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In this paper, we study the use of the mean empirical likelihood (MEL) method in a first-order random coefficient integer-valued
autoregressive model.-eMEL ratio statistic is established, its limiting properties are discussed, and the confidence regions for the
parameter of interest are derived. Furthermore, a simulation study is presented to demonstrate the performance of the proposed
method. Finally, a real data analysis of dengue fever is performed.

1. Introduction

Integer-valued time series data are commonly encountered
in many fields, such as economics, finance, actuarial science,
medicine, and epidemiology (e.g., the number of patients in
a hospital at a specific point of time and the number of
persons in a queue waiting for service at a certain moment).
Related research on integer-valued time series started in the
1980s, in which two main methods are used: a state-space
model based on an unobserved “state” process and a
thinning model based on a thinning operation “ ∘ .” Re-
garding state-space models, we can refer to the paper by
Fukasawa and Basawa [1]. Regarding thinning models, we
can refer to the paper by Steutel and Harn [2], which mainly
proposed the binomial thinning operation. Let X be a non-
negative integer-valued random variable and ϕ ∈ [0, 1).
-en, the binomial thinning operator “ ∘ ” is defined as

ϕ ∘X � 􏽘
X

i�1
Bi, (1)

where Bi􏼈 􏼉 is an i.i.d. Bernoulli random sequence where
P(Bi � 1) � 1 − P(Bi � 0) � ϕ, which is also independent of
X. Based on the thinning operator “°,” a first-order

autoregressive process with count- or integer-valued data
(INAR(1)) was defined by Al-Osh and Alzaid [3] as follows:

Xt � ϕ ∘Xt− 1 + Zt, t≥ 1, (2)

where Zt􏼈 􏼉 is a sequence of i.i.d. non-negative integer-valued
random variables with mean λ and variance σ2z and Zt􏼈 􏼉 is
independent of X0. -e INAR(1) model has been discussed
by many authors. Al-Osh and Alzaid [4] introduced a family
of models for a stationary sequence of dependent binomial
random variables and discussed the existence of a stationary
distribution for the binomial AR(1) process. Al-Osh and Aly
[5] presented AR(1) models with negative binomial and
geometric marginals and investigated some properties of the
processes. McKenzie [6] described some simple models that
may be used for modelling or generating sequences of de-
pendent discrete random variates with negative binomial
and geometric univariate marginal distributions. Later,
McKenzie [7] discussed the problem of defining a practically
useful representation for the innovation process of a first-
order autoregression with a negative binomial marginal
distribution. Moreover, McKenzie [8] demonstrated that the
powerful Markov property, which greatly simplifies the
distributional structure of finite autoregressions, is
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analogous to (non-Markovian) finite moving-average pro-
cesses. Furthermore, McKenzie [9] developed and investi-
gated a family of models for discrete-time processes with
Poisson marginal distributions. Alzaid and Al-Osh [10]
investigated some properties of INAR(1) processes.

In some practical applications, the parameter ϕmay vary
with time. For example, let Xt denote the number of un-
employed people in month t. Here, Xt could potentially
satisfy an INAR model, where ϕ ∘Xt− 1 is the number of
unemployed people in month twho were unemployed in the
previous month and Zt represents the number of newly
unemployed people in the current month. Here, ϕ represents
the unemployment rate, which may be affected by economic
conditions and other factors and can vary randomly over
time. Zheng et al. [11] introduced a first-order random
coefficient integer-valued autoregressive (RCINAR(1))
process as follows:

Xt � ϕt ∘Xt− 1 + Zt, t≥ 1, (3)

where ϕt􏼈 􏼉 is an i.i.d. sequence with cumulative distribution
function (CDF) Pϕ on [0, 1); Zt􏼈 􏼉 is an i.i.d. non-negative
integer-valued sequence with probability mass function
(PMF) fz, in which E(Z4

t )<∞; and X0, ϕt􏼈 􏼉, and Zt􏼈 􏼉 are
independent. ϕt ∘Xt− 1 � 􏽐

Xt− 1
i�1 Bit, where Bit􏼈 􏼉 is an i.i.d.

Bernoulli random sequence and P(Bit � 1) � 1 − P

(Bit � 0) � ϕt; Bit􏼈 􏼉 is also independent of Xt− 1.
Zheng et al. [11] established the ergodicity of the process,

obtained the moments and autocovariance functions, and
derived the conditional least-squares (CLS) and quasi-
likelihood estimators of the model parameters. In recent
years, RCINAR(1) models have been discussed in many
studies. Roitershtein and Zhong [12] studied the asymptotic
behaviour of the RCINAR(1) model in the case where the
additive term in the underlying random linear recursion
belongs to the domain of attraction of a stable law. Zhang
and Wang [13] presented the explicit expressions for the
higher-order moments and cumulants of the RCINAR(1)
process. Zhao and Hu [14] applied the least-squares method
to estimate the parameters in the RCINAR(1) process. Kang
[15] considered the problem of testing for parameter
changes in RCINAR models. Li et al. [16] introduced a first-
order random coefficient integer-valued threshold autore-
gressive process based on binomial thinning. Bakouch et al.
[17] introduced a new stationary first-order integer-valued
autoregressive process with random coefficient and zero-
inflated geometric marginal distribution. Zhang et al. [18]
introduced the RCINAR(1) process with generalized nega-
tive binomial marginals. Yu et al. [19] proposed a new bi-
variate RCINAR(1) (BRCINAR(1)) process with dependent
innovations.

Many research methods have been applied to INAR
models, among which the empirical likelihood (EL) method
has been the main focus in recent years. -e EL method,
introduced by Owen [20] and further studied by Owen [21]
and others, is a nonparametric statistical method. -e EL
method is a useful tool for statistical inference and has been
successfully applied to many areas, such as linear regression
models [22], generalized linear models [23], generalized

estimation equations [24], dependent processes [25], sem-
iparametric varying-coefficient partially linear regression
models [26], and the limit theory of RCINAR(1) processes
[27]. Zhao and Yu [28] estimated the variance of the random
coefficient in the RCINAR(1) process by the EL method.

Although the EL method has many advantages and has
been widely applied in various scenarios, there are some
problems with this method, for example, the empirical
likelihood ratio confidence regions may have poor accuracy,
especially in small-sample and multidimensional scenarios.
-e literature discusses many attempts to solve this problem.
DiCiccio et al. [29] proved that the EL is Bartlett correctable.
Chen et al. [30] introduced the adjusted EL (AEL), and Taso
and Wu [31] introduced the extended EL (EEL). -e above
methods provide improved results in small-sample sce-
narios, but the calculation is complex and involves a new
parameter estimation method. Liang et al. [32] introduced
the mean empirical likelihood (MEL) method, which is
simple and rapid to implement and much more accurate
than the previous EL methods.

In this paper, we focus on the use of the MELmethod for
the RCINAR(1) model (3).-eMEL ratio statistic is derived,
and its limiting properties are discussed. Specifically, the
confidence region is derived for the parameter of interest.

-e rest of this paper is organized as follows. In Section
2, we introduce the main results. In Section 3, we present
some simulation results. In Section 4, we apply our method
in the dengue fever cases data. Finally, in Section 5, we prove
the main results.

2. Mean Empirical Likelihood for an
RCINAR(1) Process

In this section, we will discuss how to use the MEL method
for RCINAR(1) models (3). Zheng et al. [11] noted that the
process Xt􏼈 􏼉 is an irreducible, aperiodic, and positive re-
current (and hence ergodic) Markov chain.

Let ϕ � E(ϕt), σ2ϕ � Var(ϕt), μ � E(Zt), τ2 � ϕ2 + σ2ϕ,
and σ2z � Var(Zt); note that they are all assumed to be finite.
Let β � (ϕ, μ)T. We use the MEL method to estimate the
unknown parameter β. Based on the sample X1, X2, . . . , Xn,
Zheng et al. [11] derived the conditional least-squares (CLS)
estimator of the model parameter. -e CLS estimator of β is
obtained by minimizing S(β) over β, where

S(β) � 􏽘
n

t�1
Xt − E Xt|Xt− 1( 􏼁( 􏼁

2
. (4)

Note that E(Xt|Xt− 1) � ϕXt− 1 + μ; then,

S(β) � 􏽘
n

t�1
Xt − ϕXt− 1 − μ( 􏼁

2
. (5)

By taking the derivative of S(β) with respect to β, we
obtain the estimating equation:

􏽘

n

t�1
mt(β) � 0, (6)
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where

mt(β)≜
m1t(β)

m2t(β)
􏼠 􏼡 �

Xt − ϕXt− 1 − μ( 􏼁Xt− 1

Xt − ϕXt− 1 − μ
􏼠 􏼡. (7)

Let W � (mi(β) + mj(β)/2): 1≤ i≤ j≤ n􏽮 􏽯. -e ele-
ments of setW are denoted by w1(β), w2(β), . . . , wN(β); let
N be equal to the number of elements inW, and it is easy to
understand that N � (n(n + 1)/2). We define the MEL ratio
statistic of β as

R
m

(β) � sup 􏽙
N

l�1
Npl| 􏽘

N

l�1
plwl(β) � 0, 􏽘

N

l�1
pl � 1

⎧⎨

⎩

⎫⎬

⎭, (8)

where pl ≥ 0, l � 1, 2, . . . , N. According to the method of
Lagrange multipliers, let

G p1, p2, . . . , pN( 􏼁 � 􏽘
N

l�1
log Npl( 􏼁 − NλT

􏽘
N

l�1
plwl(β)⎛⎝ ⎞⎠ + c 􏽘

N

l�1
pl − 1⎛⎝ ⎞⎠,

(9)

where c ∈ R and λ ∈ R2 are the Lagrange multipliers. From

zG

zpl

�
1
pl

− NλT
wl(β) + c � 0, l � 1, 2, . . . , N, (10)

we know that 􏽐
N
l�1 pl(zG/zpl) � 0 and c � − N. -en, from

(10), we obtain 1 − plN(1 + λTwl(β)) � 0. Hence,
pl � (1/N(1 + λTwl(β))), where λ satisfies

1
N

􏽘

N

l�1

wl(β)

1 + λT
wl(β)

� 0. (11)

-us, the log EL ratio statistic has the form

− 2 log R
m

(β) � − 2 log􏽙

N

l�1
N ·

1
N 1 + λT

wl(β)􏼐 􏼑

� 2􏽘
N

l�1
log 1 + λT

wl(β)􏼐 􏼑.

(12)

Further, let λ � λ(β0), wl � wl(β0). -e MEL ratio sta-
tistic is defined as

l
M β0( 􏼁 � −

2 log R
m β0( 􏼁

n + 1
. (13)

To obtain the limiting properties of lM(β0), we impose
the following assumptions:

(C1) Xt􏼈 􏼉 is a strictly stationary and ergodic RCINAR(1)
process

(C2) E|Xt|
4 <∞

-e limit distribution of lM(β0) is established in the
following theorem.

Theorem 1. Under Assumptions (C1) and (C2), we have

l
M β0( 􏼁⟶

d
χ2(2), (14)

where χ2(2) is a chi-square distribution with 2 degrees of
freedom.

According to -eorem 1, we can construct the confi-
dence region for parameter β. -e 100(1 − α)% confidence
region of β is

β: l
M

(β)≤ χ2α(2)􏽮 􏽯, (15)

where χ2α(2) is the (1 − α)-quantile of the chi-square dis-
tribution with 2 degrees of freedom.

3. Simulation Results

In this section, we conduct simulation studies to compare
the MEL confidence region with the EL, AEL, and EEL
results.

Consider the RCINAR(1) model

Xt � ϕt ∘Xt− 1 + Zt, t≥ 1, (16)

where ϕt ∼ U(0, 2ϕ) and Zt ∼ Poisson(μ).
We fixed X0 at 1 and then used the above model to

generate data. We take ϕ � 0.1, 0.2, 0.3, 0.4, 0.5 and
μ � 0.25, 0.35, 0.4, 0.5. Four different sample sizes (n� 20,
30, 50, and 100) are investigated, and the nominal confi-
dence levels are chosen as 0.95 and 0.90. All the simulations
are based on 1000 replications. We evaluate the coverage
probability of the confidence regions, and the results are
summarized in Tables 1–4.

It can be seen from the Tables 1–4 that the coverage
probability of the confidence region approaches the confi-
dence levels (0.95 and 0.90) as the sample size n increases.-e
MEL method has similar performance to the EEL method.
-e MEL and EEL coverage probabilities are much larger
than nominal levels when the sample size is small. In all cases,
the MELmethod is uniformly better than the ELmethod, and
it is much more accurate when the sample size is small.

In order to further study the performance of MEL
method, we give the figure of the confidence region for
n� 20, 30, 50, and 100 when ϕ � 0.5 and μ � 0.4 (Figure 1).
At the same time, we calculated the CI length of ϕ and μ, and
the results are summarized in Table 5.

It can be seen from the Table 5 and Figure 1 that the
confidence region is relatively large when the sample size is
small, so the coverage probability of the confidence region is
relatively large. However, as the sample size increases, the
confidence region becomes smaller and the length of the
confidence interval shortens.

4. Real Data Analysis

In this section, we apply our proposed methods to analyse
the monthly counts of dengue fever cases in China from
January 2004 through April 2012, as reported by the Chinese
Center for Disease Control and Prevention (http://www.
chinacdc.cn). -e data are plotted in Figure 2 and consist of
100 observations, which are denoted by X1, X2, . . . , X100.
-e plots of the autocorrelation function (ACF) and partial
autocorrelation function (PACF) for the series Xt􏼈 􏼉 are
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given in Figures 3 and 4, respectively. -e corresponding
plots of the sample ACF and PACF indicate an AR(1)-like
autocorrelation structure.

In Figure 5, based on the observation data Xt􏼈 􏼉, we give
the figure of the MEL ratio confidence region when the
confidence level is 0.95. -rough the calculation, we have
that the least-squares estimation β∗ � (0.5149, 13.6029),
which is denoted by ∗ in Figure 5. From Figure 5, we can see
that β∗ is in the MEL ratio confidence region.

5. Proof of Theorem 1

In this section, we present the proof of -eorem 1. To obtain
the proof, we need the following lemmas.

Lemma 1. Assume that (C1) and (C2) hold. 1en,

max
1≤l≤N

wl

����
���� � op n

1/2
􏼐 􏼑. (17)

Table 1: -e coverage probability of the confidence regions where μ � 0.25.

Level ϕ
n� 20 n� 30 n� 50 n� 100

MEL EL EEL AEL MEL EL EEL AEL MEL EL EEL AEL MEL EL EEL AEL

0.95

0.1 0.962 0.922 1.000 0.742 0.945 0.894 0.980 0.851 0.941 0.918 0.941 0.927 0.942 0.925 0.941 0.937
0.2 0.955 0.922 1.000 0.817 0.960 0.924 0.967 0.899 0.957 0.933 0.958 0.917 0.948 0.930 0.947 0.925
0.3 0.960 0.932 1.000 0.853 0.971 0.931 0.979 0.917 0.949 0.934 0.952 0.906 0.950 0.943 0.949 0.928
0.4 0.971 0.937 1.000 0.873 0.965 0.934 0.977 0.897 0.962 0.944 0.962 0.912 0.947 0.938 0.946 0.925
0.5 0.973 0.944 1.000 0.892 0.969 0.939 0.974 0.889 0.961 0.943 0.962 0.906 0.951 0.945 0.951 0.921

0.90

0.1 0.905 0.805 0.956 0.715 0.873 0.834 0.875 0.802 0.891 0.851 0.889 0.867 0.901 0.888 0.898 0.890
0.2 0.930 0.847 0.967 0.777 0.893 0.856 0.896 0.830 0.890 0.864 0.884 0.865 0.899 0.889 0.899 0.871
0.3 0.947 0.869 0.966 0.808 0.906 0.870 0.919 0.844 0.907 0.883 0.907 0.861 0.902 0.887 0.902 0.870
0.4 0.942 0.881 0.964 0.847 0.925 0.875 0.928 0.842 0.915 0.887 0.915 0.844 0.900 0.886 0.899 0.856
0.5 0.947 0.886 0.968 0.801 0.929 0.882 0.936 0.811 0.912 0.873 0.908 0.850 0.899 0.886 0.898 0.878

Table 2: -e coverage probability of the confidence regions where μ � 0.35.

Level ϕ
n� 20 n� 30 n� 50 n� 100

MEL EL EEL AEL MEL EL EEL AEL MEL EL EEL AEL MEL EL EEL AEL

0.95

0.1 0.964 0.932 1.000 0.846 0.968 0.937 0.981 0.917 0.955 0.934 0.955 0.925 0.950 0.935 0.948 0.938
0.2 0.976 0.950 1.000 0.896 0.969 0.937 0.974 0.904 0.956 0.933 0.957 0.904 0.948 0.933 0.948 0.928
0.3 0.982 0.957 1.000 0.919 0.973 0.946 0.981 0.890 0.964 0.943 0.964 0.916 0.955 0.944 0.954 0.929
0.4 0.980 0.941 1.000 0.880 0.973 0.943 0.981 0.883 0.958 0.931 0.958 0.920 0.954 0.945 0.954 0.934
0.5 0.984 0.950 1.000 0.896 0.985 0.953 0.989 0.881 0.957 0.943 0.958 0.920 0.954 0.946 0.954 0.920

0.90

0.1 0.940 0.873 0.971 0.830 0.919 0.863 0.920 0.857 0.903 0.885 0.902 0.881 0.902 0.887 0.902 0.877
0.2 0.933 0.874 0.978 0.843 0.922 0.880 0.926 0.841 0.905 0.875 0.902 0.827 0.902 0.888 0.901 0.862
0.3 0.934 0.872 0.969 0.824 0.935 0.893 0.939 0.833 0.911 0.895 0.911 0.864 0.898 0.885 0.898 0.870
0.4 0.953 0.888 0.977 0.799 0.939 0.889 0.941 0.837 0.905 0.869 0.903 0.847 0.901 0.891 0.901 0.877
0.5 0.948 0.892 0.972 0.822 0.940 0.888 0.946 0.777 0.915 0.888 0.915 0.866 0.901 0.889 0.901 0.872

Table 3: -e coverage probability of the confidence regions where μ � 0.4.

Level ϕ
n� 20 n� 30 n� 50 n� 100

MEL EL EEL AEL MEL EL EEL AEL MEL EL EEL AEL MEL EL EEL AEL

0.95

0.1 0.979 0.937 1.000 0.898 0.969 0.928 0.973 0.919 0.954 0.944 0.954 0.922 0.951 0.935 0.951 0.932
0.2 0.983 0.945 1.000 0.909 0.976 0.932 0.982 0.892 0.958 0.931 0.961 0.912 0.954 0.942 0.954 0.933
0.3 0.985 0.933 1.000 0.893 0.966 0.941 0.974 0.896 0.955 0.944 0.955 0.905 0.955 0.943 0.954 0.934
0.4 0.986 0.953 1.000 0.892 0.977 0.944 0.984 0.885 0.958 0.941 0.958 0.918 0.948 0.933 0.946 0.923
0.5 0.985 0.951 1.000 0.880 0.976 0.939 0.982 0.888 0.969 0.949 0.969 0.923 0.948 0.938 0.947 0.914

0.90

0.1 0.939 0.862 0.957 0.859 0.920 0.867 0.921 0.852 0.899 0.867 0.898 0.861 0.894 0.887 0.893 0.894
0.2 0.944 0.885 0.973 0.841 0.912 0.853 0.917 0.807 0.911 0.878 0.911 0.863 0.902 0.891 0.902 0.885
0.3 0.950 0.884 0.977 0.827 0.929 0.890 0.933 0.838 0.903 0.876 0.902 0.853 0.902 0.887 0.899 0.858
0.4 0.950 0.891 0.968 0.806 0.929 0.889 0.932 0.853 0.907 0.884 0.905 0.867 0.897 0.877 0.895 0.859
0.5 0.958 0.897 0.974 0.820 0.932 0.890 0.934 0.785 0.913 0.883 0.913 0.808 0.897 0.885 0.897 0.859
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Figure 1: -e MEL confidence region using ϕ � 0.5 and μ � 0.4.

Table 4: -e coverage probability of the confidence regions where μ � 0.5.

Level ϕ
n� 20 n� 30 n� 50 n� 100

MEL EL EEL AEL MEL EL EEL AEL MEL EL EEL AEL MEL EL EEL AEL

0.95

0.1 0.987 0.946 1.000 0.920 0.968 0.935 0.976 0.898 0.961 0.934 0.962 0.917 0.952 0.938 0.949 0.937
0.2 0.986 0.950 1.000 0.891 0.972 0.933 0.984 0.881 0.962 0.942 0.962 0.927 0.953 0.943 0.953 0.940
0.3 0.989 0.944 1.000 0.889 0.977 0.947 0.982 0.910 0.959 0.941 0.960 0.922 0.947 0.935 0.946 0.923
0.4 0.989 0.961 1.000 0.896 0.976 0.950 0.984 0.913 0.964 0.951 0.964 0.928 0.950 0.937 0.947 0.916
0.5 0.988 0.950 1.000 0.901 0.976 0.955 0.983 0.927 0.966 0.952 0.967 0.920 0.952 0.943 0.952 0.925

0.90

0.1 0.958 0.901 0.973 0.841 0.916 0.885 0.920 0.844 0.915 0.886 0.914 0.862 0.897 0.885 0.897 0.884
0.2 0.954 0.891 0.978 0.820 0.920 0.860 0.922 0.818 0.918 0.893 0.917 0.869 0.901 0.888 0.899 0.879
0.3 0.958 0.888 0.980 0.809 0.925 0.888 0.933 0.855 0.913 0.892 0.911 0.875 0.899 0.883 0.897 0.882
0.4 0.961 0.892 0.981 0.820 0.935 0.885 0.939 0.833 0.918 0.901 0.917 0.879 0.909 0.895 0.908 0.876
0.5 0.960 0.897 0.979 0.857 0.937 0.891 0.941 0.835 0.922 0.907 0.921 0.867 0.898 0.886 0.897 0.869

Table 5: -e CI length when the confidence level is 0.95.

n� 20 n� 30 n� 50 n� 100
ϕ 0.9019 0.7085 0.5432 0.3603
μ 0.6703 0.5984 0.4722 0.3521

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80 90 100

Figure 2: Sample path of data Xt􏼈 􏼉.
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Proof. Note that

max
1≤l≤N

wl

����
���� � max

1≤i≤j≤N

mi(β) + mj(β)

2

��������

��������

≤
1
2

max
1≤i≤N

mi(β)
����

���� + max
1≤j≤N

mj(β)
�����

�����􏼠 􏼡.

(18)

-us, according to Lemma 4.2 of Zhang et al. [33], we
know that Lemma 1 holds.

Lemma 2. Assume that (C1) and (C2) hold. 1en,

1
N

􏽘

N

l�1
wl � Op n

− (1/2)
􏼐 􏼑. (19)

Proof. Note that

1
N

􏽘

N

l�1
wl �

1
N

􏽘
i≤j

mi(β) + mj(β)

2

�
1
2N

􏽘

n

i�1
􏽘

n

j�1

mi(β) + mj(β)

2
+ 􏽘

n

i�1
mi(β)⎛⎝ ⎞⎠

�
1
2N

(n + 1) 􏽘
n

i�1
mi(β)

�
1
n

􏽘

n

i�1
mi(β).

(20)

-us, by Assumption (C1), we know that Lemma 2
holds.

Lemma 3. Assume that (C1) and (C2) hold. 1en,

1
N

􏽘

N

l�1
wlw

T
l �

1
2

I + op(1), (21)

where I �
σ21 σ12
σ12 σ22

􏼠 􏼡, σ21 � E(X2
0(X1 − ϕX0 − μ)),

σ22 � E(X1 − ϕX0 − μ)2, and σ12 � E(X0(X1 − ϕX0 − μ)).

Proof. Note that
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Figure 5: -e mean empirical likelihood ratio confidence region.
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1
N

􏽘

N

l�1
wlw

T
l �

1
N

􏽘
i≤j

mi(β) + mj(β)

2
􏼠 􏼡

mi(β) + mj(β)

2
􏼠 􏼡

T

�
1
N

􏽘

n

i�1
􏽘

n

j�1

1
2

mi(β) + mj(β)

2
􏼠 􏼡

mi(β) + mj(β)

2
􏼠 􏼡

T

+
1
2

􏽘

n

i�1
mi(β)m

T
i (β)⎛⎝ ⎞⎠

�
1
2N

􏽘

n

i�1
􏽘

n

j�1

1
4

mi(β) + mj(β)􏼐 􏼑 mi(β) + mj(β)􏼐 􏼑
T

+ 􏽘

n

i�1
mi(β)m

T
i (β)⎛⎝ ⎞⎠

�
1
2N

1
4

􏽘

n

i�1
􏽘

n

j�1
mi(β)m

T
i (β) + mi(β)m

T
j (β) + mj(β)m

T
i (β)+mj(β)m

T
j (β)􏼑 + 􏽘

n

i�1
mi(β)m

T
i (β)⎛⎝ ⎞⎠⎛⎝ ⎞⎠

�
1
2N

n

4
􏽘

n

i�1
mi(β)m

T
i (β) +

1
4

􏽘

n

i�1
􏽘

n

j�1
mi(β)m

T
j (β) +

1
4

􏽘

n

i�1
􏽘

n

j�1
mj(β)m

T
i (β) +

n

4
􏽘

n

i�1
mi(β)m

T
i (β) + 􏽘

n

i�1
mi(β)m

T
i (β)⎛⎝ ⎞⎠

�
1
2N

n + 2
2

􏽘

n

i�1
mi(β)m

T
i (β) +

1
2

􏽘

n

i�1
mi(β)⎛⎝ ⎞⎠ 􏽘

n

j�1
m

T
j (β)⎛⎝ ⎞⎠⎛⎝ ⎞⎠

�
n + 2

2n(n + 1)
􏽘

n

i�1
mi(β)m

T
i (β) +

1
2n(n + 1)

􏽘

n

i�1
mi(β)⎛⎝ ⎞⎠ 􏽘

n

j�1
m

T
j (β)⎛⎝ ⎞⎠

�
n + 2

2(n + 1)

1
n

􏽘

n

i�1
mi(β)m

T
i (β)⎛⎝ ⎞⎠ +

1
2(n + 1)

1
�
n

√ 􏽘

n

i�1
mi(β)⎛⎝ ⎞⎠

1
�
n

√ 􏽘

n

j�1
m

T
j (β)⎛⎝ ⎞⎠.

(22)

-us, by Lemma 2.1 and Lemma 4.1 of Zhang et al. [33],
we know that Lemma 3 holds.

Lemma 4. Assume that (C1) and (C2) hold. 1en,

1
N

􏽘

N

l�1
w

T
l wl � Op(1). (23)

Proof. Note that

1
N

􏽘

N

l�1
w

T
l wl �

1
N

􏽘
i≤j

mi(β) + mj(β)

2
􏼠 􏼡

T mi(β) + mj(β)

2
􏼠 􏼡

�
1
N

􏽘

n

i�1
􏽘

n

j�1

1
2

mi(β) + m(β)

2
􏼠 􏼡

T mi(β) + mj(β)

2
􏼠 􏼡 +

1
2

􏽘

n

i�1
m

T
i (β)mi(β)⎛⎝ ⎞⎠

�
1
2N

􏽘

n

i�1
􏽘

n

j�1

1
4

mi(β) + mj(β)􏼐 􏼑
T

mi(β) + mj(β)􏼐 􏼑 + 􏽘
n

i�1
m

T
i (β)mi(β)⎛⎝ ⎞⎠

�
1
2N

1
4

􏽘

n

i�1
􏽘

n

j�1
m

T
i (β)mi(β) + m

T
i (β)mj(β) + m

T
j (β)mi(β) + m

T
j (β)mj(β)􏼐 􏼑 + 􏽘

n

i�1
m

T
i (β)mi(β)⎛⎝ ⎞⎠

�
1
2N

n + 2
2

􏽘

n

i�1
m

T
i (β)mi(β) +

1
2

􏽘

n

i�1
m

T
i (β)⎛⎝ ⎞⎠ 􏽘

n

j�1
mj(β)⎛⎝ ⎞⎠⎛⎝ ⎞⎠

�
n + 2

2n(n + 1)
􏽘

n

i�1
m

T
i (β)mi(β) +

1
2n(n + 1)

􏽘

n

i�1
m

T
i (β)⎛⎝ ⎞⎠ 􏽘

n

j�1
mj(β)⎛⎝ ⎞⎠≜Qn1 + Qn2.

(24)
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By the strong law of large numbers and Assumptions
(C1) and (C2), we have that

Qn1 �
n + 2

2(n + 1)

1
n

􏽘

n

i�1
m

T
i (β)mi(β)

⟶a.s. 1
2

E m
T
1 (β)m1(β)􏼐 􏼑,

(25)

Qn2 �
1
2

1
n

􏽘

n

i�1
m

T
i (β)⎛⎝ ⎞⎠

1
n + 1

􏽘

n

j�1
mj(β)⎛⎝ ⎞⎠

⟶a.s. 1
2

E m
T
1 (β)􏼐 􏼑E m1(β)( 􏼁.

(26)

-erefore, by (24)–(26), we know that Lemma 4 holds.

Lemma 5. Assume that (C1) and (C2) hold. 1en,

‖λ‖ � Op n
− (1/2)

􏼐 􏼑. (27)

Proof. Let λ � ρθ, where ρ � ‖λ‖> 0, ‖θ‖ � 1. From (11), we
know that

0 �
1
N

􏽘

N

l�1

wl(β)

1 + λT
wl(β)

���������

���������

� ‖θ‖
1
N

􏽘

N

l�1

wl(β)

1 + λT
wl(β)

���������

���������

≥ θT
·
1
N

􏽘

N

l�1

wl(β)

1 + λT
wl(β)

���������

���������

� θT 1
N

􏽘

N

l�1
wl(β) −

1
N

􏽘

N

l�1

wl(β) ρθT
wl(β)􏼐 􏼑

1 + ρθT
wl(β)

⎛⎝ ⎞⎠

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≥
1
N

􏽘

N

l�1

θT
wl(β) ρθT

wl(β)􏼐 􏼑

1 + ρθT
wl(β)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
−

1
N
θT

􏽘

N

l�1
wl(β)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≥
ρ
N

􏽘

N

l�1

θT
wl(β)w

T
l (β)θ

1 + max1≤l≤N λT
wl(β)􏼐 􏼑

−
1
N

θT
􏽘

N

l�1
wl(β)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

�
ρθT

(1/N) 􏽐
N
l�1 wl(β)w

T
l (β)θ

1 + max1≤l≤N λT
wl(β)􏼐 􏼑

−
1
N

θT
􏽘

N

l�1
wl(β)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

�
ρθT

Sθ
1 + max1≤l≤N λT

wl(β)􏼐 􏼑
−
1
N

θT
􏽘

N

l�1
wl(β)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≥
ρθT

Sθ
1 + ρmax1≤l≤N θT

wl(β)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
−
1
N

θT
􏽘

N

l�1
wl(β)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≥
ρθT

Sθ
1 + ρmax1≤l≤N wl(β)

����
����

−
1
N

θT
􏽘

N

l�1
wl(β)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

�
ρθT

Sθ
1 + ρZn

−
1
N

θT
􏽘

N

l�1
wl(β)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

(28)

where S � (1/N) 􏽐
N
l�1 wl(β)wT

l (β), Zn � max1≤l≤N‖wl(β)‖.
By Lemma 3, we have σ1 + op(1)≤ θTSθ + σp + op(1), where

σ1 and σp are the largest and smallest eigenvalues, respec-
tively, of (1/2)I. Next, we provide the proof in three steps.
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(i) Step 1. We prove that

1
N

θT
􏽘

N

l�1
wl(β)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� OP n

− (1/2)
􏼐 􏼑. (29)

To prove (29), we need to prove that

n
1/2

N
θT

􏽘

N

l�1
wl(β) � OP(1). (30)

Note that

n
1/2

N
θT

􏽘

N

l�1
wl(β) �

n
1/2

(n(n + 1)/2)
θT

􏽘

N

l�1
wl(β)

�
2

n
1/2

(n + 1)
θT

􏽘

N

l�1
wl(β)

�
2

�
n

√
(n + 1)

θT 1
2

􏽘

n

i�1
􏽘

n

j�1

mi(β) + mj(β)

2
+
1
2

􏽘

n

i�1
mi(β)⎛⎝ ⎞⎠

�
1

�
n

√
(n + 1)

θT 1
2

􏽘

n

i�1
􏽘

n

j�1
mi(β) +

1
2

􏽘

n

i�1
􏽘

n

j�1
mj(β) + 􏽘

n

i�1
mi(β)⎛⎝ ⎞⎠

�
1

�
n

√
(n + 1)

θT n

2
􏽘

n

i�1
mi(β) +

n

2
􏽘

n

j�1
mj(β) + 􏽘

n

i�1
mi(β)⎛⎝ ⎞⎠

�
1
�
n

√ θT
􏽘

n

i�1
mi(β).

(31)

From Lemma 2.1 of Zhang et al. [33], we know that

1
�
n

√ 􏽘

n

i�1
mi(β)⟶d N

0

0
⎛⎝ ⎞⎠, I(B)⎛⎝ ⎞⎠. (32)

-en, we have (1/
�
n

√
)θT 􏽐

n
i�1 mi(β) � OP(1), so

(30) holds.
(ii) Step 2. We prove that

ρ
1 + ρZn

� OP n
− (1/2)

􏼐 􏼑. (33)

From (28), we have

0≤
ρθT

Sθ
1 + ρZn

≤
1
n
θT

􏽘

n

l�1
wl(β)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
. (34)

From Lemma 2.1 of Zhang et al. [33], it is easy to see
that (1/n)|θT

􏽐
n
l�1 wl(β)| � OP(n− (1/2)). Hence,

according to (34), (33) holds.
(iii) Step 3. We prove that

ρ � ‖λ‖ � OP n
− (1/2)

􏼐 􏼑. (35)

We have proved that (ρ/1 + ρZn) � OP(n− (1/2)). Let
Tn � (ρ/1 + ρZn), and we have ρ � (Tn/1 − ZnTn). Note that

Zn � oP(n(1/2)), Tn � OP(n− (1/2)). Hence, (35) is proved, so
Lemma 5 holds.

Lemma 6. Assume that (C1) and (C2) hold. 1en,

λ � 􏽘
N

l�1
wl(β)w

T
l (β)⎛⎝ ⎞⎠

− 1

􏽘

N

l�1
wl(β)⎛⎝ ⎞⎠ + op n

− (1/2)
􏼐 􏼑.

(36)

Proof. From (11), we know that

0 �
1
N

􏽘

N

l�1

wl(β)

1 + λT
wl(β)

�
1
N

􏽘

N

l�1
wl(β)

1 − λT
wl(β)􏼐 􏼑 1 + λT

wl(β)􏼐 􏼑 + λT
wl(β)􏼐 􏼑

2

1 + λT
wl(β)

�
1
N

􏽘

N

l�1
wl(β) −

1
N

􏽘

N

l�1
wl(β)w

T
l (β)λ

+
1
N

􏽘

N

l�1
wl(β)

λT
wl(β)􏼐 􏼑

2

1 + λT
wl(β)

.

(37)
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Hence,

λ � 􏽘
N

l�1
wl(β)w

T
l (β)⎛⎝ ⎞⎠

− 1

􏽘

N

l�1
wl(β)

+
1
N

􏽘

N

l�1
wl(β)w

T
l (β)⎛⎝ ⎞⎠

− 1
1
N

􏽘

N

l�1
wl(β)

λT
wl(β)􏼐 􏼑

2

1 + λT
wl(β)

.

(38)

To prove Lemma 6, according to Lemma 3, we need to
prove that

1
N

􏽘

N

l�1
wl(β)

λT
wl(β)􏼐 􏼑

2

1 + λT
wl(β)

� op n
− (1/2)

􏼐 􏼑. (39)

Note that

1
N

􏽘

N

l�1
wl(β)

λT
wl(β)􏼐 􏼑

2

1 + λT
wl(β)

����������

����������
≤
1
N

􏽘

N

l�1
‖λ‖

2
wl(β)

����
����
3 max
1≤l≤N

1
1 + λT

wl(β)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

≤ ‖λ‖
2 1
N

􏽘

N

l�1
wl(β)

����
����
2 max
1≤l≤N

wl(β)
����

���� max
1≤l≤N

1
1 + λT

wl(β)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

� Op n
− 1

􏼐 􏼑Op(1)op n
1/2

􏼐 􏼑Op(1)

� op n
− (1/2)

􏼐 􏼑.

(40)

-e proof of Lemma 6 is complete.

Proof of 1eorem 1. By the Taylor expansion, we know that

l
M

(β) �
− 2 log R

m
(β)

n + 1

�
2􏽐

N
l�1 log 1 + λT

wl(β)􏼐 􏼑

n + 1

�
2

n + 1
􏽘

N

l�1
λT

wl(β) −
1
2
λT

wl(β)􏼐 􏼑
2

􏼒 􏼓 +
RN

n + 1
,

(41)

where

RN

����
����≤ c‖λ‖

3 max
1≤l≤N

wl(β)
����

���� 􏽘

N

l�1
wl(β)

����
����
2

� Op n
− (3/2)

􏼐 􏼑op n
1/2

􏼐 􏼑Op n
2

􏼐 􏼑

� op n
− (1/2)

􏼐 􏼑.

(42)

-erefore,

l
M

(β) �
1

n + 1
􏽘

N

l�1
wl(β)⎛⎝ ⎞⎠

T

􏽘

N

l�1
wl(β)w

T
l (β)⎛⎝ ⎞⎠

− 1

􏽘

N

l�1
wl(β)⎛⎝ ⎞⎠ + op(1)

�
1

n + 1
n + 1
2

􏽘

n

i�1
mi(β)⎛⎝ ⎞⎠

T

􏽘

N

l�1
wl(β)w

T
l (β)⎛⎝ ⎞⎠

− 1

·
n + 1
2

􏽘

n

i�1
mi(β)⎛⎝ ⎞⎠ + op(1)

�
1
�
n

√ 􏽘

n

i�1
mi(β)⎛⎝ ⎞⎠

T

2
N

􏽘

N

l�1
wl(β)w

T
l (β)⎛⎝ ⎞⎠

− 1
1
�
n

√ 􏽘

n

i�1
mi(β)⎛⎝ ⎞⎠ + op(1).

(43)

According to Lemma 2.1 and Lemma 4.1 of Zhang et al.
[33] and Lemma 3, we know that -eorem 1 holds.
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