.0 600.1 600.3 124.4 600.1 1.0
Behnke6 3565.1 3354.1 3385.8 3361.3 3381.6 3637.7 600.1 600.2 600.4 600.2 600.1 2.2
Behnke7 3875.4 3483.1 3475.3 3454.6 3455.2 3734.9 600.0 600.2 602.7 600.3 600.3 2.2
Behnke8 3701.7 3445.2 3509.6 3474.4 3521.3 3774.9 600.0 600.3 604.4 600.4 600.3 1.9
Behnke9 3526.5 3326.6 3324.4 3294.4 3340.0 3579.2 600.0 600.3 600.4 600.3 600.2 2.1
Behnke10 4150.0 3703.4 3742.8 3705.7 3784.6 3916.8 600.0 600.3 603.3 600.4 600.3 2.1
Average 2813.9 2645.6 2657.6 2641.2 2661.5 2850.4 600.0 600.2 546.3 383.3 529.1 1.6
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mathematical approach is known as epsilon-constraint
method, where one of the objectives is taken as a single
objective function and the others are included into a model
as constraint [51].

Tables 7 and 8 attempt to meet this demand by com-
paring the traditional scheduling and energy-aware sched-
uling. 0e traditional scheduling minimizes the makespan
(cycle time reduction), whereas the energy-aware scheduling
minimizes the total energy consumption as it maintains the

same makespan. Column 1 identifies the name of the in-
stance. Column 2 reports the total energy consumption
when the model solves each test instance with the makespan
minimization. Columns 3-4 report the total energy con-
sumption when the model runs with the energy con-
sumption minimization with the same makespan. 0is
experimentation identifies potential energy-saving without
compromising productivity. For Fattahi’s instances, Table 7
shows 1.57% and 1.69% saving without and with shutdown

Table 7: Potential energy saving based on Fattahi instances.

Instance
Total energy consumption Energy saving

Tradition
Energy-aware scheduling Energy-aware scheduling

w/o shutdown w/ shutdown w/o shutdown (%) w/ shutdown (%)
sfjs01 815.2 815.2 815.2 0.00 0.00
sfjs02 1362.2 1362.2 1362.2 0.00 0.00
sfjs03 2806.2 2806.2 2806.2 0.00 0.00
sfjs04 4560.3 4560.3 4560.3 0.00 0.00
sfjs05 1405.4 1405.4 1405.4 0.00 0.00
sfjs06 4630.6 4360.6 4360.6 5.83 5.83
sfjs07 5530.2 5304.2 5304.2 4.09 4.09
sfjs08 3599.2 3599.2 3599.2 0.00 0.00
sfjs09 3121.0 2951.0 2951.0 5.45 5.45
sfjs10 9217.8 8893.0 8877.0 3.52 3.70
mfjs01 9498.6 9468.6 9468.6 0.32 0.32
mfjs02 9036.2 8918.2 8918.2 1.31 1.31
mfjs03 11410.0 11356.0 11278.0 0.47 1.16
mfjs04 13233.9 13163.9 13075.9 0.53 1.19
mfjs05 13333.6 13293.6 13293.6 0.30 0.30
mfjs06 16443.1 16086.7 16086.7 2.17 2.17
mfjs07 22072.9 21973.1 21775.1 0.45 1.35
mfjs08 24884.4 24509.6 24503.8 1.51 1.53
mfjs09 32144.4 31262.2 31262.2 2.74 2.74
mfjs10 35857.7 34874.9 34874.9 2.74 2.74

Average 1.57 1.69

Table 5: Comparison of models in terms of t-test: paired two-sample for means.

CP-2 vs.
Medium-sized Fattahi instances (MFJS01-10)

MILP-2A vs.
Behnke instances

CP-1 MILP-2 MILP-2A MILP-3 GA CP-1 CP-2 MILP-2 MILP-3 GA
t-value t (9) −2.511 −1.918 −2.038 −1.684 −5.185 t-value t (9) −3.387 −0.780 −3.426 −2.337 −8.547
p-value 0.0333 0.0874 0.0720 0.1265 0.0006 p-value 0.0080 0.4552 0.0076 0.0442 0.0000

Table 6: Comparison of models in terms of total energy consumption according to different CPU times.

Instance Model
CPU (sec)

10 30 60 90 120 150 180 300 600

Kacem1
CP-2 407.5 401.4 393.4 — — — — — —

MILP-2A 443.0 408.6 393.4 — — — — — —
GA 422.6

Kacem2
CP-2 205.8 202.2 200.8 — — — — — —

MILP-2A 238.6 220.8 215.5 210.0 201.5 200.8 — — —
GA 227.5

Kacem3
CP-2 520.2 435.8 435.8 435.8 435.8 435.8 435.8 435.8 435.8

MILP-2A 1909.2 1908.1 1908.1 1908.1 1908.1 1908.1 1908.1 1908.1 1908.1
GA 501.8
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strategy, respectively. 0e mild saving can be explained by
the test instance itself.

Table 8 reports the results of Behnke’s instances. 0is
experimentation identified the potential energy-saving
without compromising productivity by 14.85% (w/o shut-
down) and 15.23% (w/shutdown). 0e increased savings
compared with the ones with Fattahi’s instance are due to the
size of this Behnke’s instance, allowing the solver the flex-
ibility to find better solutions. In order to determine if the
means of two sets of data are significantly different from each
other, we conducted the t-test: Paired Two-Sample for
Means at an alpha level of 0.05.0e test indicates that there is
a statistically significant difference between traditional and
energy-aware methods with t (19)� 3.5 and p< 0.01 in
Fattahi’s instance and t (9)� 5.53 and p< 0.001 in Behnke’s
instance.

Table 9 records the amount of energy saving by applying
the proposed energy-aware method according to different
multipliers on Eo,k. 0is experimentation identified the
potential energy-saving without compromising productivity
by 6–8%. 0e improvement was slightly decreased as the
multiplier was increased.

5. Conclusion

We have investigated the energy-efficient FJSP with a
shutdown (on/off) strategy to save idle energy consumption.
0e shutdown can be enforced when a continuous idle
period of a machine is expected to be long enough to
compensate for the shutdown penalty. An alternative MILP
model is proposed. 0en, a novel constraint programming is
proposed. Finally, practical operational scenarios are
examined.

0e computational study demonstrated that (1) the
proposed models significantly outperform the best bench-
mark model (MILP-2) and (2) we can maintain the maxi-
mum productivity while significantly reducing the energy-
consumption by 14.85% (w/o shutdown) and 15.23% (w/
shutdown) on average, thus promoting energy-aware pro-
duction scheduling to highly capitalized manufacturing
industries. We offer benchmarking instances, CPLEX MIP,
CP, and GA source codes, which have been used in this
research, in order to promote related research, thus expe-
diting the adoption of energy-efficient scheduling in
manufacturing facilities.

In future research, we will extend the proposedmodels to
consider time-of-use (TOU) electricity and peak power load
since the energy cost can be further saved. Utility companies
across the U.S. are offering TOU-based electricity demand
response programs. 0e key is to shift productions to off-
peak periods.
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