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and Luiz Carlos Simões Soares Júnior1
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+is work presents a path-following controller for a unicycle robot. +e main contribution of this paper is to demonstrate the
restriction of transverse feedback linearization (TFL) to obtuse angles on piecewise linear paths. +is restriction is experimentally
demonstrated on a Kobuki mobile robot, where it is possible to observe, as a result of the limitation of the TFL, the convergence to
another domain of attraction.

1. Introduction

Mobile robot applications have significantly increased in
recent years. Following a general rule of technological
evolution, mobile robotics has increasingly prioritized au-
tonomy in relation to the environment, requiring greater
efficiency of navigation and control systems. To ensure that a
robot follows a reference path or to stabilize a robot at a
desired point, a motion control system is needed. According
to the type of reference to be followed by the mobile robot,
the motion control systems are classified into three types:

(1) Point stabilization
(2) Trajectory tracking
(3) Path following

+e objective of point stabilization is to stabilize the
robot in a certain desired position. According to [1], this
objective cannot be achieved with continuous or smooth
state feedback control laws if the robot is subject to non-
holonomic constraints. In this case, approaches such as
control laws that vary slightly in time [2] and discontinuous
and hybrid feedbacks [3] can be used. Another way to avoid

the problem of nonholonomy is the use of Frenet–Serret and
Triedro [4] to describe the state space.

In trajectory tracking, the control laws that act on the
robot must follow a parameterized law of timing associated
with the movement.

In path following, the robot converges and follows a
predefined path. +is path does not have any temporal
specification. +e robot tracks a desired speed profile, and
the controller acts on the orientation to drive the robot along
the intended path [5].

Of the three categories described above, we chose the
path-following technique for this work. In the path-fol-
lowing control, the forward speed of the robot tracks the
desired speed profile, while the controller acts on the ori-
entation of the robot in order to steer the vehicle along the
path. Usually, smoother convergence to a path is achieved
when path-following strategies are used compared with
trajectory-tracking control laws [6].

+ere are several cases in which a path-following con-
troller is appropriate for nonholonomic robotic systems,
such as Samson [7], Morro et al. [8], Pazderski [9], and
Soetanto et al. [10].
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Approach for path following is transverse feedback
linearization (TFL). +e main advantage of adopting TFL is
that the controllers guarantee path invariance. Some path-
following control techniques, such as sliding control, do not
have this property. Path invariance means that if the robot
starts with tangential velocity to the path, the robot will
remain on the path for all future time [11].

+ere are many examples in the literature of the use of
TFL to control robotics systems.

In Nielsen and Maggiore [12], the authors solve the TFL
for a car-like robot with fixed translational velocity. Akhtar
and Nielsen [13] propose a path-following controller for a
kinematic model of car-like mobile robots using TFL and
tangential dynamic extension. Akhtar et al. [14] propose a
path-following controller for a quadrotor using TFL and
tangential dynamic extension. In Hladio et al. [15], the
authors propose a path-following controller for a five-bar
robotic manipulator using TFL to put the system into a
normal form for control design. Akhtar et al. [11] propose
path-following controllers for the kinematic model of car-
like mobile robots using TFL with dynamic extension.
Dovgobrod [16] proposes an algorithm to provide a pre-
cision stabilization of a vehicle on a path. Finally, Nguyen
et al. [17] design a controller combining model predictive
control and TFL techniques.

+is article analyzes the response of TFL in relation to the
piecewise linear path and, as its main contribution, demon-
strates analytically the restriction to an obtuse path. +is
limitation is experimentally verified on a Kobuki mobile robot.

2. Problem Formulation

In this section, we demonstrate path-following controllers
for a kinematic model of a unicycle.+e following properties
of the path-following strategy are assumed:

(1) +e robot is able to plan a piecewise linear path from
the starting position to the goal position

(2) Each line segment of the path should be controlled
invariant

2.1. Kinematic Model of Robot. Consider the kinematic
model of a unicycle mobile robot shown in Figure 1:

_x1(t) � v(t)cos x3(t)( 􏼁,

_x2(t) � v(t)sin x3(t)( 􏼁,

_x3(t) � ω(t).

(1)

Here, (x1, x2) ∈ R2 represents the robot’s position in the
plane, and x3 ∈ S is the robot’s heading. +e control inputs
are the translational speed v ∈ R and the angular velocity
ω ∈ S. +e output of the system is the robot’s location in the
plane, which is given by

y(t) � Cx(t) �
1 0 0

0 1 0
􏼢 􏼣x(t). (2)

+e configuration space of (1) is X � R2 × S, and the
output space of (2) is Y � R2. It is assumed that only the
position coordinates of a robot are measured and contin-
uous updates are provided in its state vector x. +e heading
vector is defined as τ(x3) � (sin(x3), cos(x3)); its Euclidean
norm equals 1 and it points in the direction the robot is
facing Figure 1.

2.2. Workspace. +e unicycle robot model (1) operates in a
workspace W ⊂ R2.+e set W is assumed to be compact and
path-connected with a nonempty interior. +e output space
has a finite number of obstacles Oi ⊂ R2, i ∈ 1, . . . , n{ }. Each
obstacle Oi is assumed to be a closed, convex set. +e free
workspace is defined as Wfree � W\(O1 ∪O2 ∪ · · · ∪On).

+e differential drive robot moves in the environment
under the assumption that models (1) and (2) have a map of
Wfree stored in its memory, which contains two distin-
guished points pstart, pgoal ∈Wfree.

2.3. Configuration Map. In order to model the fact that the
robot is not simply a point with no area in its workspace, this
section introduces the notion of a map.

Definition 1. +ere exists a set-valued function B: ⇉ called
the configuration map that maps each configuration x ∈ X
of robot (1) to the set of all points B(x) ⊂ Y belonging to the
robot.

As depicted in Figure 1, it is assumed that the differential
drive robot has a polygonal shape. +erefore, B(x) is a
polygonal region in the plane, for B(x(t)) ⊂Wfree is nec-
essary to ensure that there are no collisions, during the
period of time in which the robot is moving from the start to
the goal position.

2.4. Path-Following Outputs for Path Planners. +e path-
following output associated to a smooth parameterized
curve σ: R⟶ Rp was defined in [18]. It consists of two
complementary objects: a transversal output and a tangential
output. +e transversal output is a smooth function
μ: U⊆Rp⟶ Rp− 1 with the property that zero is a regular
value of the function and μ− 1(0) � σ(R). +e tangential
output is a projection ϖ: U⊆Rp⟶ R which, given an
output location y ∈ U, returns the value of λ ∈ R with the
property that σ(λ) is the closest point to y on the given
curve.

+e resulting function hPF: U⊆Rp⟶ Rp, and
y↦(ϖ(y), μ(y)) is the path-following output. +is virtual
output has a clear physical meaning for path-following
control design and can be viewed as a local diffeomorphism
on the output space of the robot. In this section, keeping in
mind that the paths will be generated as a sequence of
waypoints, a procedure is presented to generate a set of
linear path-following outputs from a sequence of waypoints.

Suppose that a sample-based path planner has returned a
path from pstart to pgoal as a sequence of points in Wfree
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which is a subset of a p-dimensional real vector space Y

(because the results of this section apply equally well in
higher dimensions, we do not assume that the workspace of
our robot is a subset of R2 as in the case of the differential
drive robot). +at is, given a set p1, p2, . . . , pN− 1, pN􏼈 􏼉 with
p1 � pstart, pN � pgoal and each pi ∈ Y. To avoid trivial
cases, assume that, for each i ∈ NN− 1, pi ≠pi+1. +ese points
represent a planned path consisting of N − 1 line segments
ℓi � pipi+1 ⊂ Y, i ∈ NN− 1 of nonzero length. A path-fol-
lowing output hi

PF is associated with each line segment ℓi.
+e span of the vector pi+1 − pi ∈ Y is a 1-dimensional

subspace that is parallel to the (infinite) line passing through
the line segment ℓi. +e (p − 1)-dimensional subspaceVi �

Ker(p⊤i+1 − p⊤i ) consists of vectors which annihilate
(pi+1 − pi)

⊤. Let Vi: Vi⟶Y be the insertion map. +e
insertion map is represented by any matrix whose column
vectors form a basis for Vi relative to the given basis for Y.
Finally, denote its associated dual map by V⊤i : V′ ⟶Vi

′.
By construction, it is determined that V⊤i (pi+1 − pi) � 0. A
zero-level set representation of the affine subspace con-
taining ℓi is obtained using

di � − V
⊤
i pi, (3)

where di ∈ R
It is now claimed that ℓi ⊂ y ∈Y: V⊤i y + di � 0􏼈 􏼉. If

y ∈ ℓi, then it can be expressed as a convex combination of pi

and pi+1, i.e., y � λpi + (1 − λ)pi+1, λ ∈ [0, 1]. +erefore,

V
⊤
i y + di � λV

⊤
i pi − pi+1( 􏼁 + V

⊤
i pi+1 + di

� V
⊤
i pi+1 + di

� V
⊤
i pi+1 − pi( 􏼁

� 0.

(4)

+e set

μi(y) � V
⊤
i y + di, (5)

and so the value of the transversal part of the path-following
output associated to the line segment ℓi has been calculated.
Repeating this for each line segment, a set of pairs S �

(V⊤1 , d1), . . . , (V⊤N− 1, dN− 1)􏼈 􏼉 is generated from the set of
waypoints.

To compute the tangential part of the path-following
output associated to ℓi, a constrained optimization problem
is solved. To begin, a parametrization of ℓi is generated. Next,
li andmi are defined: li � ‖pi − pi+1‖2 andmi � (pi − pi+1)/li.
+en, the curve σi is defined as [0, li]⟶Y via
σi(λ) � miλ + pi. It follows that σi([0, li]) � ℓi. Given a point
y ∈Y, consider the constrained optimization problem.

Problem 1

minimize :
y∗

y − y
∗����
����2,

subject to : V
⊤
i y
∗

+ di � 0.

(6)

Using Lagrange multipliers, the minimizing argument is
given by

y
∗

� I − Vi V
⊤
i Vi( 􏼁

− 1
V
⊤
i􏼒 􏼓y + V

⊤
i Vi( 􏼁

− 1
di. (7)

+e value of λ∗ ∈ [0, li] for which σi(λ
∗) � y∗ can now

be computed yielding the second part of the path-following
output for line segment ℓi:

ϖi(y) � m
⊤
i y
∗

− pi( 􏼁. (8)

In summary, equations (5)–(8) define the path-following
output hi

PF(y) � (μi(y),ϖi(y)) associated to each line
segment ℓi � pipi+1. +is output happens to be a linear affine
function of y:

h
i
PF(y) �

m
⊤
i

V
⊤
i

⎡⎣ ⎤⎦y +
n
⊤
i V

⊤
i Vi( 􏼁

− 1
di − pi􏼒 􏼓

di

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦. (9)

Using the fact that m⊤i Vi � 0 to simplify notation, let
ni � m⊤i (V⊤i Vi)

− 1di − m⊤i pi; then, (9) can be written:

h
i
PF(y) �

m
⊤
i

V
⊤
i

⎡⎣ ⎤⎦y +
ni

di

􏼢 􏼣. (10)

y2 = x2

y1 = x1

x3

Figure 1: Unicycle robot.
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+e set is further defined as follows:

T � m
⊤
1 , n1( 􏼁, . . . , m

⊤
N− 1, nN− 1( 􏼁􏼈 􏼉, (11)

and then, each line segment ℓi is associated with the pairs

V
⊤
i , di( 􏼁 ∈ S,

m
⊤
i , ni( 􏼁 ∈ T.

(12)

3. Transverse Feedback Linearization

Consider the differential drive robot configurations (1) and
(2). Assume that the robot’s translational speed v is a fixed
positive constant. In addition, as in Section 2, a sample-
based path planner has returned a path from pstart to pgoal as
a sequence of points p1, p2, . . . , pN− 1, pN􏼈 􏼉 in Wfree ⊂ R2.
Following the construction of Section 2.4, the sets S and T

are known. +en, for each i ∈ NN− 1, the robot’s path-fol-
lowing output is given by

y
i
PF ≔ h

i
PF(Cx) �

m
⊤
i C

V
⊤
i C

⎡⎣ ⎤⎦x +
ni

di

􏼢 􏼣. (13)

+e path-following manifold of ℓi is the largest con-
trolled invariant set containing the lift of the path

Γi � x ∈ X: V
⊤
i Cx + di � 0􏼈 􏼉. (14)

It is verified that y belongs to the line that contains ℓi if
and only if x ∈ Γi. Of course, Γi is not controlled invariant: if
the robot is initialized on ℓi but with τ(x3(0)) parallel Γi toVi,
then the robot must leave the set before possibly returning to
the set. From a planning point of view, such behaviors are
obviously undesirable because they could lead to large de-
viations from the planned path and therefore collisions.

+e direction in which the robot travels along the line
depends on its initial conditions, which determine which
component Γi∗ (Γ

i
(∗ ,+) or Γ

i
(∗ ,− )) the robot approaches. In the

path-planning framework, the robot must move in a pre-
scribed direction along each segment ℓi.+is ensures that the
robot always approaches Γi(∗ ,+) so that it moves in the
correct direction.

+e path-following manifold of the line σi(λ) � niλ + pi,
λ ∈ R, with respect to the differential drive robot (1) and (2)
is given by a union of disjoint closed sets:

Γi∗ � Γi(∗ ,+) ∪Γ
i
(∗ ,− ), (15)

where

Γi(∗ ,+) � x ∈ Γi: V
⊤
i τ x3( 􏼁, x3 � arg v2 − jv1( 􏼁􏽮 􏽯, (16)

Γi(∗ ,− ) � x ∈ Γi: V
⊤
i τ x3( 􏼁, x3 � arg − v2 + jv1( 􏼁􏽮 􏽯, (17)

and V⊤i � v1 v2􏼂 􏼃. Furthermore, dist(Γi(∗ ,+), Γ
i
(∗ ,− )) � π,

where dist(A, B) � inf ‖a − b‖| a ∈ A, b ∈ B{ }.

Sets (16) and (17) are disjoint because x3 ∈ S, and set
(15) is closed because its complement is open. +e com-
plement is given by Γc � Rp\Γ � y ∈ Rp: V⊤i Cx + di ≠ 0􏼈 􏼉

and the empty set is open by definition.
Γ∗ is the controlled invariant set. Physically, it consists

of all motions of the unicycle robot (1) for which the output
signal (2) can be made to remain on the curve σi.

To prove, it is necessary to show that V⊤i Cx + di has a
well-defined relative degree.

Proof. Let

ξi
k �

ξi
1

ξi
2

⎡⎢⎣ ⎤⎥⎦ �
V
⊤
i Cx + di

V
⊤
i τ x3( 􏼁

⎡⎣ ⎤⎦. (18)

Recall v(t) ≠ 0; the denominator of control (20) goes to
zero if and only if x3 � arctan(x2/x1). However, this con-
dition is not allowed on Γ∗ . Suppose, by contradiction, that
this occurs. +en, because ξ1 � ξ2 � 0,

cosx3 sinx3

− sinx3 cosx3
􏼢 􏼣

x1

x2
􏼢 􏼣 � 0, (19)

is nonsingular. Because V⊤i Cx + di � 0, it is not possible for
x1 � x2 � 0. +e function ξk yields a well-defined relative
degree n∗ � 2, where n∗ � dim(Γ∗ ). □

If the input u: � ω, the feedback controller can be
expressed mathematically as follows:

u �
− k
⊤
i ξ

i
k

V
⊤
i Rπ/2τ x3( 􏼁

, (20)

where Rπ/2 �
0 − 1
1 0􏼢 􏼣 and ki ∈ R2

≥ 0.

Controller (20) is well defined on the open set
X\ x ∈ X: arg(ej(x3− x+

3 )) � (π/2)􏼈 􏼉, the feedback controller
will result in a closed-loop system whose trajectories ap-
proach Γi∗, and therefore, the output y will approach the line
σ(λ).

4. Supervisory Control of TFL Path-
Following Controllers

As shown in Section 3, on each line segment ℓi, controller
(20) drives the robot to its path-following manifold. +is
section describes how the robot is switched from one line
segment to the next and also how the convergence to Γi(∗ ,+)

is ensured.
Let ηi

1 � m⊤1 Cx + ni. +is tangential state describes the
robot’s position on ℓi. When ηi � 0, the closest point to the
robot’s output on the path defined by p1, . . . , pN− 1􏼈 􏼉 is pi.
When ηi

1 � li, the closest point is pi+1. With this in mind, the
algorithmic state machine shown in Figure 2 is used to
supervise our path-following controllers.
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In state i, the robot’s control signal is given (10) by
(V⊤i , di) ∈ S and (m⊤i , ni) ∈ T. +e supervisory control
monitors how far the robot is from the next waypoint. When
that distance is sufficiently small, controller (20) changes its
parameters to (V⊤i+1, di+1) ∈ S, (m⊤i+1, ni) ∈ T.

In principle, controller (20) can use a different set of
gains ki ∈ R2

≥ 0 on each line segment. However, as the next
proposition shows, a single set of gain values is chosen to
ensure that the robot transitions from Γi(∗ ,+) to Γ

i+1
(∗ ,+) and

thus moves in the correct direction along the paths.

Proposition 1. With respect to system (18), a set U+
i is

defined by

U
+
i � x ∈ X: arg e

j x3− x+
3( )􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
<
π
2

􏼚 􏼛, (21)

where x+
3 � arg(v2 − jv1) is positively invariant if controller

(20) is used with

k
⊤
i � k1 k2􏼂 􏼃, with k2 >

���

4k1

􏽱

. (22)

Proof. +e Laplace transform is used to prove the existence of
a domain of attraction for the system under analysis. +ose
domains of attraction, shown in Figure 3, are defined for Γ∗ as

U
+
i � x ∈ X: arg e

j x3− x+
3( )􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
<
π
2

􏼚 􏼛,

U
−
i � x ∈ X: arg e

j x3− x−
3( )􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
<
π
2

􏼚 􏼛.

(23)

It can be stated that path following is an output zeroing
problem. +erefore, it is necessary to show that
ξ2(t)≤ ξ2(0),∀t≥ 0.

ξ2 can be described as follows:

ξ2 � V
⊤
i

����
����‖τ(x)‖cos ϕ. (24)

If ‖V⊤i ‖ is normalized so that it is equal to 1, ‖τ(x)‖ � 1;
therefore, it can be deduced that ξ2 � 0 if and only if
ϕ � ± (π/2). If ϕ � kπ for k ∈ N. +ere is a singularity
because, in this case, ξ2 � ± 1.

For this case, it is sufficient to prove that ξ2(t)≤ ξ2(0),
see Figure 4

_ξ1 � ξ2, (25)

_ξ2 � − k1ξ1 − k2ξ2. (26)

From expression (25),

_ξ2 + k2
_ξ2 + k1 􏽚

t

0
ξ2(τ)dτ � 0. (27)

Developing the above differential equation using the
Laplace transform yields the following:

s􏽢ξ2 − ξ2(0) + k2
􏽢ξ2 � −

k1

s
􏽢ξ2,

L ξ2􏼈 􏼉 � 􏽢ξ2,

s + k2 +
k1

s
􏼠 􏼡 􏽢ξ2 � ξ2(0),

􏽢ξ2
s
2

+ k2s + k1

s
􏼠 􏼡, � ξ2(0),

􏽢ξ2 �
sξ2(0)

s
2

+ k2s + k1
,

􏽢ξ2
ξ2(0)

�
s

s
2

+ k2s + k1
�

skw
2
n

s
2

+ 2εwns + w
2
n

.

(28)

+erefore, if w2
n � k1, ε � (k2/2

��
k1

􏽰
) and k � (1/w2

n); if
ε> 1, there exist two real poles:

G(s) �
skab

(s + a)(s + b)
,

ξ2(t) �
d
dt

kab

b − a
e

− at
− e

− bt
􏼐 􏼑ξ2(0)􏼒 􏼓􏼒 􏼓,

ξ2(t) �
kab

b − a
− ae

− at
+ be

− bt
􏼐 􏼑ξ2(0).

(29)

Recall k � (1/k1) � (1/ab):

ξ2(t) �
1

b − a
− ae

− at
+ be

− bt
􏼐 􏼑ξ2(0). (30)

+erefore, if k2 >
���
4k1

􏽰
, |ξ2(0)|> |ξ2(t)| and U+ is pos-

itively invariant, ξ2(t, ξ0) ∈ U+,∀t≥ 0.
Because the transversal proportional controller is given

by

v
⋔
(ξ) � − k

⊤ξi
, (31)

v⋔(0), ξ � 0 is an equilibrium point of the closed-loop
transversal system. As a consequence, path invariance is
achieved, meaning that if the robot is initialized in the path,
it will remain in the path at all future points. □

+us, any initial condition in U+
i results in trajectories

that approach Γi(∗ ,+), assuming the gains in (20) are chosen
properly.

1 2 3 N – 1

|η1
1 – l1| < ε |η1

2 – l2| < ε 

Figure 2: State diagram of the supervisory controller.

Mathematical Problems in Engineering 5



5

10

15

20

25

30

35

40

45

Desired path
Path followed by the robot

0 10 20 30 40 50

Figure 5: TFL response to the obtuse angle path.

Desired path
Path followed by the robot

30.8

30.6

30.4

30.2

30

29.8

29.6

29.4

29.2

29
24 24.5 25 25.5 26

Figure 6: TFL response to the obtuse angle path.

Singularity line

x3

π

Singularity line

–π

x3
+

x3
–

u+

u–

x1, x2

Figure 3: Domains of attraction.

π
πx3

+
x3

x3
––π

–1

1

0

ξ2

Figure 4: ξ2 vs.x3.

1

1 1.5

0.5

0.5

0

0

–0.5

–0.5

–1

–1

Desired path
Path followed by the kobuki robot

Figure 7: Experimental TFL response to the obtuse angle path.

6 Mathematical Problems in Engineering



As a result when the supervisory control switches at time,
from state i to state i + 1, the controller will cause the robot
to traverse the path in the desired direction so long as

x(T) ∈ U+
i ∩U

+
i+1. (32)

Because controller (20) exponentially stabilizes Γi∗, it is
reasonable to assume that x(T) ∈ Γi(∗ ,+) or is very close to it.
As such, the next result says that if the robot is traversing
segment ℓi in the correct direction, it will continue to tra-
verse ℓi+1 in the desired direction if Γi(∗ ,+) ∩U

+
i+1 ≠∅.

5. Results and Conclusion

In this section, simulation results dealing with the TFL and
experiments on Kobuki mobile robot are presented. +e
limitation of the TFL is illustrated by showing the robot’s
inability to follow paths with obtuse angles.

In order to demonstrate the robot’s inability to correctly
follow a path with obtuse angles, a control was implemented
to follow the points [0 1; 25 30; 40 10] whose distance be-
tween them is Euclidean. +e angle between the yellow and
red straight segments is 102.37∘, and the robot’s initial state
was x0 � (0, 1, (π/4)). As a result, a convergence to another
attraction domain was observed; consequently, the robot
followed the opposite trajectory, as shown in Figure 5. In this
figure, the red straight segment indicates the desired path
and the purple straight segment indicates the path followed
by the robot.

Circles were drawn at each point. +e radius of these
circles, ε � 0.5, defines the path switching area; if the robot
gets close enough as to the target point, the controller can
then guide the robot through the next path. Such a transition
can be observed in Figure 6.

Tests were performed on a robotic platform called
Kobuki, made by Yujin Robot. It is controlled by an em-
bedded Raspberry Pi 3 microcontroller running ROS (Ro-
botic Operational System). Matlab software on a second
computer was used to run the TFL controller, which

communicated with the robot through an IEEE 802.11
wireless network.

+e Kobuki mobile robot was asked to follow a set of
points whose distance is Euclidean between them. To
demonstrate the robot’s inability to follow an obtuse path,
points [(0, 0), (0.5, 0), (0.45, 1)] were selected as the robot’s
path, with the initial position given by x0 � (0, 0, 0) and the
gains given by k1 � 2 and k2 � 2.84. As expected, the robot
followed another attraction domain, as shown in Figure 7.

On the contrary, when the trajectory has only acute
angles, the robot remains on the path. Figure 8(a) shows that
the robot remains on the desired path Figure 8(b) and
follows it. +e initial position is given by x0 � (0, 0, 0); the
points followed by the robot were (0, 0), (1, 0), (2, 1), and
(3, 1.25); the gains were given by k1 � 2 and k2 � 2.84.

In this paper, a path-following controller has been
designed for a Kobuki mobile robot, using transverse
feedback linearization for piecewise linear paths. +e re-
striction of TFL was demonstrated using a kinematic model
of a unicycle mobile robot. It has been shown that when the
path has obtuse angles, the robot follows another domain of
attraction, making the TFL unfeasible in these cases.
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