Hindawi

Mathematical Problems in Engineering
Volume 2021, Article ID 8219431, 8 pages
https://doi.org/10.1155/2021/8219431

Hindawi

Research Article

Phase Planning for Open Pit Coal Mines through Nested Pit
Generation and Dynamic Programming

Xiaowei Gu, Qing Wang (), Xiaochuan Xu, and Xiaogian Ma

College of Resources and Civil Engineering, Northeastern University, 110819 Shenyang, China
Correspondence should be addressed to Qing Wang; qingwangedu@163.com

Received 28 July 2020; Revised 26 January 2021; Accepted 28 January 2021; Published 11 February 2021
Academic Editor: Zhengbiao Peng

Copyright © 2021 Xiaowei Gu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper presents a phase planning method specially designed for coal deposits with nearly horizontal, bedded coal seams. The
geology of this type of deposit is modeled into a column model, instead of a block model, to avoid coal-rock mixing in blocks. A
nested pit generation algorithm is developed for producing a series of nested, least-strip ratio pits with a column model as its input.
The algorithm completely overcomes the troublesome gap problem. Taking the least-strip ratio pits as possible phase states, a
dynamic programming formulation is proposed to simultaneously optimize the number of phases, the phase-pits, and the
ultimate pit, with an objective of maximizing the net present value. The merits and capability of the proposed method are
demonstrated through a case study on a large coal deposit.

1. Introduction

Large open pit mines are often mined in a number of phases,
with intermediate pits for the phases referred to as phase-pits
or pushbacks. The phases must be carefully planned since
they provide a long-term strategic guide for the sequential
development of a mine and for detailed production
scheduling. In designing the phases, three elements must be
determined: the number of phases, the phase-pits, and the
ultimate pit. These elements are interrelated and should be
simultaneously optimized to maximize the net present value
(NPV) of an open pit project.

Phase optimization, unlike production scheduling, has
not been an extensively studied topic in open pit planning in
recent years, and most of the research work had been done
before the turn of the century. Lerchs and Grossmann first
introduced the parametric analysis approach, where the
block values of the block model are systematically changed
and a pit optimization algorithm is executed repeatedly to
obtain an optimal pit each time after the block values are
changed, producing a series of nested pits [1]. These pits can
then be evaluated to choose the appropriate phase-pits.
Technical parameterization of reserves is another method for
nested pit generation, with an objective of finding the family

of “technically optimal pits.” A technically optimal pit for a
total volume, V, and ore quantity, Q, is the pit that has the
highest quantity of mineral of interest among all pits of the
same V and Q. A number of authors have elaborated on the
mathematical formulations and solution algorithms for
technical parameterization of reserves [2-7]. Dagdelen and
Johnson formulated the pushback optimization problem
into an integer programming (IP) model and used La-
grangian relaxation for solution [8]. All these methods have
an inherent gap problem; that is, the size increment between
two consecutive pits can be very large. Big gaps can inflict
serious difficulties when the pits are used for phase planning
or production scheduling, with the resulting solution far
from the optimal or with no feasible solution at all. To
overcome the gap problem, Wang and Sevim proposed a
heuristic algorithm using a cone eliminating process [9]. The
algorithm is capable of finding a series of nested, maximum-
metal pits with a pit increment almost the same as the user
specified value and, thus, completely eliminates the gap
problem. Meagher et al. formulated the pushback optimi-
zation problem as an IP model [10]. To facilitate the solution
process and to overcome the gap problem, they solved the
linear programming relaxation version of the IP model first
and, then, applied a method known as “pipage rounding to
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convert a fractional solution into an integral solution. The
authors claimed that their approach completely overcomes
the gap problem.

One of the most significant developments in the related
and wider area of open pit planning, over the last two
decades, is probably the incorporation of geological un-
certainty in planning schemes. Conditional geostatistical
simulation techniques have been developed that are ca-
pable of generating multiple, equally probable, realizations
of an orebody [11-14]. These realizations show the possible
variations of the mineral content and corresponding
tonnages of a deposit and provide the basis for quantifying
geological uncertainty. Based on simulated orebody real-
izations, stochastic open pit planning techniques can be
used to integrate geological uncertainty into planning
processes, so as to allow some sort of geological risk
management while maximizing the expected NPV. Several
authors have incorporated geological uncertainty in their
pushback/phase-pit optimizing approaches. Goodfellow
and Dimitrakopoulos applied the simulated annealing al-
gorithm to pushback design based on simulated orebody
realizations [15]. Their goal was to modify an existing
pushback design to better account for the joint local un-
certainty in metal grades and material types, while
remaining similar to the original design in terms of
pushback tonnages and the tonnages sent to various des-
tinations. Their case study on a copper mine showed that
the approach achieved a 35-61% reduction in variability in
terms of material quantities sent to the processes, leading to
a reduced level of risk in the economic value of the design.
Asad and Dimitrakopoulos presented a stochastic para-
metric maximum flow algorithm for pushback design
under uncertainties in both metal content and commodity
price [16]. They used Lagrangian relaxation together with
subgradient method to accommodate knapsack constraints
for ore quantities in the pushbacks and addressed the gap
problem by introducing a modification in the subgradient
method to minimize the size difference between consec-
utive pushbacks. The authors applied the algorithm to a
gold mine and compared the outcome with that from the
conventional (deterministic) nested pit approach [17]. The
case study demonstrated that the stochastic approach gave
30% more discounted cash flow, a 21% larger ultimate pit,
and about 7% more metal than the conventional approach.
Asad et al. later expanded the formulation to include
multiple ore processing streams [18].

As mentioned above, the number of phases, the phase-
pits, and the ultimate pit should be optimized simulta-
neously. However, few approaches are capable of providing
simultaneous solutions to the three elements, especially, for
coal mines. Asad and Dimitrakopoulos’ algorithm solves the
phase-pits and ultimate pit simultaneously, but the gap
problem is not completely overcome and the algorithm is for
metal mines [16]. Gu et al. proposed a method capable of
providing simultaneous solutions to the three elements [19].
It consists of a heuristic algorithm for generating a series of
geologically optimal pits and a dynamic programming (DP)
formulation for sequencing the pits, but the method is also
for metal mines.
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Based on the basic framework from a previous research
for metal mines [19], we have developed a phase planning
method particularly for open pit coal mines with nearly
horizontal and bedded coal seams, with the objective of
simultaneously optimizing the number of phases, the phase-
pits, and the ultimate pit.

2. Coal Deposit Modeling: the Column Model

Almost all open pit optimization formulations and solution
algorithms take 3D block models of deposits as their geo-
logical inputs. However, most coal deposits consist of nearly
horizontal (inclination angle smaller than 15° or so0), bedded
coal seams. As depicted in Figure 1, blocks at the coal-rock
interfaces contain a mixture of coal and rock (e.g., the blocks
outlined by the dotted lines), and such blocks constitute a
significant portion of all the blocks containing coal. This will
cause large errors in coal quantity calculation and subse-
quent economic evaluation, since whole blocks are classified
as coal or waste. The problem is more pronounced in cases of
multiple coal seams and/or the coal seams are thin.

In this study, we model this type of coal deposit into a
“column model,” where the whole deposit is divided into
vertical columns instead of blocks, with all columns having a
square horizontal cross section of the same size. Figure 1
illustrates a vertical cross section of a column model with the
columns numbered from 1 to 23. Each column in such a
model is assigned a group of attributes defining the physical
and chemical properties of all the coal seams along the
column. The attributes generally include floor elevation and
thickness of each coal seam and the unconsolidated layer at
the central line of the column, and heat value, ash content,
and sulfur content of each coal seam along the column.
These attributes may be estimated based on drill hole data
using a method such as Kriging or inverse distance inter-
polation. With a column model, the coal quantity in any
given volume (e.g., a pit or a cone) is calculated based on the
thickness of each seam falling inside the volume on each
column. The resulting coal quantity is much more accurate
than that based on whole blocks with a block model. The
reduction in coal-rock mixing with a column model, as
compared with a block model, depends on the geometries of
the coal seams (especially, their thicknesses) and the block
and column sizes. For the coal deposit model used in the case
study, we estimated that the reduction is at least 50% in
terms of the total amount of rock mixed in coal and coal
classified as waste.

3. Generation of Least-Strip Ratio Pits

The basic idea of phase optimization is first generating a
candidate series of nested pits with a specified size increment
and, then, selecting the best phase-pits (including the ulti-
mate pit) from the series that maximize the NPV. The best
candidate pits are the least-strip ratio pits, referred to as
“least-SR pits hereafter. A least-SR pit for a given coal
quantity, Q, is defined as the pit that has the lowest strip ratio
of all pits having the same Q. To overcome the gap problem,
a cone eliminating algorithm is applied on a column model
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FiGURrE 1: Illustration of a vertical cross section of a column model.

to generate a series of nested, least-SR pits. The basic logic of
the algorithm is briefly described as follows.

Suppose that a series of #n nested, least-SR pits, denoted
as {P},{P,,P,,...,P,}, is to be generated with a specified
coal quantity increment of AQ, where P; is the smallest pit
and P, the largest. Let Q; denote the coal quantity in P;. The
algorithm starts with the largest pit, P,, which is created by
projecting the pit walls from a closed surface boundary
outline down to the lowest floor elevation of the lowest coal
seam, according to the pre-determined slope angles in
different directions or in different zones. The pit slope angles
are determined beforehand through rock stability studies
and are inputs to the algorithm. The surface boundary could
be the boundary that encloses all exploration drill holes, or
the property boundary for which the mining company has
acquired the right of mining, or any boundary that is large
enough to enclose the optimal ultimate pit within the ac-
quired property. Within P, the algorithm searches for a
portion that contains a coal quantity of AQ and has the
highest strip ratio, and then eliminates this portion from P,,.
The remaining part of P, after eliminating such a portion
constitutes the next smaller pit, P,,_;, in the series, which has
a coal quantity of Q,,—AQ. To make P,_,; feasible with re-
spect to pit slope constraints, the eliminated portion is
constructed by combining upward cones (whose apexes
point upwards) with shell inclination angles equal to the pit
slope angles. From P,,_;, the same cone eliminating process
is repeated to generate the nest smaller pit, P,,_,. The process
continues until the coal quantity in the remaining part is
equal to or below the coal quantity, Q;, specified for the
smallest pit in the series, thus, resulting all the pits in the
series.

With a column model, a pit is outlined by the bottoms
and the tops of all the columns inside the pit, as depicted in
Figure 2 for pit P, where the bottom elevation of each
column is equal to the elevation of the pit wall or pit bottom
at the column center, and the top elevation of each column is
equal to the elevation of ground surface at the column
center. Without losing generality, suppose we have come to
the point of generating P;_; from pit P;. The cone eliminating
process is outlined as follows.

Place the cone apex on the central line of a column at an
elevation that is Az higher than the bottom elevation of the
column, as shown by Cone 1 in Figure 2. Calculate the

quantities of coal, rock, and unconsolidated material in the
cone inside pit P;. The cone’s coal quantity is denoted as g,. If
q. is not greater than the coal quantity increment, AQ,
specified for the pit series, compute the cone’s strip ratio and
put the cone in an array. Then, move the cone apex upwards
along the central line of the same column by a distance of Az,
and do the same as for the previous cone. Continue the
process of moving the cone upwards along the same column,
until the cone’s coal quantity, q,, is greater than AQ, or the
cone’s apex is above the ground surface, as depicted by the
upward arrow and the dot lined cones in Figure 2. Then, the
cone is moved horizontally to another column inside pit P;,
as shown by the horizontal arrow in Figure 2, and the entire
process for the previous column is repeated. The above
process continues until all the columns inside pit P; are
traversed.

At the end of the above cone moving process, an array
of J cones, each having a coal quantity g, <AQ, is obtained.
Sort the cone array in order of descending strip ratio. A
union of the first K cones in the sorted cone array is
sought, such that the total coal quantity of the union is
closest to AQ and not greater than 1.1AQ. In a cone union,
the overlapping part between two or more cones is
accounted only once. Such a union is obtained by se-
quentially combining the cones in the sorted array one at a
time, starting with the first cone. The cones in the union
are eliminated from pit P; and the remaining part is pit
P,_;, whose coal quantity is about AQ smaller than P;.
Eliminating a cone from a pit is simply done by raising the
bottom elevation of each column traversed by the cone up
to the cone shell elevation at the column center.

The algorithm outlined above is a heuristic one and does
not guarantee that the resulting pit is the true least-SR pit.
However, since the eliminated cones are the ones having the
highest strip ratios, their union constitutes a volume whose
strip ratio should be very close to the highest strip ratio of all
volumes with the same coal quantity. Thus the remaining
part should be very close to the true least-SR pit for its coal
quantity.

In the above algorithm, each and every cone kept in the
array has a coal quantity not greater than the specified
increment, AQ, and the coal quantity of the eliminated cone
union is controlled by an upper limit of 1.1AQ. Thus, the coal
quantity increment between any consecutive pits in the
generated pit series may be smaller than AQ, but cannot
exceed 1.1AQ. The gap problem is, therefore, completely
overcome.

The up-moving step size, Az, can affect the quality of the
resulting pits: a smaller Az generally gives better result (i.e.,
the resulting pits are closer to the true least-SR pits), but
consumes more time and memory. Az is an input parameter
to the developed software and different values can be tried if
necessary. From our experiments on different coal deposits
using different Az values, bench height, h (usually
10 m—15m), is a good choice for Az, and smaller values (e.g.,
h/2, h/4) make insignificant improvement on the resulting
pits, but substantially increase the computing time. The
column size has a similar effect.
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Figure 2: Illustration of the cone eliminating process for generating nested, least-SR pits.

4. Dynamic Programming Formulation for
Phase Planning

Once a series of nested, least-SR pits, {P},, is generated,
the pits can then be sequenced using a DP model to
optimize the phase plan. Figure 3 is a schematic illus-
tration of the DP model, and for clarity of illustration, {P},,
is assumed to contain 6 pits (in real-life instances, the
number would be much larger). The horizontal axis
represents the stage variable ¢t with each stage corre-
sponding to a phase, and the maximum stage number is
the number of pits in {P},.. The vertical axis represents the
state variable P with each state corresponding to a pit in
{P},,, depicted by a circle in Figure 3. The states (pits) of a
given stage (phase) are the possible phase-pits for that
phase. An arrow represents a state transition from a pit of
a phase to a pit of the next phase. Since any phase-pit of
phase t is the result of expansion (through mining) of a
smaller phase-pit of the preceding phase, t—1, a state
transition can only go upwards from a pit of a stage to one
of the larger pits of the succeeding stage. That is why the
starting (lowest) state of stage t corresponds to pit P; in
{P}, (t=1,2,...,n), and the lower-right half of the diagram
is void.

A path starting with the origin and ending at any pit in
Figure 3 is a possible phase plan scenario. For example,
path 0—P,—P,— P, as shown by the thick arrows,
represents such a phase plan: the number of phases is 3
(since the path ends at phase 3); the phase-pits for phases
1, 2, and 3 are pits P,, Py, and Pg, respectively; and the
ultimate pit is Pg. The path with the highest NPV is the
optimal phase plan, which can be found by economically
evaluating all the paths. The following is a DP formulation
for finding the best path.

In general, suppose that pit P; of stage ¢t is being eval-
uated. P; can be transited from those smaller-than-P; pits of
the preceding stage, t— 1. When pit P; of stage ¢ is transited
from pit P; of stage t—1 (t-1<j<i-1), the quantities of
coal, rock, and unconsolidated material mined in phase f,
denoted as Q,; (t—1, j), W;; (t—-1, j), and Uy, (t—1, j),
respectively, are calculated as

State (least-SR pits)

Stage (phases)

FIGURE 3: Schematic illustration of the dynamic programming
model for phase planning.

Qt,i(t - 1:j) = Qi - Qj,
W(t=1,7) =W, - W, (1)
U, (t-1,7)=U;-U,,

where Q;, W, and U; are the quantities of coal, rock, and
unconsolidated material that can be mined from pit P;
respectively. They are quantities after coal recovery and
waste mixing incurred in mining operations are taken into
account.

Suppose that the mining company has a coal processing
plant and the salable product is clean coal. Such a transition
brings a total revenue of Vy; (t—1, j) and cost of C,; (t - 1, j)
for phase t.

Vt,i(t - 1’]) = Qt,i(t - 1’j)rpp)
Coit=1,7) = Qu(t =1, j)(cp+c,) + Wy, (t =1, )c,

+ U (t =1, j)c,,
(2)
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where r,, is the coal recovery rate of the processing plant; p is
the coal price; and c,,,, Cps Cups and c,, are the unit costs of coal
mining, coal processing, rock mining, and unconsolidated
material stripping, respectively.

Let y;; (t—1, j) denote the time (in years) required to
make such a transition, and assume that the coal mining,
waste removing, and coal processing capacities match one
another. Then,

Qt,i(t_ l’j)

R (3)

yt,i(t -Lj)=
where A is the annual coal mining capacity.
yei (t—1, j) may not be an integer number of years, and
let L,; (t—1, j) be the integer part of it. The average annual
revenue and cost for each of the L,; (f - 1, j) years, denoted
by v,;(t - 1, j) and ¢;; (t- 1, j), respectively, are

V,.(t-1,j
Vt,i(t -Lj)= %a
Vi > 1) W
4
C,.(t-1,j
Gt —1,j) = St =L
yt,i(t L j)

The revenue and cost for the remaining decimal part,
denoted by a;; (t—1, j) and b;; (t -1, j), respectively, are

a (t=1,7) =V, (t= 1, j) = v, (t =1, )L (t = 1, ),
b (t—1,7) =C(t=1,j) —c,; (=1, j)L,; (¢ = 1, j).
(5)

Following the transition, the cumulative time to arrive at
pit P; of stage t after finishing mining phase ¢, denoted by Y;;
(t-1, j), is

Yii(t=1Lj) =Y, y;+y,;t-1)), (6)

where Y;_,; is the camulative time to arrive at pit P; of the
preceding stage, ¢ — 1, following the best path. Y,_; ; has been
calculated in evaluating the states of the preceding stage,
t—1.

Therefore, when pit P; of stage ¢ is transited from pit P; of
stage t— 1, the cumulative NPV realized at pit P; of stage t,
after t phases of production, is given by NPV,; (t—1, j) as

M (=1 )(14p,)" Y = et =L (L p)" T
NPV,.(t -1, ) =NPV,_, . + b 4 L ¢
t,i J t-1,j 7;1 (1 + d)”*Yt—l,j
(7)
. Yr,f (t_ 1’j) . ti\FT b, j
+ a,;(t - 1,])(1 + Pp) ~b(t=1, ) (1+p,) )
a+ d)Yi,i(t_l’j) ?
i QO - 0’
where NPV,_, ; is the cumulative NPV at pit P; of stage t - 1, W. —o
following the best path, which has been calculated in o=
evaluating the states of the preceding stage, t—1; p, and p, 1 Uy =0, 9)
are the escalation rates of coal price and production cost, % -0
respectively; and d is the discount rate. 00 ’
As stated before, pit P; of stage t may be transited from all NPV = 0.

the smaller-than-P; pits of the preceding stage, t—1. Ob-
viously, when pit P; of stage t is transited from a different pit
of stage ¢ — 1, the quantities mined and processed in phase ¢
will be different, and the revenue, cost, and time length will
also be different. Consequently, different transitions (deci-
sions in DP) give different cumulative NPV’ at pit P; of stage
t. The transition with the highest cumulative NPV is the best
transition (optimal decision in DP) and, thus, the recursive
objective function is

NPV,; = max

NPV,.(t -1, j);.
je [t—l,i—l]{ 0l ])} (8)

When the pits of stage 1 are evaluated, all the pits can
only be transited from the initial state at t=0 (the origin in
Fire 3). Initial conditions at the initial state are

Starting from the first stage, the pits are evaluated for-
wards stage by stage, until all the pits of all stages are
evaluated. The best transitions and the associated cumulative
NPVs are obtained for all the pits of all stages. Then, find the
pit that has the highest cumulative NPV of all pits of all
stages. This pit is the best ultimate pit, and the stage at which
it is found indicates the best number of phases. Then,
starting from the best ultimate pit and tracing the best
transitions backwards to the first stage, the optimum path
(optimal policy in DP) is found, and the pits along this path
indicate the best phase-pits of the corresponding phases.
Thus, the number of phases, the phase-pits, and the ultimate
pit are simultaneously optimized. This is a forward and
open-ended DP formulation.
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TaBLE 1: Technical and economic parameter values used in the DP model.
Coal price Coal mining  Rock mining Strlpplng cost of UCM Mining Coal price CosF .
(RMB-t) cost cost unconsolidated material ~ recovery escalation (%) escalation  Discount rate (%)
(RMB-t ™) (RMB-m™>) (RMB-m™3) (%) ? (%)
250 20 28 18 95 0.0 0.0 7.0
5. Case Study TABLE 2: Major quantities of the best phase plan.

A software package has been developed based on the above
model and algorithm and was used in a case study on a large
coal deposit in northern China. The topography of the coal
field is nearly flat with a maximum relief of less than 20 m.
The surface boundary of the planning area is about 7800 m
long and 4500 m wide. From drill hole information, 8 coal
seams were identified, with thicknesses varying from around
1 m to around 40 m and densities between 1.28 and 1.31t/
m”. The deposit was modeled into a column model having
around 39000 columns, each having a horizontal cross
section of 30m x 30 m. The attributes of each column, mainly
the thickness and elevation of each coal seam along the
column, were estimated based on drill hole data using an
inverse distance interpolation method particularly designed
for this study.

The coal reserve within the planning boundary was
estimated to be some 900 Mt. For a deposit of this scale,
the annual coal mining rate was assumed to be 20 Mt of
run-of-mine coal. The coal is to be sold without pro-
cessing. The time span of a single phase is generally more
than 5 years to avoid complications associated with
frequent transitions between phases. Therefore, in gen-
erating the least-SR pits, the coal quantity of the smallest
pit, Q;, was set to 100 Mt (5-year production), and the
coal quantity increment, AQ, to 20 Mt. A maximum pit
slope of 25" was used. With these parameter values and
the column model as inputs, 40 nested pits were gen-
erated by applying the cone eliminating algorithm de-
scribed above. The coal quantity increment between any
two consecutive pits in the generated pit series has a very
small variation (20.00 Mt to 20.17 Mt), indicating that the
algorithm has produced an evenly spaced series of nested
pits with increments virtually equal to the specified value.
This is a verification of the algorithm’s capability of
completely overcoming the gap problem.

The phase plan was optimized with the generated pit
series and the parameter values in Table 1 as inputs to the DP
model. The best (highest-NPV) phase plan consists of 4
phases and Table 2 summarizes the major quantities to be
mined in the phases. With an annual coal production of
20 Mt, each of the first three phases has a time span of 10
years and the fourth phase 11 years, giving a total mine life of
41 years. The average strip ratio increases from phase 1 to
phase 4. Since maximizing NPV implies postponing waste
removal as much as possible, the increasing strip ratio with
time is a verification of the rationality of the proposed
method.

Figure 4 is a 3D view of the four phase-pits of the op-
timized phase plan, where phase-4 pit is also the best

Phase 1 Phase 2 Phase 3 Phase4  Total
Coal | 20015 20050 200.66 22029  821.60
quantity/Mt
Rock . 64018 847.81 101222 1391.33 3891.54
quantity/Mm
UCM
quantity/Mm® 47646 320.68 302.97 206.65 1306.76
Average strip 558 583 655 725 633
ratio/m:t
Time length/a 1001 1002 1003 1101  41.07
NPV/M RMB  13716.69 5920.99 223572 71215 22585.55

ultimate pit. Figure 5 is a vertical cross section of the phase-
pits superimposed on the coal seams in the column model.
The direction of phase expansion can be clearly seen from
these figures. One can also see the rationality of the opti-
mization results from the spatial relationship between the
phase-pits and the coal seams (Figure 5).

The developed software provides an option of keeping
and outputting a specified number of best phase plan sce-
narios. For the case study, we found five other scenarios with
virtually the same NPVs as the one given in Table 2, but with
different numbers of phases, and/or phase-pits (including
the ultimate pit). Since it is very difficult, if not impossible, to
incorporate all relevant practical considerations in any
optimization model and algorithm, these phase plan sce-
narios, which are equally good economically, provide
valuable options for further evaluation with respect to
certain practical considerations to arrive at the final phase
plan.

We also analyzed the effects of certain input pa-
rameters, such as coal price, production costs, and their
escalation rates, on the phase planning outcome for the
case study, with the above phase plan as the base case for
comparison. The planning outcome was found to be
sensitive with respect to these parameters. When the coal
price was lowered by 20%, the size of the optimum ul-
timate pit decreased by 30%, and the number of phases
decreased from 4 to 3. Increasing the production costs by
20% had similar effects. Increasing the coal price (or
lowering the production costs) had reverse effects on the
planning outcome, as expected. Setting the annual es-
calation rates of coal price and production costs to 2.0%
and 1.5%, respectively, resulted in a 7% larger ultimate
pit, the same number of phases, but larger phase-pits.
Based on the outcomes of these experiments, we suggest
that the phases should be updated periodically (e.g.,
toward the end of each phase) in a real-life operation, as
the relevant economic and technical conditions change
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FIGURE 4: 3D view of the phase-pits of the best phase plan. (a) Phase-1 pit. (d) Phase-4 pit (ultimate pit). (c) Phase-3 pit. (b) Phase-2 pit.

Phase 3 Phase 2 Phase 1

Coal seams

Phase 4

Phases 1,2, 3

FIGURE 5: The phase-pits on a vertical cross section at I-I.

over time. The optimization method presented herein
and the developed software can be a handy tool for
updating phase plans.

6. Conclusions

The phase planning method presented herein is specially
designed for open pit coal mines with nearly horizontal
and bedded coal seams. The major merits of the method
include the following: it simultaneously optimizes the
number of phases, the intermediate phase-pits, and the
ultimate pit; it eliminates the gap problem in generating a
series of nested pits; and the column model has a clear

advantage over the commonly used block model in the
accuracy of coal quantity computation with nearly hor-
izontal and bedded coal seams. The method is capable of
handling large real-life instances and produces rational
results, as demonstrated by the case study. The method
can also be used to analyze the effects of relevant input
parameters on the phase planning outcome, providing
useful scenarios for decision-making in strategic plan-
ning of open pit coal mines.

The proposed method in its current form has two major
shortcomings. One is that the total cost of mining a phase is
averaged over the years of the phase’s time span while, in
actuality, the quantities of rock and unconsolidated material



mined each year fluctuate within a phase, causing fluctua-
tions in annual cost. Another shortcoming concerns the
transition from one phase to the next. Transition takes place
sometime before a phase is completely mined out. During
the transition period, the upper benches of the next phase are
mined and some working benches may traverse the
boundary between the two phase-pits. Phase transitions are
not incorporated in our current formulation and should be
dealt with in a more detailed scheduling process. Over-
coming these shortcomings will be the focus of our future
research on this topic.
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