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Fractional differential models are playing a vital role in many applications such as diffusion, probability potential theory, and
scattering theory. In this study, the variable-order space and time fractional diffusionmodel is employed for denoising the medical
images. -e finite difference approach is implemented to find the numerical solution of the proposed model. Convergence and
stability of the numerical method are presented. -e experimental outcomes of the variable-order model are analyzed with those
of the fractional and integer-order diffusion models. It was noticed that the peak signal-to-noise ratio (PSNR) value is increased
considerably for the proposed model.

1. Introduction

-e field of fractional differential equations has drawn
immense consideration towards theoretical [1–3] and ap-
plied research studies [4–6]. Fractional differential equations
are found to be an effective tool used in certain mathematical
models such as hydrology [7], finance [8], physics [9], and
signal and image processing [10–14]. Various theories of
fractional integrals and derivatives were developed by many
authors, for instance, Riemann-Liouville [2], Gr€unwald [15],
Caputo [16], and Riesz [17].

Many researchers are focusing on image denoising based
on total variation, wavelet transform, bilateral filter, histo-
gram of gradient, fractional sinCα, anisotropic diffusion
filter, and primal-dual algorithm [18–25]. However, the
drawback of using a total variation, second-order, and
fourth-order-based image denoising models suffered from
the staircase effect, too much of smoothness and preserving
in discontinues. -e integer-order fractional derivatives are
not efficient in specifying some complex diffusion processes.
So, our work aims to further development of the variable-
order fractional model in the context of image denoising to
overcome the above issues.

Nowadays, variable-order fractional calculus is especially
acknowledged as a helpful and hopeful approach in the
modeling of a diffusion process. -e pioneering work of
variable-order operators can be traced. Chen et al. [26]
introduced Caputo-fractional derivatives for removing noisy
signal using wavelet transform. In recent years, a finite
difference technique for solving multivariable-order frac-
tional integrodifferential equations is introduced using
Bernstein basis functions together with the Newton-Cotes
collocation points in [27]. Furthermore, they have found a
numerical scheme to solve variable-order diffusion-wave
and differential equation. Also, in [28], Guo et al. proposed
three-dimensional fractional total variation under tensor
algebra-based model for 3D image denoising. Recently, in
[29], Garrappa et al. investigated the main properties of the
emerging variable-order operators and discussed some
practical applications of the variable-order Scarpi integral
and derivative. Gu et al. [30] proposed an unconditionally
stable implicit difference scheme for solving generalized
time-space fractional diffusion equations with variable co-
efficients with numerical scheme that utilizes the L1-type
formula for the generalized Caputo-fractional derivative in
time discretization and the second-order weighted and
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shifted Gr€unwald difference formula in spatial discretiza-
tion. Also, Fang et al. [31] developed a fast finite difference
method for solving a class of variable-order time fractional
diffusion equations. In [32], Gu andWu considered a class of
Volterra partial integrodifferential problems and proposed a
novel iterative algorithm for parallel-in-time pattern (PinT)
computation.

In this research, we study the variable-order fractional
diffusion model for medical image denoising using the
Caputo finite difference scheme for the proposed problem.
-e experiments demonstrate the advantage of the variable-
order fractional model that achieves the highest PSNR value,
and it indicates the quality enhancement of the medical
images. -is research is organized as follows. In Section 2,
few types of variable-order fractional derivatives are ex-
plored. In Section 3, the discrete approximation of the
proposed model is developed. In Section 4, the stability and
convergence of this model are discussed. In Section 5, the
numerical results are compared with fractional and integer-
order diffusion models. -is study concludes in Section 6
with directions for further research.

2. Variable-Order Fractional Operators

-e research on fractional calculus is pursued over a long
time in different disciplines such as biomedical, computa-
tional biology, economics, and control engineering. -e
classical calculus extends the definition of fractional cal-
culus, where the orders need not be positive integers. On the
other hand, the variable-order calculus is a hereditary ex-
tension of the integer order calculus. In this regard, the order
may use in any variable such as time and space variables or a
system of other variables. -e basic definitions for variable-
order fractional derivatives are provided in the following
sequel.

Definition 1 (See [16]). -e variable-order Caputo derivative
with respect to time is defined as follows:
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where n − 1< α(x, t)≤ n.

Definition 2 (See [16]). -e variable-order Caputo derivative
with respect to space is defined as follows:
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where n< β(x, t)≤ n + 1.

3. Variable-Order Fractional Diffusion
Equation-Based Image Denoising

Consider Ω is a closed domain in IR2. -e format of noisy
image would be mathematically modeled as

u0(x, y) � u(x, y) + g(x, y), (3)

where u0(x, y) and u(x, y) are the observed and clean
images, respectively, g(x, y) is the Gaussian noise, and
(i, j)T takes the location with a rectangular image domain
Ω⊆ IR2. -e proposed work approximates the required
clean image u(x, y) by solving the following variable-order
fractional diffusion equation:
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where xL < x< xR, yL <y<yR, α(x, y, t) ∈ (0, 1], and
β(x, y, t), c(x, y, t) ∈ (1, 2], where un

ij � u(xi, yj, tn),
αn

ij � α(xi, yj, tn), βn
ij � β(xi, yj, tn), and cn

ij � c(xi, yj, tn).
Define tn � nΔt is in the case 0≤ tn ≤T, Δx � h> 0 as the
grid size in x-direction, Δy � k> 0 as the grid size in
y-direction, and (x, y) ∈ Ω, where Ω is an image domain
with initial and Neumann boundary conditions:
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Now, the above Neumann boundary conditions are
discretized as

u
n
i,N � u

n
i,N−1,

u
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N,j � u

n
N−1,j,
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⎭ (6)

where M × N is the dimension of the image u(x, y). We use
these Neumann boundary conditions to preserve continuity
of the image boundary. -e boundary values of the image
can be obtained by reflecting the closest samples inside the
image region. -e solution to the proposed problem can be
obtained by discretization of space and time variables. -e
discretization of the Caputo-type variable-order space
fractional derivative can be stated as follows [33].
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where Bs
ij � (s + 1)2− βn

ij − s2− βn
ij and Qij � h− βn

ij /Γ(3 − βn
ij).
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where Cs
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ij).
Similarly, the discretization of the Caputo-type variable-

order time fractional derivative can be stated as follows [2].

c
D

α(x,y,t)

t u xi,yj,tn( 􏼁
�

τ− αn
ij

Γ 2 − αn
ij􏼐 􏼑

􏽘

n

s�0
u

n+1−s
ij − u

n−s
ij􏼐 􏼑 · (s + 1)

1− αn
ij − s

1− αn
ij ,

(9)

where As
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Discretize equation (4) in the following form:
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Now, equation (8) can be written as

u
n+1
ij � u

n
ij − 􏽘

n

s�1
u

n+1−s
ij − u

n−s
ij􏼐 􏼑A

s
ij

+ PijQij 􏽘

i−1

s�0
u

n
i−s+1,j − 2u

n
i−s,j + u

n
i−s−1,j􏼐 􏼑B

s
ij

⎡⎣ ⎤⎦

+ PijRij 􏽘

j−1

s�0
u

n
i,j−s+1 − 2u

n
i,j−s + u

n
i,j−s−1􏼐 􏼑C

s
ij

⎡⎢⎣ ⎤⎥⎦.

(11)

Equation (9) can be entered at time t � tn in the matrix
form:
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-e computational solutions of un+1
ij and un

ij are de-
scribed from the identified initial and symmetric boundary
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conditions (3) and (4). -e solution un+1
ij of (8) is meant as a

denoised image.
-e implementation of the proposed method is

expressed in the following Algorithm 1:

4. Stability and Convergence Analysis

4.1. Stability Analysis. Consider Wn+1 and Un+1 be the nu-
merical solutions of (6) with initial values given by W0

ij and
U0

ij, respectively.

Theorem 1. 3e explicit approximation method defined by
(9) to variable-order space-time diffusion equation (2) is
stable, that is,
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We note that ‖Ln
ij‖≤L for any i, j.
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-e stability via mathematical induction is analyzed in
[16]. From (1), ‖ϵnij‖∞ ≤C‖ϵ0ij‖∞, where C is a constant.

From (11), ‖ϵn+1
ij ‖∞ ≤C(2 + AL)‖ϵ0ij‖∞ ≤C1‖ϵ0ij‖∞,

which proves that the explicit scheme is stable. If there is a
perturbation in u0

ij, then the small change would not cause
large error in numerical solution. □

4.2. Convergence Analysis

Theorem 2. Let un+1(xi, yj, tk) be the numerical solution of
equations (4)–(6) at mesh point (xi, yj, tk) and computed by
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Hence, there is a constant C, ‖ek‖∞ ≤Ckα(τ1+α+

ταh + ταk) � C(τ + h + k). If kτ ≤T is finite.
-us, we see that for any x, y, and t as h, k, and τ ap-

proach 0 in such a way that (ih, jk, τ) tends to (x, y, t). -is
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proves that un+1
ij converges to un

ij as h, k, and τ tends to zero
[34]. Hence, the conclusion follows. □

5. Experimental Results and Discussion

-e effect of this variable-order model is estimated by
calculating the numerical indicator PSNR value, which is

frequently used to find the quality of the processed image
and also compute high quality of restoration in image
firmness. -e PSNR is described via the mean square error
(MSE) for two images, that is to say, u0 (corrupted image)
and u (denoised image), respectively.

MSE �
1

MN
􏽘

M

i�1
􏽘

N

j�1
u0(i, j) − u(i, j)( 􏼁

2
,

PSNR � 10 log10 max u0, u( 􏼁
2MSE.

(23)

-e PSNR and MSE values of the denoised image are
determined which act as a computable quality for com-
parison of the proposed model, fractional-order, and
integer-order diffusion models (Table 1). Figure 1 shows
the relationship between β, c, and PSNR values. Here, NT

� 250, that is, after 250 iterations, we obtained the
resulting image which is very close to the input image.
-e computational time (CPU) is given in Table 1. To this
end, we performed on the benchmark image databases
where a noisy image is evolved by using the fractional-
order and integer-order diffusion models and the pro-
posed model with α (0< α≤ 1) fractional-order derivative
would attain the spotting of the inflection point without
any relocation. -e parameter σ shows Gaussian noise,
and each pixel in the image will be changed from its
original value by a small amount. -e terminating for-
mula for the iteration is ‖un+1 − un‖/‖un‖≤ ε. We studied
ϵ � 10− 5 in the numerical experiment. In experimental
and numerical analyses, we have used the version of
MATLAB R2012a. -e proposed model has been studied
with four types of medical images, namely, OCT (optical
coherence tomography) image, MRI (magnetic resonance
image), CT (computed tomography) scan, and X-ray
image. From Figures 2(e), 3(e), 4(e), and 5(e), the pro-
posed model provides affirmative evidence for better
performance in maintaining the details and edge infor-
mation than the fractional and integer-order models.

Figure 2 (OCT image) shows us beneath the surface of
the retina. -e OCT is the most valuable advancement in
the retinal diagnostic image, and we can greater under-
stand the very fine changes which can be indicated ab-
normally. It constructs a cross-sectional view of ocular

structures accurate to less than 10 microns. So, denoising
these types of images is still challenging. Hence, the
retinal diagnostic image (Figure 2(a)) is used for the first
experiment. Figure 2(a) is a corrupted image by an ad-
ditive Gaussian noise at four various intensities such as
10, 15, 20, and 25, as shown in Figure 2(b). -e denoised
image 1(e) by the presented model is added clear, and it
has a larger PSNR value than Figure 2(c) and Figure 2(d).
Also, Figure 2(d) shows the information of retina that is
critical in picking up the most subtle changes same from
Figure 2(a). -erefore, the proposed model can be used
for enhanced eye examination and in addition to all the
normal tests.

Figure 3 (MRI image) shows a brain tumor image.
Recently, biomedical images are taking an important role
in identifying anatomy and the physiological process of
the body in both health and disease. -is MRI image has
proven successful for the diagnosis of all parts of the body
including cancer, stroke, heart and vascular disease, breast
disease, and musculoskeletal disorders. Detection of tu-
mors from MRI data is tedious for physicians and chal-
lenging for computers in all medical disciplines. MRI
scans detect a large number of lesions and define the
location more readily, and they are also the best at
detecting spread to the meninges, the lining around the
brain (and spinal cord). Figure 3(a) is the brain image
affected by the tumor. Figure 3(b) is affected by additive
Gaussian noise at four different values such as 10, 15, 20,
and 25. Figures 3(c) and 3(d) have lost the information as
well as the appearance of the tumor is not clear.
Figure 3(e) shows original information without any loss
and can be used for diagnosis and surgical purposes.

(1) Initialize the iteration process by setting u0(x, y)

(2) Initialize α ∈ (0, 1] and β, c ∈ (1, 2], u0 � f, and time step τ � 0.1
(3) Compute un+1

ij from (6), where i� 1, 2, . . ., M, j� 1, 2, . . ., N, for n� 1,2, . . ., NT do
(4) Check if ‖un+1 − un‖/‖un‖≤ total; then stop.
(5) Set un+1 � u(x, y)

(6) Output display u(x, y)

ALGORITHM 1
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Table 1: -e PSNR and MSE values obtained by applying different test images.

Models σ � 10 σ � 15 σ � 20 σ � 25 Avg. PSNR MSE Iterations (sec)
OCT-retina image (α � 0.5 and β � c � 1.5)

Integer-order diffusion 31.97 36.5 34.05 31.45 33.49 0.99 0.69
Fractional-order diffusion 38.14 39.95 35.27 34.81 37.04 0.67 0.67
Proposed model 41.04 44.63 44.05 41.29 42.75 0.44 0.53

MRI-brain image (α � 0.6 and β � c � 1.6)
Integer-order diffusion 24.19 24.16 24.19 24.15 24.17 0.75 0.68
Fractional-order diffusion 36.14 36.18 36.19 36.15 36.17 0.25 0.66
Proposed model 43.50 43.73 43.84 44.13 43.8 0.15 0.50

CT-lung image (α � 0.7 and β � c � 1.7)
Integer-order diffusion 26.72 25.69 24.97 25.73 25.78 0.27 0.66
Fractional-order diffusion 36.49 37.19 37.11 36.55 36.84 0.21 0.64
Proposed model 44.09 44.57 44.50 44.29 44.36 0.19 0.54

X-ray-spider image (α � 0.8 and β � c � 1.8)
Integer-order diffusion 30.89 32.72 32.75 32.26 32.15 0.35 0.66
Fractional-order diffusion 40.30 41.06 41.07 41.01 40.86 0.31 0.62
Proposed model 44.13 44.03 44.01 43.99 44.04 0.24 0.56

integer order diffusion equation
fractional order diffusion equation
fractional variable order diffusion equation
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Figure 1: Comparison of three models between β, c, and PSNR values.

(a) (b) (c) (d)

Figure 2: Continued.
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(e)

Figure 2: -e denoising results of OCT-retina image with σ � 20, α� 0.5, and β � c �1.5. (a) Input image. (b) Corrupted image. (c) Noise
revmoved image by integer order diffusion. (d) Noise revmoved image by fractional order diffusion. (e) Noise revmoved image by fractional
variable order diffusion.

(a) (b) (c) (d)

(e)

Figure 3: -e denoising results of MRI-brain image with σ � 15, α� 0.6, and β � c �1.6. (a) Input image. (b) Corrupted image. (c) Noise
revmoved image by integer order diffusion. (d) Noise revmoved image by fractional order diffusion. (e) Noise revmoved image by fractional
variable order diffusion.

(a) (b) (c) (d)

Figure 4: Continued.
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Figure 4 (CT image) shows a lung cancer image. -is CT
image is a diagnostic image that is used to test and construct
detailed images of internal organs, soft tissue, bones, and blood
vessels. A chest CT scan can assist determine the cause of lung
symptoms such as shortness of breathing or chest pain or check
lung problems such as a tumor and excess fluid around the
lung. As shown in Figure 4(a), lung image affected by cancer

and CT lung screening is capable of detecting lung nodules as
small as 2 or 3 millimeters. Figure 4(b) is corrupted by additive
Gaussian noise at four different levels such as 10, 15, 20, and 25.
In Figure 4(c) and Figure 4(d), small nodules and affected areas
are not visible. Figure 4(e) shows malignant tumors when they
are still small and can be removed before the disease spreads to
other areas of the body.

(e)

Figure 4: -e denoising results of CT-lung image with σ � 10, α� 0.7, and β � c �1.7. (a) Input image. (b) Corrupted image. (c) Noise
revmoved image by integer order diffusion. (d) Noise revmovedDenoised image by fractional order diffusion. (e) Noise revmoved image by
fractional variable order diffusion.

(a) (b) (c) (d)

(e)

Figure 5: -e denoising results of X-ray-spider image with σ � 25, α� 0.8, and β � c �1.8. (a) Input image. (b) Corrupted image. (c) Noise
revmoved image by integer order diffusion. (d) Noise revmoved image by fractional order diffusion. (e) Noise revmoved image by fractional
variable order diffusion.
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Figure 5 (X-ray image) shows a spider image. X-ray
image has enhanced an important method for visualizing
cellular and histological structures in a broad range of
biological and medical studies. Figure 5(a) is a high-
resolution X-ray image of a spider. Figure 5(b) has been
perturbed by additive Gaussian noise at 10, 15, 20, and 25.
Figures 5(c) and 5(d) are not making possible to see
smaller details. But, Figure 5(e) is making it possible to
see similar details of Figure 5(a).

6. Conclusion

In this work, the convergence and stability of the numerical
method are presented. -e remarkable difference between in-
teger, fractional, and variable-order fractional models of dif-
fusion equation can be seen easily.-e variable-order fractional
model describes the characteristics of denoising with more
accuracy compared to integer and fractional-order. -us, the
fundamental goal of this work to construct an image denoising
algorithm 1 for the variable-order fractional diffusion equation
in space and time by using finite difference approximation is
achieved. -e present work shows the validity and great po-
tential of variable-order fractional diffusion equation for
denoising the noised images.-e experimental results show that
the quality of denoising images and the highest PSNR and least
MSE values are obtained by a fractional variable-order diffusion
model.
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