
Research Article
Adversarial Sample Detection with GaussianMixture Conditional
Generative Adversarial Networks

Pengfei Zhang and Xiaoming Ju

School of Software Engineering, East China Normal University, Shanghai, China

Correspondence should be addressed to Xiaoming Ju; xmju@sei.ecnu.edu.cn

Received 15 May 2021; Revised 13 July 2021; Accepted 8 August 2021; Published 13 September 2021

Academic Editor: Jie Chen

Copyright © 2021 Pengfei Zhang and Xiaoming Ju. +is is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is
properly cited.

It is important to detect adversarial samples in the physical world that are far away from the training data distribution. Some
adversarial samples can make a machine learning model generate a highly overconfident distribution in the testing stage.+us, we
proposed a mechanism for detecting adversarial samples based on semisupervised generative adversarial networks (GANs) with
an encoder-decoder structure; this mechanism can be applied to any pretrained neural network without changing the network’s
structure.+e semisupervised GANs also give us insight into the behavior of adversarial samples and their flow through the layers
of a deep neural network. In the supervised scenario, the latent feature (or the discriminator’s output score information) of the
semi-supervised GAN and the target network's logit information are used as the input of logistic regression classifier to detect the
adversarial samples. In the unsupervised scenario, first, we proposed a one-class classier based on the semisupervised Gaussian
mixture conditional generative adversarial network (GM-CGAN) to fit the joint feature information of the normal data, and then,
we used a discriminator network to detect normal data and adversarial samples. In both supervised scenarios and unsupervised
scenarios, experimental results show that our method outperforms latest methods.

1. Introduction

Deep neural networks (DNNs) have achieved high accuracy
in many classification tasks, such as speech recognition [1],
objection detection [2], and image classification [3]. Al-
though these DNNs are robust to random noise, they can
mislead the model and cause it to output erroneous pre-
dictions when inputting small perturbations that are hard
for humans to detect. In many machine learning applica-
tions (for example, in novelty detection [4], autonomous
vehicles [5], and banking systems [6]), this prediction un-
certainty will significantly reduce the model’s safety.

Several methods have been proposed to protect against
DNN attacks. One such method relies on the adversarial
training method by adding adversarial samples in the
training phase [7]. +is method is robust to a variety of
adversarial attacks but is ineffective against certain other
attacks. To guarantee that there is no adversarial pertur-
bation to fool the neural network within a given range, a

more computationally demanding and provable defense is
used, employing either integer programming approaches
[8, 9] or satisfiability modulo theories [10]. +e above-
mentioned methods require a lot of calculations and special
training procedures. However, when the parameters and
structure of the neural network are fixed, neither of these
methods can be used without modifying the neural network
structure or retraining the neural network.

Adversarial sample detection is a good solution to the
above problems. In the supervised scenario, most methods
train a binary classifier to distinguish whether the sample is a
normal sample or an adversarial sample. In 2018, Lee et al.
[11] established a class-conditional Gaussian distribution in
the intermediate layers of the pretrained network and dis-
tinguished adversarial samples using the Mahalanobis dis-
tance. Meanwhile, Ma et al. [12] proposed the local intrinsic
dimensionality (LID) and experimentally proved that the
LID can be employed to represent a test sample’s charac-
teristics. Both supervised learning methods use normal

Hindawi
Mathematical Problems in Engineering
Volume 2021, Article ID 8268249, 18 pages
https://doi.org/10.1155/2021/8268249

mailto:xmju@sei.ecnu.edu.cn
https://orcid.org/0000-0002-4235-3459
https://orcid.org/0000-0002-6353-9041
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/8268249

samples to train the feature extractor in the training stage. In
the testing stage, the test samples are input to the feature
extractor to obtain feature data. Finally, the feature data are
input to the supervised classifier to realize the detection of
normal samples and adversarial samples.

In the unsupervised scenario, alternatively, we can
consider the unsupervised detection algorithm of adversarial
samples. In 2017, Xu et al. [13] proposed a method to detect
adversarial samples by comparing the model’s prediction on
a given image input with its prediction on the compressed
image input version. In 2019, Yang et al. [14] proposed a
feature attribute map of the adversarial samples close to the
classification boundary; this map was different from the
feature attribute map of the true data. In 2019, Roth et al. [15]
introduced a statistical test based on the change in feature
representations and log odds under noise; this approach is
called odds-testing. PouyaSamangouei et al. [16] used GANs
to model real images’ distribution and find a close model’s
output to a test image, which did not contain adversarial
perturbations; this confirmed that the adversarial sample has
a data distribution far away from that of the normal sample,
and it inspired other researchers to train a normal sample
classifier to fit the distribution of real data. In 2018, an
interesting analysis [16] showed how adversarial samples are
propagated through neural network layer features; in 2019,
Joshua et al. [17] studied the first-order classifier by training
a discriminator with a generative adversarial network. +ese
works [16, 17] inspired the present work. Regarding su-
pervised learning and partial supervision methods, our
method is inspired by the approach of Lee et al. [11]. +ey
established a class-conditional Gaussian model through the
Mahalanobis distance: they calculated the Mahalanobis
distance between the true data and the adversarial sample
and found that the feature distribution of the true data and
that of the adversarial sample were different. Grosse et al.,
[18] also showed that adversarial samples have different
distributions from normal data. Considering this finding, we
also study the feature distribution information of normal
samples through a semisupervised GAN in the present ar-
ticle. +ere are differences in the feature distributions be-
tween real samples and adversarial samples when the
adversarial samples are input to the generator.

Our approach is described as follows. We used this
difference to detect adversarial samples and true data. For
unsupervised learning, we are inspired by the method of
Engelsma and Jain [17]; we also employed the GM-CGAN to
study the hidden layers’ features and label information of the
true data in the hidden layers of the pretrained network for
joint feature distribution. When the sample belongs to true
data, the discriminator will output a high predicted value.
Conversely, when the sample is an adversarial sample, the
joint feature of the hidden layers’ feature and the label does
not conform to the true data’s feature distribution, and the
discriminator will output a relatively low predicted value.
We highlight that we do not directly study the joint features
of true data and labels but instead use the intermediate
layers’ features of the pretrained network.

Figure 1 shows the framework of the proposed detection
method. We train individual semisupervised generative

adversarial networks to study normal data distributions in
the pretrained target network’s hidden layers. GE is the
semisupervised GAN’s encoder structure, and GD is the
semisupervised GAN’s decoder structure. In a supervised
scenario, the latent feature of the semisupervised GAN and
the target network’s logit information are used as the input
of the external classifier to detect the adversarial samples.
latent1 represents the latent vector of the first semisupervised
GAN, and latenti represents the last latent vector. In addition
to using the latent information to do experiments, we also
use the discriminator’s output score information of the
semi-supervised GAN for supervised training in our ex-
periment. In the case of an unsupervised scenario, input
features (i.e., the reconstruction error vector errori in the
final layer of the last block group in the pretrained target
network, the latent vector latenti in the final layer of the last
block group in the pretrained target network, and the logit
vector of the target network) are used as Gaussian mixture
conditional generative adversarial networks to study the
distribution of features. Besides, the label information of the
target network is used as the GM-CGAN’s conditional
information.

Our method has universal applicability, and the samples
are tested without modifying any of the model’s structure.
Experiments conducted on the DenseNet and ResNet net-
work architectures show that among the recently proposed
detection methods, our method obtains the highest detec-
tion rate in both supervised and unsupervised learning
scenarios. Our method is better than the method utilizing
the Mahalanobis distance [11] in a supervised scenario. In a
partially supervised scenario, our method and the Maha-
lanobis distance method have similar performance. In an
unsupervised scenario, our method performs similar to or
better than the odds-testing [15] method.

2. Materials and Methods

2.1. Preliminaries. In this work, we describe the deep neural
network first and then introduce the observation of
adversarial samples in the neural network. Finally, we
present the foundations of the GAN and CGAN.

2.1.1. Neural Network. +e neural network solves the
classification problem of class k, and the final output result is
obtained by logit through the softmax function. +e neural
network consists of M layers hm:

zm � hm zm−1(􏼁, form � 1, . . . , M. (1)

In the above formula, M represents the total number of
layers of the neural network, z represents the output of the
neural network, and h is the hidden layer of the neural
network.

2.1.2. Observation of Adversarial Samples in Neural
Networks. In this article, we further verify that the adver-
sarial sample and the normal sample are feature distribu-
tions in the target network’s hidden layers. +e distribution
of the adversarial samples’ feature data and the distribution

2 Mathematical Problems in Engineering

of normal samples’ feature data are di�erent, and the in-
�uence of interference increases as the network deepens.
Besides, adversarial samples will deviate from the real data.

�e structure of the neural network contains nonlinear
mappings and is formalized as follows:

F � h1 ∘ · · · ∘ hM, (2)

where F is the �nal output of the neural network and h is the
hidden layer of the neural network.

Since in practice, the Lipschitz constant lip(hl) of the
neural network in each mapping is greater than 1 [19], we
can assume that there is a small perturbation in the input
space, and after the neural network propagates, the �nal
layer has a vast representation distance. Our formula for the
propagation of neural networks in high-dimensional space is
formalized as follows:

lip(F) ≈ lip h1() . . . lip hM(), (3)

where F is the �nal output of the neural network, h is the
hidden layer of the neural network, and lip is the Lipschitz
constant.

Due to the propagation properties of neural networks, as
the number of neural network layers increases, the distri-
bution of the adversarial samples will deviate farther from
the distribution of normal samples. �e di�erence between
the real samples and the adversarial samples becomes more
obvious in each sequent hidden layer.

2.1.3. GAN. �e GAN [19] is relatively good for training
generative models. It is composed of two adversarial
modules: a generative model G used to describe the data
distribution, and a probability discrimination model that
determines whether the sample comes from the training data
distribution instead of G. Both generator and discriminator
are nonlinear mapping functions and have multilayer
perceptrons.

To study the generator distribution pg on the training
data x, generatorG builds a mapping function from the prior
noise distribution pz(z) to the space of the generated data
(G(z; θε)).D(x; θD) (the output data of discriminatorD) is a
probability scalar used to determine the probability y that the
data comes from the distribution of the training data.
Generator G and discriminator D are trained at the same
time, and we adjust their parameters so that the generator
has minimal loss:

log(1 −D(G(z))). (4)

�e loss of discriminator D is

log(D(x)). (5)

�us, the generator and discriminator essentially max-
imize and minimize V (D, G).

min
G

max
D
V(D,G) � Ex∼pdata(x)[log(D(x)]

+ Ez∼pz(z)[log(1 −D(G(z)))].
(6)

Lcon = || x – x~ ||1

Ladv = || f (x) – f (x~) ||2

 f (·) Real/Fake

reconstruction error1

latent1

Semi-Supervised
Gan on layers

Pre-trained
neural network

• • •

• • •

GE

GD

x~

x

 f (·) Real/Fake

reconstruction errori

latenti

latent1

latenti

errori

latenti

■ ■ ■

logit

logit yGE
Generator

Confidence

Classifier

Supervised

Unsupervised z

Adversarial

Normal

Discriminator

GD

x~

y~

y~

G (z|y~)

x

Conv2d-BatchNorm2d-LeakyReLU Block
reconstruction error vector
latent vector

logit vector
input noise vector z

label one-hot vector
sigmoid function

Figure 1: Framework of the proposed detection method.

Mathematical Problems in Engineering 3

In equations (4) and (6), z is the input noisy data fol-
lowing the pz distribution. Meanwhile, in equations (5) and
(6), x is the input data following the pdata distribution. In
equations (4)-(6), log is a logarithmic function. +e G is the
generator network and the D is the generator network. E is
the expectation of the distribution function.pdata(x) is the
distribution of real samples. pz(z) is a low-dimensional noise
distribution. V is the loss function.

2.1.4. CGAN. If both generator and discriminator are
conditioned with some additional information, the GAN can
be extended to its conditional form. Y can be any type of
auxiliary information, such as a class label or data of other
forms. We can adjust [x] using a discriminator and gen-
erator with y input as an additional input layer. In this way,
the maximum andminimum objective function is as follows:

min
G

max
D

V(D, G) � Ex∼pdata(x)[log(D(x|y)]

+ Ez∼pz(z)[log(1 − D(G(z|y)))].

(7)

Here, z is the input noisy data following the pz distri-
bution, x is the input data following the pdata distribution,
and y is the one-hot encoding of labels. Log is a logarithmic
function. G is the generator network, and D is the generator
network. E is the expectation of the distribution function.
pdata(x) is the distribution of real samples. pz(z) is a low-
dimensional noise distribution. V is the loss function.

2.2. Related Work. We introduce adversarial attacks and
adversarial defense in this work.

2.2.1. Adversarial Attacks. Adversarial attacks can be
roughly divided into poisoning at training time or test time,
and evasion. Adversarial attacks at training time are mainly
conducted by adding maliciously tampered data into the
training dataset during training so that the DNNs enter a
suboptimal state, resulting in a decrease in model perfor-
mance; this is called poisoning.

Meanwhile, evasion attacks involve tampering with the
trained model’s input, making the final prediction of the
model incorrect. In both types of adversarial attack, an
adversarial input modifies the other inputs in such a way that
humans do not perceive the changes, but the DNNs make an
incorrect final prediction.

For example, we add some minimal perturbations to
pixels of the digit 2 inMNISTdata so that the predicted value
of the digit becomes 7, even though the digit still looks like
the digit 2.

In this article, we study an evasion attack at test time.
Given a test input x from class c, the adversarial attack aims
to create the smallest perturbations so that the model’s
output will eventually become a specific class c′ (targeted
attack) or a class outside of class c (untargeted attack).+is is
formalized as an optimization problem, and its general form
is as follows:

min ‖δ‖ps.t., (8)

C
∧

(x + δ) � c′(targeted), (9)

orC
∧

(x + δ)≠ c(untargeted). (10)

In equations (9) and (10), C
∧
is the trained model clas-

sifier. δ is the adversarial perturbation. x is the input data of
the trained model. Based on the above general formula,
many adversarial attack methods have been proposed; well-
known methods include the fast gradient symbol algorithm
(FGSM) [20], projected gradient descent (PGD) attack [22],
Carlini–Wagner (CW) attack [23], DeepFool attack [24],
and BIM attack [25]. +ese attack methods can be catego-
rized into black-box attack or white-box attack methods
depending on the extent of their knowledge about the DNNs
classifier’s parameters, structure, loss function, and algo-
rithm.+emost commonly used deep neural network attack
methods are white-box methods because they assume a
complete understanding of the system.

2.2.2. Defenses against Adversarial Attacks. Defending
against neural networks is much more complicated than
attacking them. Here, we summarize some current defense
methods.

(1) Adversarial Training. It is a method that trains a better
classifier to defend against adversarial samples. [25].+is is a
method to add adversarial sample information in the
training process of neural network classifier. For instance,
one can add adversarial examples to the training data [26]
for data augmentation [27] or add adversarial targets to the
classification targets [28] for regularization [29]. Although
the method is promising, it is difficult to determine which
kind of attack is more suitable for the training way and how
important the training way is; these problems are still un-
resolved [30].

(2) Defensive Distillation. +e defensive distillation [30]
training classifier makes it almost impossible for gradient-
based attacks to directly generate adversarial samples on the
trained network. +is method uses the distillation training
technique and hides the gradient between the logits and the
output of the softmax function [26]. However, attacks can
bypass this defense through the following three ways: (1)
choosing an appropriate loss function, (2) directly calcu-
lating the gradient of the previous layer of the softmax layer
instead of the gradient of the postlayer of the softmax layer,
and (3) first attacking other vulnerable network models and
then migrate to the trained distillation network.

(3) Detecting Adversarial Samples. Detecting adversarial
samples can use statistical feature [29] methods or a classifi-
cation network [30] to achieve defense. We build different
detection classifiers for different attack methods to determine
whether the input is a normal sample.+e detector uses normal
samples and adversarial samples for training. When the

4 Mathematical Problems in Engineering

training and testing adversarial samples are generated from the
same way, and the adversarial perturbation is obvious enough,
the detector shows good performance. However, this means of
defense cannot be well generalized to different attack.

Our method is inspired by the approach of Lee et al. [11].
+ey established a class-conditional Gaussian model through
the Mahalanobis distance: they calculated the Mahalanobis
distance between true data and the adversarial sample and
found that the feature distribution of the true data and that of
the adversarial sample were different. Our method takes ad-
vantage of the difference between the adversarial samples and
the normal samples in the middle layers of the neural network.
In 2019, Joshua et al. [17] studied the first-order classifier by
training a discriminator with a generative adversarial network.
In our unsupervised method, we use the feature vectors
extracted from the middle layer to train the discriminator
network. Because our GM-CGAN is used to train a one-class
classifier on themicrofeature distribution of themiddle layers of
the pretrained network, we capture the weak perturbation of
adversarial samples.+us, ourmethodwill have better detection
performance than the three types of methods described above.

2.3. Our Approach. In this work, we introduce the semi-
supervised GAN’s structure and training method for studying
the hidden layers’ feature distribution of the pretrained net-
work first. +en, we present our detection methods under
supervised, partially supervised, and unsupervised scenarios.

2.3.1. Semisupervised GAN. Samet Akcay et al. [28] inspired
us to use the semisupervised anomaly detection structure.
+ey used an encoder-decoder-encoder structure to study
the data distribution of the input image. For simplicity, we
used an encoder-decoder structure in the generator part of
the semisupervised GAN to analyze the feature distribution
of the target network’s hidden layers.

+e formal principle behind the semisupervised GAN is
as follows. Generator G first reads the intermediate layer
feature x of the target network, where x ∈ Rm, and forward
passes it to the encoder network GE. With the use of con-
volutional layers followed by batch norm and ReLU() ac-
tivation, GE downscales x by compressing it to a latent
vector, where latent ∈ Rd (d represents the best dimension).
In our experiment, d is set to 128. +e decoder network GD

of generator G is composed of convolution transpose layers,
the batch-norm function, and the ReLU() activation func-
tion. Finally, the latent vector is input to GD to reconstruct
the intermediate layer feature 􏽥x of the target network. Fi-
nally, generator G generates the intermediate layer feature 􏽥x

via 􏽥x � GD(latent), where latent � GE(x).

(1) Adversarial Loss. Because the GAN is unstable during the
training phase, we add feature matching loss to the training
phase. In the ordinary GAN’s training phase, generator G is
updated based on discriminator D. Following the work of
Salimans et al. [29], feature matching is employed to reduce
instability during training. We update this approach based on
the internal representation of discriminatorD. First, we assume
that there is an f function of the intermediate layer of

discriminator D. For the input data x that satisfies the pX

distribution and outputs the intermediate layer features of
discriminator D, the feature matching loss calculates the L2
distance between the original feature and the generated feature.
+e form of our formalized adversarial loss Ladv is as follows:

La dv � Ex∼px f(x) − Ex∼pxf(G(x))
�����

�����2
. (11)

In equation (11), x is the input data; f is the function of
the intermediate layer of discriminator D, G is the generator
network, D is the discriminator network, and px is the
distribution of real samples. +e adversarial loss Ladv is the
L2 loss. E is the expectation of the distribution function.

(2) Contextual Loss. While adversarial loss makes the gen-
erated adversarial samples deceive discriminator D, there is
only one adversarial loss, and the generator cannot be op-
timized according to the input data’s context information.
Punishing the generator by measuring the distance between
the input data and the generated data can remedy this
problem. Isola et al. [30] showed that the fuzzy results due to
L1 loss are less than those due to L2 loss. +erefore, we
penalize G by measuring the L1 distance between the
original input data and the generated data 􏽥x � G(x). +us,
the contextual loss Lcon is formalized as follows:

Lcon � Ex∼px‖x − G(x)‖1. (12)

In equation (12), x is the input data, E is the expectation
of the distribution function, and px is the distribution of real
samples. +e contextual loss Lcon is the L1 loss.

In this way, the generator encodes normal data but
cannot encode adversarial samples because our generator G
and discriminator D are optimized for normal data. +e loss
function we trained is as follows:

L � WadvLadv + WconLcon, (13)

where Wadv is the weight coefficient of Ladv and Wcon is the
weight coefficient of Lcon. Wadv and Wcon are both positive
integers; Wadv � 1, and Wcon � 15. Ladv is the adversarial loss
in equation (11). Lcon is the contextual loss in equation (12).
+e semisupervised GAN training flow chart is described in
Algorithm 1.

2.3.2. Supervised Scenario and Partially Supervised Scenario.
We used the semisupervised GAN to study the normal data’s
feature distribution information in the hidden layers of the
pretrained network. +en, we input the normal data and the
adversarial samples into the pretrained network and obtain
the corresponding latent features through the semi-
supervised GAN. Finally, the features are input into the
supervised classifier logistic regression classifier to realize
supervised classification and partially supervised classifica-
tion. +e supervised scenario and partially supervised sce-
nario training flowchart is described in Algorithm 2.

2.3.3. Unsupervised Scenario. Due to the discrepancy be-
tween the feature distributions of the normal data and the
adversarial samples in the hidden layers of the pretrained

Mathematical Problems in Engineering 5

network, we use the hidden layers’ difference features of the
normal data and its label as the joint feature information for
training the CGAN and a good discriminator.

+e loss function of the target is as follows:

min
G

max
D

V(D, G) � Ex∼pnormal(x)[log(D(x | y)]

+ Ez∼pz(z)[log(1 − D(G(z | y)))].

(14)

Here, in order to reduce the amount of calculation, x is
the joint feature data that includes the reconstruction error
vector in the final layer of the last block group in the pre-
trained target network, the latent vector in the final layer of
the last block group in the pretrained target network, and the
logit vector of the target network. pnormal is the distribution
of real samples, and pz is the low-dimensional noise dis-
tribution; x follows a normal distribution pnormal, and z is the
input noisy data following the pz distribution, and y is the
one-hot encoding of labels. Usually, U[−1, 1]d or multi-
variate normal distribution information N(0, Id×d) are used
as the noise input during the GAN’s training. G is the
generator network and D is the discriminator network. We
emphasize that to better study the joint feature distribution
of normal data and labels, we use the inherent multimodal
distribution feature of px. Its specific form is as follows:

pz(z) � 􏽘

K

k�1
αk ∗pk(z). (15)

Here, K is defined as the number of Gaussian distri-
butions in the mixture model, which is the number of neural
network block groups in our experiment. pk(z) is defined as

multivariate normal distribution information N(μk, 􏽐 k),
where ∀k ∈ [K], αk � 1/K. z is the input noisy data. For data
evaluation, we used the normal sample’s one-hot encoding
of labels and the adversarial sample’s one-hot encoding of
labels as the trained GM-CGAN’s conditional information
during the testing phase. +e supervised scenario and
partially supervised scenario training flowchart is described
in Algorithm 3.

3. Results and Discussion

3.1. Experiments. We test our detection method against
DeepFool, FGSM, BIM, PGD, and CW adversarial attacks on
CIFAR10 [32], CIFAR100 [33], and SVHN [34] datasets. We
used the ResNet-34 [35] and DenseNet-BC [36, 37] models.
Similar to Lee’s method, we chose to train the semisupervised
GAN on the last layer of the basic block of the two neural
network models; then, we extracted the hidden layers’ features
from the target network. For convenience of calculation, if the
feature shape of the dataset in the network’s hidden layers is the
same, we used the same semisupervised GAN.

In the supervised and partially supervised scenario, the
final detection classifier is the logistic regression classifier
classifier; we used 10% of the test set as training data and 90%
as evaluation data. In the unsupervised scenario, we used the
GM-CGAN as the final detection classifier trained on the
training samples that not include adversarial samples and
noise samples. Our analyses of reconstruction error and L2
norm are presented in Figures 2–4. When we train the GM-
CGAN, we select the input features as the reconstruction
error vector in the final layer of the last block group in the
pretrained target network, the latent vector in the final layer
of the last block group in the pretrained target network, and

Input: train sample x into the pretrained target network.
for each layer l ∈ 1, . . . , L do.
Train individual semisupervised generative adversarial networks in layer l.
A semisupervised GANl is obtained.

end for
return semisupervised GANl l ∈ 1, . . . , L

ALGORITHM 1: We train individual semisupervised generative adversarial networks to study normal data distributions in the pretrained
target network’s hidden layers.

Input: the normal data x and the adversarial samples xadv into the pretrained network.
for each layer l ∈ 1, . . . , L do

Input: the hidden layer l into semisupervised GANl(Algorithm 1)
latentl is obtained.
errori is obtained.

end for
+e normal data x latent feature is 􏽐llatantlx and the logit vector of the target network.
+e adversarial samples xadv latent feature is 􏽐1latantlxadv and the logit vector of the target network.
We use the normal data x latent feature and adversarial samples xadv latent feature input the support vector machine classifier.
return the evaluation data’s AUROC.

ALGORITHM 2: In the supervised and partially supervised scenario, the final detection classifier is the support vector machine classifier. We
used 10% of the test set as training data and 90% as evaluation data.

6 Mathematical Problems in Engineering

the logit vector of the target network. +e GM-CGAN’s
conditional information is the label of the output of this
neural network model.

+e features we input are important for detecting
adversarial samples. In the study by Yang et al. [19], the
reconstruction error vector of the L1 norm was shown to
reflect the discrepancy between the given sample and the real
sample. +e latent feature vector’s norm reflects whether a
given sample can be generated on the data manifold. In
Figure 2, we can also view the importance of the logit norm.
+is can reduce the computational complexity and allows us
to better capture the difference information. Similar to Lee’s
[11] method, we use logistic regression classifier. +e
hyperparameters of the SVM classifier are fine-tuned.

First, similar to how Yang et al. [14] approached the
problem, we analyzed the norm and reconstruction error
information of the hidden layer’s latent feature vectors
generated from the semisupervised GAN (Figures 2 and
3). We also analyzed the joint feature information of the
norm and reconstruction error (Figure 4). Finally, we
assessed the importance of different hidden layers’ fea-
tures (Figure 5). Here, due to limited space of article, we
only present figures for the ResNet model under attack by
five methods, on the CIFAR10 dataset. +is analysis puts
forward a strong argument that the reconstruction error
and the latent norm can fully explain the data manifold,
which can help us to detect adversarial samples.

For the sake of fairness, ourmethod and themethod of Lee
et al. [11] are initialized with the same settings. In the ex-
perimental test stage of Lee et al., noisy data and adversarial
samples are generated for normal test data. Our semi-
supervised GAN obtains latent features, and then, we used
these latent features to train the supervised and unsupervised
classifiers.We used 10% of the test set as training data and 90%
as evaluation data and performed five-fold cross-validation.

3.2. Result. In Figure 2, we visualized the distribution infor-
mation of normal (green) and adversarial (red) samples
through kernel density estimation in 2D space. In the subfigure,
x-axis represents the L2 norm in the latent vector produced by
the generator and y-axis represents probability density. +ese
figures are generated for the CIFAR10 dataset, with the ResNet
model. +e adversarial samples flow through 5 semisupervised

GANs and the target network’s logit layer, and hence, there are
6 rows of subfigures. +e difference between the real sample
and the adversarial sample is obvious in the last few layers of
the neural network, especially in the logit layer.

In Figure 3, we visualized the distribution information of
normal (green) and adversarial (red) samples through kernel
density estimation in 2D space. In the subfigure, x-axis
represents reconstruction error and y-axis represents
probability density. +ese figures are generated for the
CIFAR10 dataset, with the ResNet model. +e adversarial
samples flow through 5 semisupervised GANs, and hence,
there are 6 rows of subfigures.

In Figure 4, we visualized the distribution information of
normal (green) and adversarial (red) samples through kernel
density estimation in 2D space. In the subfigure, x-axis rep-
resents the L2 norm in the latent vector produced by the
generator and y-axis represents reconstruction error. +ese
figures are generated for the CIFAR10 dataset, with the ResNet
model.+e adversarial samples flow through 5 semisupervised
GANs, and hence, there are 6 rows of subfigures.

Figure 5 presents the AUROC of the threshold-based de-
tector using the latent vector generated from the semisupervised
GAN’s generator at different basic blocks of ResNet trained on
CIFAR10 dataset and the logit vector of the target network. We
measured the detection performance using adversarial samples
produced by FGSM, BIM,DeepFool, CWL2, and PGD.We also
measured the detection performance using the entire latent
vectors generated from the semisupervised GAN’s generator
(see the last subfigure, i.e., Feature Ensemble).

To generate the results for the supervised scenarios
(Table 1), the final detection classifier is the support vector
machine classifier whose input includes all latent vectors.
For the partially supervised scenarios (Table 2), the final
detection classifier is the support vector machine classifier
whose input only includes FGSM samples.

Meanwhile, for the unsupervised scenarios (Table 3), we
used the GM-CGAN as a one-class classifier whose input
features are the reconstruction error vector, the latent vector
in the final layer of the last block group (obtained by the
semisupervised GAN), and the logit of the target network.
+e GM-CGAN’s conditional information is the label of the
target network. We train the classifier based on the training
data, which does not include any adversarial samples and
noisy samples.

Input: the normal data x into the pretrained network.
for each layer l ∈ 1, . . . , L do

Input: the hidden layer l into semisupervised GANl(Algorithm 1)
latentl is obtained.
errori is obtained.

end for
In order to reduce the amount of calculation, the GM-CGAN's input features are the reconstruction error vector in the final layer of
the last block group in the pre-trained target network, the latent vector in the final layer of the last block group in the pre-trained
target network, and the logit vector of the target network. +e GM-CGAN’s label information is the label of the output of this neural
network model.
return the evaluation data’s AUROC.

ALGORITHM 3: In the unsupervised scenario, we used 10% of the test set as training data and 90% as evaluation data.

Mathematical Problems in Engineering 7

0.6
0.5
0.4
0.3
0.2
0.1
0.0

4

Clean_data
adv_data

6 8 10 12 14

FGSM on layer 1

0.30
0.25
0.20
0.15
0.10
0.05
0.00

0

Clean_data
adv_data

20 40 60 80

FGSM on layer 7

0.20

0.15

0.10

0.05

0.00
0

Clean_data
adv_data

20 40 60 80 100 120

FGSM on layer 15

0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00

0

Clean_data
adv_data

20 40 60 80 120100

FGSM on layer 27
0.30
0.25
0.20
0.15
0.10
0.05
0.00

2 4

Clean_data
adv_data

6 8 10 12 14 16

FGSM on layer 33

0.100
0.125
0.150
0.175
0.200

0.075
0.050
0.025
0.000

0

Clean_data
adv_data

20 40 60 80 100 140120 160

FGSM on logit layer

0.30
0.25
0.20
0.15
0.10
0.05
0.00

0

Clean_data
adv_data

20 40 60 80

BIM on layer 1

0.20

0.15

0.10

0.05

0.00
0 20

Clean_data
adv_data

40 60 80 100 120 140

BIM on layer 7

0.20
0.25
0.30
0.35

0.15
0.10
0.05
0.00

0

Clean_data
adv_data

20 40 60 80 100 120

BIM on layer 15

0.30
BIM on layer 27

0.25
0.20
0.15
0.10
0.05
0.00

4

Clean_data
adv_data

6 8 10 12 14

BIM on layer 33
0.200

0.150
0.175

0.125
0.100

0.050
0.075

0.025
0.000

0 20

Clean_data
adv_data

40 60 80 100 120 140 160

BIM on logit layer

0.4
0.5
0.6

0.3
0.2
0.1
0.0

0

Clean_data
adv_data

10 15 20 25

Figure 2: Continued.

8 Mathematical Problems in Engineering

0.35
DeepFool on layer 1

0.30
0.25
0.20
0.15
0.10
0.05
0.00

0

Clean_data
adv_data

20 40 60 80

DeepFool on layer 7

0.20

0.15

0.10

0.05

0.00
0

Clean_data
adv_data

20 40 8060 100 120 140

DeepFool on layer 15

0.20

0.15

0.10

0.05

0.00
0

Clean_data
adv_data

20 40 60 80 100 120 140

DeepFool on layer 27
0.30
0.25
0.20
0.15
0.10
0.05
0.00

4

Clean_data
adv_data

6 8 10 12 1614

DeepFool on layer 33

0.200
0.175
0.150
0.125
0.100
0.075
0.050
0.025
0.000

0 20

Clean_data
adv_data

40 60 80 100 120 140 160

DeepFool on logit layer

0.2
0.3
0.4
0.5
0.6

0.1
0.0

4

Clean_data
adv_data

6 8 10 12 14

CWL2 on layer 1
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00

0

Clean_data
adv_data

20 40 60 80 100

CWL2 on layer 7

0.20

0.15

0.10

0.05

0.00
0 20

Clean_data
adv_data

40 60 80 100 120 140

CWL2 on layer 15

0.20
0.25
0.30

0.15
0.10
0.05
0.00

0

Clean_data
adv_data

20 40 60 80 100 120

CWL2 on layer 27
0.30
0.25
0.20
0.15
0.10
0.05
0.00

4

Clean_data
adv_data

6 8 10 12 14

CWL2 on layer 33
0.200

0.150
0.175

0.125
0.100

0.050
0.075

0.025
0.000

0 20

Clean_data
adv_data

40 60 80 100 120 140

CWL2 on logit layer

0.4
0.5
0.6

0.3
0.2
0.1
0.0

4

Clean_data
adv_data

6 8 10 1412

Figure 2: Continued.

Mathematical Problems in Engineering 9

3.3. Discussion. In our experiment, we utilized the PGD-100
attack. In the supervised scenario, our method performed
significantly better than that of Lee et al. Our method re-
duced the preprocessing time for input data and reduced the
total amount of calculations. We note that the Mahalanobis
distance covariance matrix must be full rank and that it
cannot handle problems on nonlinear manifolds. In the deep
layers of the neural network, the Mahalanobis distance
cannot provide a reliable measure of the distance between
the data, which mainly exist in a nonlinear form; ultimately,
the Mahalanobis distance is unstable in such situations. +e
source of this instability is the covariance matrix. In Lee’s
method, the distance between data of different network
blocks is very small compared with the distance between
high-dimensional adversarial data and the real data. Fur-
thermore, Lee’s method cannot reflect the difference be-
tween the adversarial data and the real data. In contrast, our
semisupervised GAN method maps different network block
feature data to low-dimensional space, thereby obtaining
more sample feature information. Moreover, it can over-
come the drawback of the Mahalanobis distance being
unsuitable for the determination of nonlinear data. Con-
sidering these key characteristics, it is clear why our method
achieved the best results in the supervised classification task.

We highlight that our method improved the detection of
DeepFool to above 94.68%.

For the partially supervised scenario, we used the logistic
regression classifier as the final classifier with FGSM samples.
Although it did not achieve the same effect as Lee’s method in
this scenario, our method still achieved good results. Here, we
take the ResNet model and the CIFAR10 dataset as an example
(Table 2). For BIM attacks, the detection AUROC dropped
from 98.91% to 73.19%;meanwhile, for FGSM attack detection,
the AUROCwas 99.98%.We argue that theremight be a trade-
off between performance on a fully supervised scenario (where
our method had an AUROC close to 100% in some cases) and
an ability to generalize to other attacks. In Figure 4, we find that
BIM attacks and FGSM attacks deviate from the real data and
have great inconsistencies; this is mainly manifested in the 1st,
7th, and 27th layers of the network. By the same token, theways
in which different attacks deviate from the true data are also
different. +erefore, only partial supervision is suitable for
FGSM attacks.

For the unsupervised scenario, our method performed
better than the odds-testing method [15], except for with
the PGD-100 attack. We argue that not all attack differ-
ential features are present in the last layer. +e PGD attack
consists of initializing the search for an adversarial

0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00

0

Clean_data
adv_data

10 20 30 40 50

PGD on layer 1

0.175
0.150
0.125
0.100
0.075
0.050
0.025
0.000

0

Clean_data
adv_data

10 20 4030 50 60 70

PGD on layer 7
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00

0

Clean_data
adv_data

2010 30 40 50 60 70 80

PGD on layer 15

0.30
PGD on layer 27

0.25
0.20
0.15
0.10
0.05
0.00

4

Clean_data
adv_data

6 8 10 12 1614

PGD on layer 33

0.30
0.25
0.20
0.15
0.10
0.05
0.00

0 10

Clean_data
adv_data

20 30 40 50 60 70 80

PGD on logit layer

0.2
0.3
0.4
0.5
0.6

0.1
0.0

5

Clean_data
adv_data

1510 20 25 30 35

Figure 2: Analysis of feature norms of different network layers.

10 Mathematical Problems in Engineering

0.007

FGSM on layer 1

0.006

0.005

0.004

0.003

0.002

0.001

0.000
0 500 1000 1500 2000 2500 3000

clean_data

adv_data

0.0016

0.0014

0.0012

0.0010

0.0008

0.0006

0.0004

0.0002

0.0000

FGSM on layer 7

1000 2000 3000 4000 5000 6000 7000

clean_data

adv_data

0.00035

0.00030

0.00025

0.00020
0.00015

0.00010

0.00005
0.00000

0.00040

FGSM on layer 15

10000 12000 14000 16000 18000 20000

clean_data

adv_data

0.00175

0.00150

0.00125

0.00100

0.00075

0.00050

0.00025

0.00000

FGSM on layer 27

500

0.008

0.006

0.004

0.002

0.000

FGSM on layer 33

250 500 750 1000 1250 1500 1750 20001000 1500 2000 2500 3000 3500

clean_data

adv_data

clean_data

adv_data

0.0016

0.0014

0.0012

0.0010

0.0008

0.0006

0.0004

0.0002

0.0000

BIM on layer 27

500 1000 1500 2000 2500 3000 3500

clean_data

adv_data

0.010

0.008

0.006

0.004

0.002

0.000

BIM on layer 33

250 500 750 1000 1250 1500 1750 2000

clean_data

adv_data

0.007

0.006

0.005

0.004

0.003

0.002

0.001

0.000

BIM on layer 1

500 1000 1500 2000 2500

0.0016

0.0014

0.0012

0.0010

0.0008

0.0006

0.0004

0.0002

0.0000

BIM on layer 7

1000

0.00035

0.00030

0.00025

0.00020

0.00015

0.00010

0.00005

0.00000

BIM on layer 15

10000 12000 14000 16000 18000 200002000 3000 4000 5000 6000 7000

clean_data

adv_data

clean_data

adv_data

clean_data

adv_data

Figure 3: Continued.

Mathematical Problems in Engineering 11

0.007

0.006

0.005

0.004

0.003

0.002

0.001

0.000

DeepFool on layer 1

400200 800600 1000 1200 1400 1600

clean_data

adv_data

0.0016

0.0014

0.0012

0.0010

0.0008

0.0006

0.0004

0.0002

0.0000

DeepFool on layer 7

1000 2000 3000 4000 5000 6000 7000

clean_data

adv_data

0.00025

0.00020

0.00015

0.00010

0.00005

0.00000

DeepFool on layer 15

10000 12000 14000 16000 18000 20000

clean_data

adv_data

0.0016

0.0014

0.0012

0.0010

0.0008

0.0006

0.0004

0.0002

0.0000

DeepFool on layer 27

500 1000 1500 2000 2500 3000 3500

clean_data

adv_data

0.010

0.008

0.006

0.004

0.002

0.000

DeepFool on layer 33

250 500 750 1000 1250 1500 1750

clean_data

adv_data

0.007

0.006

0.005

0.004

0.003

0.002

0.001

0.000

CWL2 on layer 7

500 1000 1500 2000 2500

clean_data

adv_data

0.0016

0.0014

0.0012

0.0010

0.0008

0.0006

0.0002

0.0004

0.0000

CWL2 on layer 7

1000 2000 3000 4000 5000 6000 7000 8000

clean_data

adv_data

0.00030

0.00025

0.00020

0.00015

0.00010

0.00005

0.00000

CWL2 on layer 15

10000 12000 14000 16000 18000 20000

clean_data

adv_data

0.0014

0.0012

0.0010

0.0008

0.0006

0.0004

0.0002

0.0000

CWL2 on layer 27

500 1000 1500 2000 2500 3000 3500

clean_data

adv_data

0.010

0.008

0.006

0.004

0.002

0.000

CWL2 on layer 33

0 250 500 750 1000 1250 1500 1750 2000

clean_data

adv_data

Figure 3: Continued.

12 Mathematical Problems in Engineering

example at a random point within the allowed norm ball,
then running several iterations of the basic iterative
method. �e PGD-100 has stronger attack performance
because of the basic iterative method. We think the per-
formance feature of PGD’s adversarial samples in the
network middle layer is more similar to those of real
samples. �e input at the end of the network is di�erent
from the real one. �e PGD-100 can attack deep neural
networks, such as ResNet-34 and DenseNet, which contain
many features. GM-CGAN contains fewer features and is
easier to be attacked by PGD-100. Because GM-CGAN is
also a classi�er based on neural network, the features in the
hidden layers space will also be attacked by PGD. It re-
duces the defensive performance of GM-CGAN. For ex-
ample, as shown in Figures 3 and 4, the most obvious
di�erence in the PGD-100 attack is in the 15th layer.
Although our method requires multiple forward propa-
gations of neural networks like the odds-testing method,
we provide a new idea for detecting adversarial samples: a
new one-class classi�er. We emphasize that our one-class
classi�er does not require any noisy data during the
training process compared with the odds-testing method,

and the training method is simple and easy to operate.
Additionally, the number of forward propagations of our
method is relatively small. �rough Figures 2–4, we �nd
that as the network layer deepens, the data distribution of
the adversarial sample deviates farther from the charac-
teristic distribution of the normal data. �e L2 norm
information of the logit can better re�ect this di�erence
than the latent vector’s norm information. Compared with
the L2 norm information, the reconstruction error can
reveal the distribution discrepancy between the adversarial
sample and the normal sample earlier, and the deeper the
network layer, the greater the discrepancy. �e combined
information of the reconstruction error and L2 norm can
also re�ect this trend. In general, the discrepancy between
the distribution of real samples and adversarial samples is
more obvious in the last few layers. In Figure 5, we an-
alyzed the detector’s performance with di�erent basic
blocks (which have di�erent latent vector characteristics).
We also analyzed the performance of the detector after the
integration of di�erent basic block features. Like in
Figures 2–4, in most instances, the discrepancy is most
obvious in the last layer. At the same time, we found that

0.0014

0.0012

0.0010

0.0008

0.0006

0.0004

0.0002

0.0000

PGD on layer 1

0 1000 2000 3000 4000

clean_data

adv_data

0.0016

0.0014

0.0012

0.0010

0.0008

0.0006

0.0004

0.0002

0.0000

PGD on layer 7

1000 2000 3000 4000 5000 6000 7000 8000

clean_data

adv_data

0.00025

0.00020

0.00015

0.00010

0.00005

0.00000

PGD on layer 15

10000 12000 14000 16000 18000 20000

clean_data

adv_data

0.0035

0.0030

0.0025

0.0020

0.0015

0.0010

0.0005

0.0000

PGD on layer 33

0 500 1000 1500 2000 2500 3000 3500

clean_data

adv_data

0.0006

0.0005

0.0004

0.0003

0.0002

0.0001

0.0000

PGD on layer 27

0 2000 4000 6000 8000 10000 12000 14000 16000

clean_data

adv_data

Figure 3: Analysis of reconstruction errors in di�erent network layers.

Mathematical Problems in Engineering 13

FGSM on layer 27 FGSM on layer 33

3000

3500

2500

2000

1500

1000

500
0 20 40 60 80 100 140120

1750
2000

1500
1250
1000

750

250
500

0 10 20 30 40 50 60 70 80

BIM on layer 27 BIM on layer 33

0 20 40 60 80 100 120 140

3000

3500

2500

2000

1500

1000

500
0 20 40 60 80

1750
2000

1500
1250
1000

750

250
500

3000
FGSM on layer 1 FGSM on layer 7 FGSM on layer 15

2500

2000

1500

1000

500

0 20 40 60 80 100 120

7000

6000

5000

4000

3000

2000

1000
0 20 40 60 80 100 120

20000

18000

16000

14000

12000

10000

4 6 8 10 12 14

BIM on layer 1 BIM on layer 7 BIM on layer 15
2500

2000

1500

1000

500

0 20 40 60 80 100 120 140

7000

6000

5000

4000

3000

2000

1000
0 20 40 60 80 100 120

20000

18000

16000

14000

12000

10000

4 6 8 10 12 14

DeepFool on layer 1 DeepFool on layer 7 DeepFool on layer 15

0 20 40 60 80 100 120 140

1400

1600

1200

1000

800

600

200

400

0 20 40 60 80 100 120 140

7000

6000

5000

4000

3000

2000

1000

20000

18000

16000

14000

12000

10000

4 6 8 10 12 14 16

0 20 40 60 80 100 140120

3000

DeepFool on layer 27 DeepFool on layer 33

2500

2000

1500

1000

500
0 20 40 60 80

1400

1800
1600

1200
1000

800
600

200
400

Figure 4: Continued.

14 Mathematical Problems in Engineering

the logit vector is signi�cant for the detection of adver-
sarial samples. In our supervised and partially supervised
experiments, we ensemble the latent feature vectors; we
believe that this treatment can provide adaptability to
di�erent adversarial attack strategies and lead to good
performance.

�is method has practical signi�cance. For example, this
method can be used in target recognition. Without modi-
fying the original neural network, this method can detect
images with adversarial perturbation. For example, if
adversarial perturbation is added to a picture of a kitten, it
may be recognized as other animals in target recognition.

4 6 8 10 12 14

18000

16000

14000

12000

10000

CWL2 on layer 1 CWL2 on layer 7 CWL2 on layer 15

0 20 40 60 80 100 120

2500

2000

1500

1000

500

0 20 40 60 80 100 120

7000

8000

6000

5000

4000

3000

2000

1000

CWL2 on layer 27 CWL2 on layer 33

3000

3500

2500

2000

1500

1000

500
0 20 40 60 80 100 140120

1750
1500
1250
1000

750

250
500

0 20 40 60 80

18000

20000

16000

14000

12000

10000

4 6 8 10 12 14 16

PGD on layer 1 PGD on layer 7 PGD on layer 15

3000

4000

2000

1000

0
0 10 20 30 40 50 60 0 10 20 30 40 50 7060

7000
6000
5000
4000
3000
2000
1000

PGD on layer 27 PGD on layer 33

0 10 20 30 40 50 7060

12000
14000

10000
8000
6000
4000

0
2000

0 10 20 30 40 50

3000
3500

2500
2000
1500
1000

0
500

Figure 4: Analysis of reconstruction errors and latent norms in di�erent network layers.

Mathematical Problems in Engineering 15

100

80

60 54.23

76.48
86.54

94.84
99.65 95.49

40

20

0
1 2 3

Index of basic block

FGSM BIM DeepFool

A
U

RO
C

(%
)

4 5 logit

100

80

60
51.35

67.15

82.88

95.11
99.59 97.84

40

20

0
1 2 3

Index of basic block

A
U

RO
C

(%
)

4 5 logit

100

80

60
50.04

55.87

71.36

83.91

99.53
90.14

40

20

0
1 2 3

Index of basic block

A
U

RO
C

(%
)

4 5 logit

CWL2 PGD Feature ensemble
100

80

60
50.13

62.21

94.57 90.94
99.23

78.37

40

20

0
1 2 3

Index of basic block

A
U

RO
C

(%
)

4 5 logit

100

80

60

80.47 84.64
93.07

98.11 99.93 99.52

40

20

0
1 2 3

Index of basic block

A
U

RO
C

(%
)

4 5 logit

100

80

60

99.98 99.86 98.66 97.89 100.0

40

20

0
FGSM BIM DeepFool

A
U

RO
C

(%
)

CWL2 PGD
Different attacks of Resnet-Cifar10

Figure 5: AUROC (%) of the threshold-based detector using the latent vector generated by semisupervised GAN’s generator at di�erent
basic blocks of ResNet trained on the CIFAR10 dataset and the logit vector of the target network. (a) FGSM. (b) BIM. (c) DeepFool. (d)
CWL2. (e) PGD. (f) Feature ensemble.

Table 1: Supervised scenarios for detecting adversarial samples.

Model Dataset Method
Supervised scenario

FGSM BIM DeepFool CW PGD

DenseNet

CIFAR10
Mahalanobis 99.94 99.78 83.41 87.31 97.79
Ours (lantent) 99.95 99.98 97.46 96.11 99.42
Ours (score) 99.98 99.93 98.54 96.13 99.34

CIFAR100
Mahalanobis 99.86 99.17 77.57 87.05 79.24
Ours (lantent) 100.00 99.86 97.22 98.01 90.35
Ours (score) 99.89 99.90 97.34 98.02 91.36

SVHN
Mahalanobis 99.85 99.28 95.10 97.03 98.41
Ours (latent) 99.95 99.85 99.25 98.65 99.49
Ours (score) 99.90 99.80 99.35 98.23 99.12

ResNet

CIFAR10
Mahalanobis 99.94 99.57 91.57 95.84 89.81
Ours (latent) 99.98 99.86 98.66 97.89 100.00
Ours (score) 99.87 99.92 98.65 98.11 98.65

CIFAR100
Mahalanobis 99.77 96.90 85.26 91.77 91.08
Ours (lantent) 99.92 99.11 94.68 97.21 99.95
Ours (score 99.93 97.91 94.34 92.34 92.34

SVHN
Mahalanobis 99.62 97.15 95.73 92.15 92.24
Ours (latent) 99.96 99.46 99.54 99.30 99.98
Ours (score) 99.65 98.34 96.54 97.56 97.45

Table 2: Partially supervised scenarios in detecting adversarial samples.

Model Dataset Method
Partially unsupervised scenario

FGSM BIM DeepFool CW PGD

DenseNet

CIFAR10
Mahalanobis 99.94 99.51 83.42 87.95 81.84
Ours (latent) 99.95 90.79 98.06 95.75 76.00
Ours (score) 99.98 92.23 96.09 97.18 78.00

CIFAR100
Mahalanobis 99.86 98.27 75.63 86.20 39.32
Ours (latent) 100.00 89.86 83.14 79.08 62.35
Ours (score) 99.89 90.15 80.19 81.09 64.15

SVHN
Mahalanobis 99.85 99.12 93.47 96.95 81.40
Ours (latent) 99.95 99.00 98.71 98.16 94.15
Ours (score) 99.90 99.01 98.29 97.18 92.16

16 Mathematical Problems in Engineering

+is method can be used to detect kitten images with anti-
interference.+is method can prevent the recognition image
from making mistakes.

4. Conclusions

Our article intends to discover the adversarial samples in
training data in order to prevent the generation of the highly
overconfident distribution in the test phase. +e proposed
method designs a semisupervised generative adversarial net-
work that is applied to the output of the hidden layers in a
neural network to detect the variation of the adversarial
samples withoutmodifying the structure of the neural network.
In the supervised scenario, the latent feature (or the dis-
criminator's output score information) of the semisupervised
GAN and the target network’s logit information are used as the
input of the external classifier logistic regression classifier to
detect the adversarial samples. In the unsupervised scenario,
first we proposed a one-class classier based on the semi-
supervised Gaussianmixture conditional generative adversarial
network (GM-CGAN) to fit the joint feature information of the
normal data and then we used a discriminator network to
detect normal data and adversarial samples. +e novel con-
tribution is that the output of hidden layers of a neural network
is analyzed without modifying the neural network.

Data Availability

+e [DATA TYPE] data used to support the findings of this
study are included within the article.

Conflicts of Interest

+e authors declare that they have no conflicts of interest.

Acknowledgments

+is work was supported by Science and Technology Project
of State Grid Zhejiang Electric Power Co., Ltd.

References

[1] D. Amodei, S. Ananthanarayanan, R. Anubhai et al., “Deep
speech 2: end-to-end speech recognition in English and
Mandarin,” in Proceedings of the International Conference on
Machine Learning, pp. 173–182, New York, NY, USA, June
2016.

[2] S. Ren, K. He, R. Girshick et al., “Faster r-cnn: towards real-
time object detection with region proposal networks,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,
vol. 39, no. 6, pp. 1137–1149, 2016.

[3] K. He, X. Zhang, S. Ren et al., “Deep residual learning for
image recognition,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 770–778, Las
Vegas, NV, USA, June 2016.

[4] K. Lee, K. Lee, K. Min et al., “Hierarchical novelty detection
for visual object recognition,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pp. 1034–1042, Salt Lake City, UT, USA, June 2018.

[5] I. Evtimov, K. Eykholt, E. Fernandes et al., “Robust physical-
world attacks on machine learning models,” vol. 2, no. 3, p. 4,
2017, https://arxiv.org/abs/1707.08945.

Table 2: Continued.

Model Dataset Method
Partially unsupervised scenario

FGSM BIM DeepFool CW PGD

ResNet

CIFAR10
Mahalanobis 99.94 98.91 78.06 93.90 100.00
Ours (latent) 99.98 73.19 96.79 95.71 100.00
Ours (score) 99.87 96.15 94.13 94.10 100.00

CIFAR100
Mahalanobis 99.77 96.38 81.95 90.96 99.85
Ours (latent) 99.92 81.18 83.32 86.63 100.00
Ours (score) 99.93 80.10 80.13 87.01 100.00

SVHN
Mahalanobis 99.62 95.39 72.20 86.73 99.92
Ours (latent) 99.96 74.89 95.97 89.65 99.96
Ours (score) 99.65 75.14 95.10 89.75 99.23

Table 3: Unsupervised scenarios for detecting adversarial samples.

Model Dataset Method FGSM
Unsupervised scenario

BIM DeepFool CW PGD

DenseNet

CIFAR10 Odds-testing 45.23 69.01 58.30 61.29 97.93
GM-CGAN 87.89 73.69 80.81 78.12 46.45

CIFAR100
Odds-testing 43.22 65.22 49.53 47.64 96.91
GM-CGAN 98.09 68.34 74.42 65.72 41.09

SVHN Odds-testing 56.14 71.11 67.81 70.71 99.25
GM-CGAN 83.35 73.56 81.86 80.16 46.40

ResNet

CIFAR10 Odds-testing 46.32 59.85 75.58 57.58 96.18
GM-CGAN 96.68 64.74 79.48 73.49 98.80

CIFAR100
Odds-testing 38.26 43.52 61.13 44.74 93.73
GM-CGAN 80.96 81.20 80.35 67.56 91.30

SVHN Odds-testing 65.09 70.31 77.05 72.12 99.08
GM-CGAN 94.97 89.04 94.71 83.41 97.52

Mathematical Problems in Engineering 17

https://arxiv.org/abs/1707.08945

[6] M. Sharif, S. Bhagavatula, L. Bauer et al., “Accessorize to a
crime: real and stealthy attacks on state-of-the-art face rec-
ognition,” in Proceedings of the the 2016 ACM SIGSAC
Conference, Vienna, Austria, October 2016.

[7] A. Madry, A. Makelov, L. Schmidt et al., “Towards deep
learning models resistant to adversarial attacks,” 2017, https://
arxiv.org/abs/1706.06083.

[8] A. Lomuscio and L. Maganti, “An approach to reachability
analysis for feed-forward relu neural networks,” 2017, https://
arxiv.org/abs/1706.07351.

[9] K. Y. Xiao, T. Vincent, N. M. Shafiullah et al., “Training for
faster adversarial robustness verification via inducing relu
stability,” 2018, https://arxiv.org/abs/1809.03008.

[10] N. Carlini, G. Katz, C. Barrett et al., “Provably minimally-
distorted adversarial examples,” 2017, https://arxiv.org/abs/
1709.10207.

[11] K. Lee, K. Lee, H. Lee et al., “A simple unified framework for
detecting outof-distribution samples and adversarial attacks,”
Advances in Neural Information Processing Systems, vol. 1,
pp. 7167–7177, 2018.

[12] X. Ma, B. Li, Y. Wang, S. M. Erfani et al., “Characterizing
adversarial subspaces using local intrinsic dimensionality,”
2018, https://arxiv.org/abs/1801.02613.

[13] W. Xu, D. Evans, and Y. Qi, “Feature squeezing: detecting
adversarial examples in deep neural networks,” 2017, https://
arxiv.org/abs/1704.01155.

[14] P. Yang, J. Chen, C.-J. Hsieh et al., “ML-LOO: Detecting
adversarial examples with feature attribution,” 2019, https://
arxiv.org/abs/1906.03499.

[15] K. Roth, Y. Kilcher, and T. Hofmann, “+e odds are odd: a
statistical test for detecting adversarial examples,” 2019,
https://arxiv.org/abs/1902.04818.

[16] N. Papernot and P. McDaniel, “Deep knearest neighbors:
towards confident, interpretable and robust deep learning,”
2018, https://arxiv.org/abs/1803.04765.

[17] J. J. Engelsma and A. K. Jain, “Generalizing fingerprint spoof
detector: learning a one-class classifier,” in Proceedings of the
2019 International Conference on Biometrics (ICB), pp. 1–8,
Houston, TX, USA, June 2019.

[18] K. Grosse, P. Manoharan, N. Papernot et al., “On the (sta-
tistical) detection of adversarial examples,” 2017, https://arxiv.
org/abs/1702.06280.

[19] I. Goodfellow, J. Pouget-Abadie, M. Mirza et al., “Generative
adversarial nets,” Advances in Neural Information Processing
Systems, vol. 27, pp. 2672–2680, 2014.

[20] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and
harnessing adversarial examples,” 2014, https://arxiv.org/abs/
1412.6572.

[21] N. Carlini and D. Wagner, “Towards evaluating the robust-
ness of neural networks,” in Proceedings of the 2017 IEEE
symposium on security and privacy (sp), pp. 39–57, IEEE, San
Jose, CA, USA, May 2017.

[22] S.-M. Moosavi-Dezfooli and A. Fawzi, “Deepfool: a simple
and accurate method to fool deep neural networks,” in
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 2574–2582, Las Vegas, NV, USA,
June 2016.

[23] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial
samples in the physical world,” 2016, https://arxiv.org/abs/
1607.02533.

[24] U. Shaham, Y. Yamada, and S. Negahban, “Understanding
adversarial training: increasing local stability of neural nets
through robust optimization,” 2015, https://arxiv.org/abs/
1511.05432.

[25] C. Szegedy, W. Zaremba, I. Sutskever et al., “Intriguing
properties of neural networks,” 2013, https://arxiv.org/abs/
1312.6199.

[26] N. Papernot, P. McDaniel, X. Wu et al., “Distillation as a
defense to adversarial perturbations against deep neural
networks,” in Proceedings of the 2016 IEEE Symposium on
Security and Privacy (SP), pp. 582–597, IEEE, San Jose, CA,
USA, May 2016.

[27] M. Jan Hendrik, G. Tim, V. Fischer et al., “On detecting
adversarial perturbations,” 2017, https://arxiv.org/abs/1702.
04267.

[28] S. Akcay, A. Atapour-Abarghouei, and T. PBreckon,
“Ganomaly: Semi-supervised anomaly detection via adver-
sarial training,” in Asian Conference on Computer Vision,
pp. 622–637, Springer, Perth, Australia, January 2018.

[29] T. Salimans, I. Goodfellow, W. Zaremba et al., “Improved
techniques for training gans,” 2016, https://arxiv.org/abs/
1606.03498.

[30] P. Isola, J.-Y. Zhu, T. Zhou et al., “Image-to-image translation
with conditional adversarial networks,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition,
pp. 1125–1134, Honolulu, HI, USA, July 2017.

[31] A. Krizhevsky, V. Nair, and Hinton, “Cifar-10 (canadian
institute for advanced research),” http://www.cs.toronto.edu/
kriz/cifar.html.

[32] Y. Netzer, T. Wang, A. Coates et al., “Reading digits in natural
images with unsupervised feature learning,” 2011, http://ufldl.
stanford.edu/housenumbers/nips2011_housenumbers.pdf.

[33] G. Huang, Z. Liu, L. Van Der Maaten et al., “Densely con-
nected convolutional networks,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pp. 4700–4708, Honolulu, HI, USA, July 2017.

[34] T. Miyato, S.-i. Maeda, M. Koyama, and S. Ishii, “Virtual
adversarial training: a regularization method for supervised
and semi-supervised learning,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 41, no. 8, pp. 1979–
1993, 2018.

[35] G. Xu, Z. Liu, X. Li, and C. Change Loy, “Knowledge dis-
tillation meets self-supervision,” in Proceedings of the Euro-
pean Conference on Computer Vision, Springer, Cham,
Switzerland, 2020.

[36] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz,
“Mixup: beyond empirical risk minimization,” 2017, https://
arxiv.org/abs/1710.09412.

[37] T. Bai, J. Luo, J. Zhao, B. Wen, and Q. Wang, “Recent ad-
vances in adversarial training for adversarial robustness,”
2021, https://arxiv.org/abs/2102.01356.

18 Mathematical Problems in Engineering

https://arxiv.org/abs/1706.06083
https://arxiv.org/abs/1706.06083
https://arxiv.org/abs/1706.07351
https://arxiv.org/abs/1706.07351
https://arxiv.org/abs/1809.03008
https://arxiv.org/abs/1709.10207
https://arxiv.org/abs/1709.10207
https://arxiv.org/abs/1801.02613
https://arxiv.org/abs/1704.01155
https://arxiv.org/abs/1704.01155
https://arxiv.org/abs/1906.03499
https://arxiv.org/abs/1906.03499
https://arxiv.org/abs/1902.04818
https://arxiv.org/abs/1803.04765
https://arxiv.org/abs/1702.06280
https://arxiv.org/abs/1702.06280
https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1607.02533
https://arxiv.org/abs/1607.02533
https://arxiv.org/abs/1511.05432
https://arxiv.org/abs/1511.05432
https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1702.04267
https://arxiv.org/abs/1702.04267
https://arxiv.org/abs/1606.03498
https://arxiv.org/abs/1606.03498
http://www.cs.toronto.edu/kriz/cifar.html
http://www.cs.toronto.edu/kriz/cifar.html
http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf
http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf
https://arxiv.org/abs/1710.09412
https://arxiv.org/abs/1710.09412
https://arxiv.org/abs/2102.01356

