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Today, there is a large increase in the demand for electricity. ,e transmission and distribution networks, however, cannot fulfill
unbound demands due to the scarcity of resources. Power lines have losses which make the situation more unfavorable for
maximum power transfer. Implementing a flexible AC transmission system (FACTS) is one of the best ways to reduce line losses.
,is paper proposes a FACTS-based method for minimizing the fault current in the system. Switchgear and protection equipment
also perform better when this is done. Moreover, due to the reduced fault current of the switched system, a larger amount of power
can be transmitted. Static synchronous series compensator (SSSC), static synchronous compensator (STATCOM), and unified
power flow controller (UPFC) are evaluated in this case. With STATCOM and UPFC, fault currents are significantly reduced.
Furthermore, STATCOM and UPFC can also reduce the fault currents in the power system in addition to voltage regulation and
power flow control. A MATLAB/Simulink model is used to evaluate the model’s feasibility.

1. Introduction

Humanity has been blessed with the greatest gift of all with
electricity. Modern life would not be possible without
electricity. Daily life cannot be lived without it. Electricity is
the lifeblood of any economy and industry. Despite expo-
nentially increasing power demand, transmission and dis-
tribution systems do not have the resources to meet those
demands. To ensure reliable and quality electrical power
services, the corresponding systems are constructed with
care, designed carefully, and maintained appropriately. ,e
occurrence of frequent faults is an obstacle to the com-
prehensive and reliable operation of the systems. Power
system analysis considers the frequency of these faults very

carefully [1].,ere might be various causes of a fault, such as
a short circuit, a natural calamity, an overload, or reckless
maintenance. System failures may manifest themselves in
several ways, such as a triple-phase failure, a single line to
ground failure, and a double-line failure. In the present
system, the faults contribute to a huge increase in the current
level. Damage to power system equipment could cause the
whole area to black out [2].

Fault current is defined as the instantaneous increase in
current caused by a short circuit or other fault in a power
system [3]. Short circuits frequently occur between the lines
or lines and the ground in the three-phase transmission
network [4]. During a short-circuit fault, the current can rise
by up to 10 times the load current [5]. ,is will negatively
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impact the power network’s reliability and efficiency. Dis-
tribution network and transmission system have widely
implemented flexible AC transmission system (FACTS) to
help improve and regulate credibility as well as exercise
power [6].

,e widely used FACTS devices in the transmission
network are Static VAR compensator (SVC) [7], thyristor
controlled phase shifting transformer (TCPST), thyristor
controlled series capacitor or compensator (TCSC),
STATCOM, SSSC, and UPFC [8–10]. Additionally, distri-
bution STATCOM (DSTATCOM), dynamic voltage re-
storer (DVR) [11], and unified power quality conditioner
(UPQC) are used in the distribution network. ,e operation
of the FACTS devices is controlled by different controllers
such as fuzzy controller [12, 13], adaptive controller [14],
and PI controller [15]. A perfect placement of these FACTS
devices gives maximum power quality improvement
[16, 17]. ,ese FACTS devices can also be used to reduce the
fault current in the system [18, 19]. Researchers have con-
sidered the first-generation FACTS devices [18] and also
reduced the voltage level for fault current reduction [19].
Furthermore, auxiliary equipment such as power electronic
equipment-based fault current limiter (FCL) [20, 21] and
superconducting fault current limiter (SFCL) [22, 23] have
been used. However, now, without using an extra current
limiter the second-generation FACTS devices can be used as
fault current limiters keeping the voltage level constant.

By reducing fault current within half a cycle, these de-
vices can drastically reduce failure rates. ,e protection
system can be reduced in stress. In this way, we can utilize a
low-rated protection system, which is incredibly economi-
cal. ,e FACTS system is used in this paper. Analysis of the
performance of SSSC, STATCOM, and UPFC has been
conducted as a fault current reduction device. IEEE 9-BUS 3
machine system has been selected. A MATLAB/Simulink
environment was used for the whole simulation. We de-
scribe the proposed system’s modeling in Section 2. FACTS
controls are also included in this. ,ere are plots for the
simulation results in Section 3. In Section 4, we summarize
our findings.

2. System Modeling

IEEE 9-BUS 3 machine system [24] is used as the basis for
this system analysis. ,e system is connected to a number of
FACTS devices for further analysis.

2.1. IEEE 9-BUS 3 Machine System. ,is system has three
sources. ,ere are three separate buses that connect these
sources. Two of these three have been used in the bus, with
one being a combination of solar panels and diesel gener-
ators. Another option is to use a diesel generator only. Each
bus has three loads connected to it, respectively. Matlab/
Simulink was used to design this model. MATLAB is used to
design the line parameters’ model. Either in parallel or in
series, the FACTS device is attached to the bus between 4 and
6. By deploying the FACTS devices in appropriate locations,
the power system will be more secure since the bus voltage,

power flow, and short circuit current will be controlled to the
desired level [17]. Our FACTS device is connected to the
load side in this paper. A circuit breaker is installed on both
sides of the buses for the protection of the system. Circuit
breakers automatically trip whenever a problem occurs,
isolating the faulty component from the rest of the system.
An outline diagram is provided in Figure 1.

2.2. FACTS Device Modeling. Two principles guide FACTS′
work. Shunt compensation and series compensation are the
two types. Different types of FACTS devices are available
based on construction and operation. Our paper implements
SSSC, STATCOM, and UPFC.,e following is a description
of these FACTS devices’ models and control schemes.

SSSC regulates and improves power flow in power grids
by using a flexible AC transmission system [25]. Series
compensation is the basis of SSSC. In series with the
transmission line, it injects voltage into the system. ,e
power source does not need to be active. Injecting voltages
that are quadrature to line current is required. As a result,
the transmission line’s overall reactive voltage drop can
either increase or decrease. VSC (voltage source converter) is
a part of the SSSC. ,is VSC produces an AC voltage at the
fundamental frequency by controlling the PWM signal
according to the system parameters. As a result, the system’s
impedance can be controlled using the SSSC in series with it.
As a result, reactive power compensation controls the flow of
power through a transmission line.

,e control system of SSSC in Figure 2 consists of a
phase-locked loop (PLL), measurement system, voltage
regulator, and PWM modulator. Reactive power control
compensates the power flow through SSSC. A transmission
line’s active (P) and reactive (Q) power flows as follows:

P �
V1V2

X
sin δ1 − δ2(  �

V
2

X
sin δ,

Q �
V1V2

X
1 − cos δ1 − δ2( (  �

V
2

X
(1 − cos δ),

(1)

where V1 and V2 are the voltage values at the two ends and X
is the combined reactance of the transmission line and the
SSSC. In order to simplify this, we will take V as the
magnitude of the voltage and δ as the magnitude of the phase
difference. ,e PLL synchronizes with the positive sequence
current component I in the control system. To send a signal
to the regulator, the measuring system compares the voltage
with a reference value. A PWM modulator control signal is
generated from the signal from the regulator. Based on these
pulses, the VSC output is generated via the PWM. ,e
voltage output is used for fault correction in the system.

Shunt compensation is FACTS. Power flow is controlled
by the STATCOM, and the power system’s transient stability
is improved [25]. Voltage source converter (VSC) is con-
nected in shunt with the system. Controlling the VSC
controls the flow of reactive power. Reactive voltages and
currents are supplied or absorbed in order to balance out
reactive power flows. Reactive power is generated when the
voltage on the system is low. Alternatively, in the case of a
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high-voltage system, the VSC absorbs the reactive power.
Including a storage system in the device can enable a variety
of special applications such as active power flow, power
deregulation, and network security.

,e control scheme in Figure 3 of STATCOM consists of
a phase-locked loop (PLL), voltage and current measure-
ment system, voltage and current regulator, and PWM
modulator. By using a storage system, both active and re-
active power can be compensated. In the STATCOM and
power system, the active (P) and reactive (Q) power flows are
given by

P �
V1V2

X
sin δ , (2)

Q �
V1

X
V1 − V2 cos δ( , (3)

whereV1 andV2 are the voltages of the transmission line and
the output voltage of the VSC, respectively, and δ is the
phase difference. X corresponds to the interconnection
transformer’s and filter’s reactance.

PLLs consolidate the three-phase primary voltage on the
positive component of V1 in the control scheme. A signal is
then sent to the voltage regulators based on the comparison
with the reference value. ,is voltage regulator controls the
current regulator based on its current component compared
to the actual current component. By generating the PWM
modulator signal from the current regulator, the VSC is
controlled by a PWM signal. ,e VSC controls the flow of
reactive current between the transmission line and STAT-
COM. ,e current flow is given by

I �
V1V2

X
V1 cos δ − V2( . (4)
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Figure 1: One-line diagram of the IEEE 9-bus 3machine system.
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,e STATCOM and power system are controlled by the
power flow controlled by the VSC. ,is method compen-
sates the flow of reactive power.

UPFC is a specific type of FACT. STATCOM and
SSSC are combined in the UPFC. ,at is, both series and
shunt compensations are based on the working principle.
,e UPFC controls both active and reactive power flows
and improves the stability of the power system [25].
Power flow control and voltage injection are the two
main modes of operation for UPFCs. VSC2 generates or
absorbs controllable reactive power to compensate for
the reactive power flow. A DC terminal’s real power
demand is calculated from AC power exchanges at the
transmission line by a VSC2. Once this DC demand of
VSC2 has been met, VSC1 will again convert it into AC
power. VSC1 can also provide shunt compensation by
generating or absorbing controllable reactive power. A
variation in the phase of the VSC output can also flow the
active power.

Phase-locked loops (PLLs), voltage regulators, and PWM
modulators comprise the UPFC control scheme shown in
Figure 4. A VSC’s active flow (P) and reactive flow (Q) are as
follows:

P �
V2V3

X
sin δ,

Q �
V2

X
V2 − V3 cos δ( .

(5)

A transmission line consists of two voltages, V1 and V2,
and a phase difference, ∗. X is the reactance between the
transmission line and the UPFC. With PLL, voltage and
current are synchronized in the positive sequence (V, I).
,ese voltages are then compared to those of the reference
value for the voltage injection mood. We have, nevertheless,
used power flow control in this paper. ,erefore, here we
compute active and reactive power from voltage and current
components. ,is comparison generates PWM control
signal compared to the reference power value. Afterward, the
VSCs are controlled by PWM signals. ,e transmission
current is controlled by these VSCs. In a transmission line,
the current flow is given by

I �
V1V2

X
V1 cos δ − V2( . (6)

In this way, the power flow in the transmission line is
compensated by absorbing or supplying the reactive current.

3. Result and Discussion

,e simulation process is done in the MATLAB/Simulink
environment. In the simulation, a discrete simulation type of
the powergui block was taken to reduce the simulation time
for both three phase and single phase, as shown in Figures 5
and 6. In each case, a short circuit fault was inserted at
t� 0.5 sec. ,e fault was inserted at the load side in load B,
i.e., Bus 6. And, the fault current was measured in each case.
In this setup, the fault current with different FACTS devices
was also observed.

It is necessary to isolate the faulty part from the rest of
the system using circuit breakers, but these circuit breakers
are very expensive to operate at these enormous currents.
,e faulty part should be reduced in fault current. It is
possible to use different FACTS devices to reduce the fault
current. Below, we will discuss different FACTS devices and
their effects.

3.1. With SSSC Connected. Bus 4 stops at SSSC and bus 6
stops at SSSC. To calculate the voltage loss in the trans-
mission line, SSSC compares voltages between the two buses.
,e VSS and the capacitor voltage in SSSC control the PWM
signals used to generate the VSC pulses. LSSC possesses the
capability of supplying or absorbing voltage according to
pulses generated by the system.

In Figure 7, we can see the current on bus 6. It is evident
from the picture below that, at t� 0.5 sec, the peak value of
fault current for the three-phase fault is almost identical to
that without FACTS. ,is is because the SSSC acts as a
source of voltage. In addition to changing the device’s re-
actance, comparing two bus voltages changes the system’s
reactance as well. By doing so, it provides or absorbs the
voltage to compensate for voltage fluctuations of the system.
,erefore, there is not much of an impact on the system’s
current. It is also nearly the same as before when it comes to
the fault current in the system. It is reduced by a very low
value in this case. It is therefore not worthwhile to reduce the
fault current of the system with SSSC.

3.2. With STATCOM Connected. A STATCOM is a FACTS
device that is used in conjunction with a system.,e bus 4 is
connected to it here in shunt. From the current readings of
the bus, the STATCOM calculates the current reference and
compares this value to the actual current in the bus to es-
tablish the PWM control signal. Last, but not least, this
signal regulates VSC pulses. A controllable current source is
therefore created through this VSC.

As shown in Figure 8, with STATCOM connected with
the system for three-phase fault inserted at t� 0.5 sec, bus 6
has the current wave shape. After 0.5 sec, the RMS value fault
current peaks at 3118 A, and after the transient period, it is
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592 A under steady state condition. ,is is evident from
figure. A STATCOM absorbs fault current from the system
here. As a reactive power, the device stores the current. ,e
STATCOM acts as a current source in this way to reduce the
fault currents. ,is case shows that the peak RMS fault
current was reduced by over 2000 A.

,e fault due to single line to ground fault can also be
analyzed for STATCOM. Figure 9 shows the fault current of
bus 6 in this case. Here, the RMS value of the fault current is
346 A under steady state condition.

3.3.WithUPFCConnected. UPFC is a special type of FACTS
device that uses both a series and shunt compensation
technique. SSSC and STATCOM are combined to form
UPFC. By calculating the voltage and current in the system,
we can determine the real power as well as the reactive
power. In the transmission system, the UPFC controls the
reactive power flow from this power to the FACTS device.

,ere are two types of UPFC: voltage injection and
power flow control. According to this paper, UPFC works as
a flow control method. ,e peak RMS value of fault current
measured at t� 0.5 sec for the three-phase fault can be
viewed in Figure 10. Figure 5 shows the original fault current

in the absence of any FACTS devices, which is a very large
value compared to this.

As well, we can compare UPFC performance when
dealing with a single line and ground fault. A short circuit
fault at bus 6 is shown in Figure 11. ,e peak RMS value of
the fault current is also reduced to 758 A in a single line to
ground fault, and it becomes 350 A at steady state. Com-
pared to the original value, it is low. Transmission line losses
are extremely high at normal fault current. UPFC absorbs
the power from transmission lines to reduce fault current,
thus compensating for this loss. ,us, the transmission line
has a controlled power flow.

We can see from the above simulation results that the
fault current of the transmission line can be reduced by using
FACTS devices in the system. Comparing the current
waveforms, the STATCOM and UPFC perform well in this
case. Meanwhile, SSSCs are devices that are connected in
series and are used for voltage stabilization and power flow
control. As a result, it cannot be used to reduce fault
currents.

STATCOM and UPFC clearly offer benefits for reducing
fault current, as shown in Table 1. In this case, however,
SSSC only acts as a voltage source in the system with very
little effect on the system as a whole. UPFC also has better
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performance in voltage control, impedance, phase angle
control, and surge stabilization [25–27]. It is more suitable
for all these applications to use UPFC rather than
STATCOM.

4. Conclusion

Different FACTS devices have been evaluated as fault current
limiters in this paper. ,e performance of the SSSC, STAT-
COM, and UPFC are being studied among several FACTS
devices. SSSC does not contribute significantly to fault current
and voltage regulation, whereas it focuses exclusively on re-
active power flow. On the contrary, UPFC and STATCOM are
able to reduce fault current besides correcting voltage and
regulating current. STATCOM and UPFC absorb reactive
power from the system in a manner that greatly reduces fault
currents. Stability, transients, and voltage control are better
achieved with UPFC than STATCOM. As a result, the system’s
critical clearing time will be lengthened due to the low fault
current. ,e switchgear and protection system will not need to
be changed, so it will be possible to transmit more power. By
including FACTS in a transmission and distribution system,
both economic benefits and reliability are provided.
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