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In this article, we present new integral inequalities for refined (e, h — m)-convex functions using unified integral operators (12)

and (13). The established results provide the refinements of several well-known integral and fractional integral inequalities.

1. Introduction

Convex functions are important in diverse fields of math-
ematics, statistics, engineering, and optimization. Especially
in the formation of inequalities, they play a very vital role. In
the subject of mathematical analysis, inequalities provide a
significant contribution in developing classical concepts and
notions. For example, inequalities well known as Cau-
chy-Schwarz inequality, Chebyshev inequality, Minkowski
inequality, Hadamard inequality, and Jensen inequality are
utilized frequently in pure and applied mathematics. It is
always a challenge to extend, generalize, and refine such
inequalities by considering new classes of functions. In this
era, researchers are working on classical inequalities con-
cerning fractional integral and derivative operators. It can be
observed that the Hadamard inequality is studied more for
many kinds of fractional integral and derivative operators
than any other classical inequality, see [1-7] for more details.
The aim of this paper is to study the refinements of
Hadamard and other integral inequalities recently studied in
[8-11]. The consequences of these inequalities also provide
refinements of fractional integral inequalities connected
with the integral inequalities studied in the recent past.
The article is organized as follows. In Section 2, we
suggest some preliminaries. In Section 3, the bounds of
unified integral operators are given using refined

(&, h — m)-convex functions. These are the refinements of
bounds already obtained in the literature. In Section 4, some
applications of the main results are given in the form of
fractional integral inequalities and their refinements.

2. Preliminaries

In this section, we give definitions of different kinds of
convex functions and integral operators which will be useful
in formulating the results of this paper. Throughout the
paper, all the functions are assumed to be real-valued
functions until specified.

Definition 1 (see [12]). A function Q is called convex if
Qtx] + (1= 1)y;) <tQ(x) + (1 = HQ(yy), (1)
holds for all x;, y; € ICR and t € [0,1].

Definition 2 (see [1]). A function Q is called (s, m)-convex if
for each x, y; € [0,v]<R, we have

Qtx; +m(1-)y)) <t'Q(x)) +m(1-1)°Q(y)), (2)

where t € [0,1] and (s,m) € [0,1]%
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Definition 3 (see [13]). A function Q is called (a, m)-convex
if for each x|, y; € [0, v]CR, we have

Qtx] +m(1-t)y)) <t"Q(x)) +m(1 - t)Q(y)), (3)

where (a,m) € [0,1]* and ¢ € [0, 1].

Definition 4 (see [4]). Let h: ] — R is a function with
h=0 and (0,1)¢J. A function Q is said to be
(h —m)-convex, if Q,h>0 and for each x|, y; € [0,V]CR,
we have
Q(tx; +m(1 - t)y]) <h(OQ(x]) + mh(1 - )Q(y1),
(4)

where m € [0,1] and t € (0, 1).

Definition 5 (see [4]). Let h: ] — R is a function with
h=0 and (0,1)¢J. A function Q is said to be
(&, h — m)-convex, if Q, h > 0 and for each x|, y; € [0, V<R,
we have

Qtx; +m(1-1)y)) <h(t)Q(x1) + mh(1 - t)Q(y)),
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Definition 6 (see [14]). Let h: ] — R be a function with
h=0 and (0,1)¢J. A function Q is called refined
(a,h —m)-convex function, if Q,h>0 and for each
x1, y1 € [0,v]CR, we have

Qtx; +m(1-1)y)) <h(t)h(1 - %) (Q(x]) + mQ(y1)),
(6)

where (a,m) € (0,1]* and t € (0,1).

Inequality (6) gives refinements of several types of
convexities when 0 < h(t) <1, see [14].

The need for integral operators in the study of fractional
derivatives is of immense importance. In the recent era,
integral operators are being used extensively for producing
new results in the literature. For references, see [2, 4-6].
Next, we give some fundamental integral operators which
are used in this paper.

Definition 7 (see [15]). Let Q € L, [x1, y;] and A be positive
and increasing function having a continuous derivative on
(x1, y1). The left and right fractional integrals of Q with
respect to A on [x;, y;] of order x are given by

(5)
where (a,m) € [0,1]? and t € (0, 1).
“1..Q ! XA AE)IA (HQ (1)t !
1,000 = g5 [ A@- 207N a0, x>,
, (7)
1,0 )—Ljyl (A() - A)IA (DD, x<y!
aly2alX TT(x) )« X o X<V

where I'(.) is the gamma function and R (x) > 0.

Definition 8 (see [16]). Let Q € L, [x1, y;] and A be positive
and increasing function having a continuous derivative on

(x1, y1). The left and right k-fractional integrals of Q with
respect to A on [x;, y;] of order x are given by

- Q(x) = kr#(x) J (A(x) - A@) PN (HQ (D, x> x], (8)
k X

« 1 n (IR)—1 01 '

AL 00 = s | @w-sen e mamd <, (9)

where T (.) is the k-gamma function and R (), k > 0.

Definition 9 (see [17]). Let Q € L, [x1, y;] and x € [x], y,],
also let

(ey,t?,k,t

.
.
60,8,0,x

1 xl

!

Y1
y:8.k,1 . _ _
(% 0)ep = | -

0,608,901 € C,R (), R (a), R(E)>0,R()>R(y)>0
with p>0,8>0, and 0 <k<§ + R (x), then theéeneralized
fractional integral operators ezilg; +Qand e:’lx’ f’; . Q) are
deﬁnedby 206,8,0,X 20,8,0,y

Q) (x;p) = jx, (x - t)“ilEZ:i]g” (o(x—1)% p)Q(t)dt,

(10)

R (0 (- %) p)Q(Ddt,

(R
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where Ezzlg' (t; p) is the extended generalized Mittag-Lefller
function defined as

Definition 10 (see [16]). Let Q, A be real-valued functions
defined over [x;, y;] with 0 < x, < y{, where Q is positive and
integrable and A is differentiable and strictly increasing.

00 _ n
Ez’z”g"(t;p) = Z Pp VT QR O t . (11) Also, let Y/x be an increasing function on [x;,00) and
v o Phimy) Tn+a) (§), o0, &y,1€C,p,x,620, and 0<k<d+x. Then, for
x € [x}, 1], the left and right integral operators are defined
as

Yy, 0k * Sk
(sFirika) eoip) = [ P(ELE, M)A (DR, (12

Y.k I bk
(A[FK,;fy,l,Q>(x, o p) = L Ty(ELE A Y)A (1) ()dy, (13)

where

PUERE A Y) =

Kog >0

Mittag-Leftler functions give several fractional integrals
by assigning particular choice to the parameters involved in
it, see Remarks 6 and 7 in [16].

3. Main Results
Throughout the paper, we use the following notation:
j; h(u*)h(1-u")A (x —u(x - x;))du = Hfl (u”; b, A).
(15)

Y,y,0.k,1 ) . < Y,y,0,k,t
F Q) (x,0;p) +( AF "
( ( P +(a 98.8,y;

AT kB, v

A(x)-A(y)

(0 (A(x) = A p)- (14)

(X3

Theorem 1. Let Q be a positive, refined (a, h — m)-convex
and integrable function defined over (x|, y,]. Also, let Y/x be
an increasing function defined on [xi, y;] and A be strictly
increasing and differentiable function on (xi, y;). Then, for
B.&y,1 € R, p,x,9,020,0<k<d+x and 0<k<d+79, the
following result holds:

Q) (x.0: p)

< J;"I(Eijgj’g", A; Y)(Q (x]) + mQ(%)) (x - x)H™ (u®; h, A) (16)

X JOuke,t X a
+ ]J’11<Eg)ﬁ)f ,A;Y)(Q(yl/) + mQ(a» (y; - X)Hy (v h, A).

Proof. For the functions Y/x and A, the following inequality
holds:
(BSE ) O < (S N 0. (7

Using refined (a, h — m)-convexity of Q, one can have

awsh((Z5) W(1-(25) Y(awn-ma(Z)).

(18)

From (17) and (18), we have the following integral
inequality:
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x ’
J T Y )8 wawde < T EGEL 4 ) (@ (x) + mo( D))

S PO s
x) X — X X — X

Using (12) of Definition 10 on the left side of inequality ~ t/x — x; on the right-hand side of the above inequality, we
(19) and making change of the variable by setting u = x —  obtain

(19)

Y,p,0.k, X bkt o X
(sF7250) oos pr < P B 45X ) (e = D)D) +m )

) (20)
x j B () (1 - u®)A (x - u(x - x!))du.
0
Thus, we obtain
Y,y,0.k, .
(A[Fk,/s,e,y’;ﬂ> (x,0:p)
(21)
< T(BLRE A ) (= x)( QD)+ mO(20) ) (x = X HE (s ),
t—x \" f—x\" , X
Also, for t € (x, ;] and x € (x;, y;), we can write Q(t)sh((yl, - x> )h<1 _<)’1' - x> >(Q()’1) +m9<%))~
(B A )y o <5k e )a @, @) (23)
From (22) and (23), we have the following integral
and inequality:

Nl sk x [ oSk x
L J; <Egﬁ£ ,A;Y)A’ HQ(Hdt s]y,l(Eg’ﬁ)E ,A;Y)(Q(yl')+m0(%))

(24)
i t _ o t _ o
[ WO o
x J1— X Y= X
Using (13) of Definition 10 on the left-hand side and
making change of the variable by setting v = t — x/y| — x on
the right-hand side of the above inequality, we obtain
Y, y,0,k.t X WOkt X
(AFS’;&}/{Q) (x,0;p) < ]}"1<Eg,ﬂ,£ A Y)(Q ()/1') + mQ<a>) (yl' - x)
(25)

X J; h(v)h(1=v)A" (x +v(y; — x)dv
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Therefore,

1.0k,
(sF2ek0) (xosp)
(26)
x L0,k X . N
SIyi(%,ﬂ,f >A§Y)<Q(y{) + mg)(;))(y{ - x)Hy (v'; h, A).

Combining (21) and (26), the required inequality (16) is ~ Theorem 2. Under the assumptions of Theorem 1, if
obtained. Hence, the proof is completed. 0<h(t) <1, then the following result holds:
Next, we give the refinement of Theorem 1. O

Y50,k 1,0.k,1
(M%giy;ﬁ) (x,0;p) +<Aﬂ:§g)5’y';0> (x,0;p)

<ri(Eig A (06D +mo( ) (e ) s )

X ,Ouk,t X . a
" Ui(Eg,ﬁ,z ’A?Y)<Q(J’{) + mQ(;)) (y1 = x)H}, (v*; b, A) (27)
q ,6,]{,1 ’l . X ; '
<J (Ez,ﬁ,s 24 Y) (x - x{)<9(x{)H§ (u*;h,A) + mQ<a>H§ (1-u*h, A))

x .0k, i ’ X [« X x o
" ],1(33,,3,5 ,A;Y) (y! —x)(Q(yl)Hy; (v 1, A) +mQ<E>Hy;(1 VR, A)).

Proof. From (18) and (23), one can see that, for 0 <h(t) <1,

(28)

onemlo- (525 )

Hence, by following the proof of Theorem 1, one can  Corollary 1. Under the assumptions of Theorem 1, (16) gives
obtain (27). Hence, the proof is completed. O  the following result:
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(FL3250) s p) + (SFLIH Q) (.0 p)
X ] / / x xi(, Q.
< (yg@ A Y) (x—xl)(Q(x1)+mQ(a>>Hx (U b, A) (29)
w7 (EPR ALY ) (y] = x)(Q(y)) + mQ( =) \H (v b, A)
Y1 "’ﬁvf > yl yl m N1 [ !
Now, we give the refinement of Theorem 5 in [9] in the =~ Corollary 2. The following inequality for refined
following corollary. (h — m)-convex function holds:
(A[Fiﬁﬁ’ki )(x,ff P)+< ;ﬁyfk’ )(x,a;p)
X) 05kt !
(1 (Eyﬁ’g,A Y)(Q(x1)+mQ( ))(A(x)— (x]))
5B ) (Q01) +ma( ) ) (A(y) - AG) IRl (30)
9.8 )1 m )1 0
<(7( B Ay )(Qx]) + m( ) ) (A (x) - A(x))
S\ \ T 1 m 1
75 (R A ) (Q(p)) +ma ) (A (y)) - Ax) )l
i 98 > 1 m Y1 0

Proof. Using a=1 and he L [0
inequality (30).

,1] in (27), we obtain
O

Remark 1

(i) For Y (x) = x"*T (an)/kTy (ar), ar>k>0 with
p = w = 0, inequality (16) coincides with Theorem
10 in [18]

(ii) For k=1 along with the conditions of (i), in-
equality (29) coincides with Theorem 6 in [18]

(iii) For A as identity function along with the conditions of
(i), inequality (29) coincides with Theorem 5 in [14]

(iv) For A as identity function and k = 1 along with the
conditions of (i), inequality (29) coincides with
Theorem 1 in [14]

(v) For h(t) =t and m =1 = a, inequality (16) coin-
cides with Theorem 4 in [19]

(vi) For h(t) =t and m = 1 = a, inequality (29) coin-
cides with Corollary 1 in [19]

(vii) For h(t) =t and m =1 = a along with the con-
ditions of (i), inequality (29) coincides with The-
orem 3.1 in [20]

(viii) For h(t) <1/+/2 along with the conditions of (iv),
inequality (29) coincides with Theorem 2 in [14]

(ix) For h(t) =t and m =1 = « along with the con-
ditions of (iii), inequality (29) coincides with
Corollary 8 in [14]

(x) For a = 1and h(t) = t along with the conditions of
(iii), inequality (29) coincides with Corollary 14 in
(14]

(xi) For h(t) =t° and «a = 1 along with the conditions
of (iii), inequality (29) coincides with Corollary 15
in [14]

(xii) For h(t) = t and a = 1 along with the conditions of
(iii), inequality (29) coincides with Corollary 16 in
(14]

(xiii) For h(t) =t and m =1 = « along with the con-
ditions of (iv), inequality (29) coincides with
Corollary 1 in [14]

(xiv) For « = 1 and h (t) = t along with the conditions of
(iv), inequality (29) coincides with Corollary 2 in
(14]

(xv) For h(t) =t° and «a = 1 along with the conditions
of (iv), inequality (29) coincides with Corollary 4 in
(14]

(xvi) For h(t) =t and a = 1 along with the conditions of
(iv), inequality (29) coincides with Corollary 5 in [14]

By using 0<h(t) <1 and making different choices of
functions /1 and A and the parameters in (16), one can get the
refinements of many well-known inequalities for different
classes of convex functions which are mentioned in Remark
3 in [9].

Next, we give a lemma which we will use in the proof of
upcoming Theorem 3.
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Lemma 1. Let Q: [0,00)— R be a refined  Proof. Since Q is refined (&, h — m)-convex, then following
(a,h —m)-convex function. If Q(x)=Q(x;+y —x  inequality holds:

/m),x € [x],y]], and m € (0,1], then the following in-

equality holds:

x|+ ¥, 1 21
Q(T)sh<?>h( 2a )(m+1)Q(x). (31)

Q(M) < h(%)h(#)
2 2 2

! ! ! ! ! ! ! ! ! !
x[Q(x, xl!yl,+ y[l x,x{)+mQ<(x x1/y xl)x1+(y1 x/y, xl))’l)] (32)
Y1—% 1= m
sh(%)h(z—;lxg(x) + m0<w>>
2 2 m
Using Q (x) = Q(x; + y; — x/m) in the above inequality, (ii) For 0 < h(t) <1, (31) gives refinement of Lemma 1 in
we obtain (31). This completes the proof. O (9]

Remark 2.
Theorem 3. Under the assumptions of Theorem 1, the fol-
(i) For h(t)=t and m=a =1, (31) coincides with lowing result holds for Q(x) = Q (x| + y| — x/m):
Lemma 1 in [19]

1 X1t
U2 (12 m+ D\ 2
X((A[F;ﬂy,ﬁ'kf )(xl,o p)+ ( ;g;;“ )(}’LU;P))
<(sma) (o p) + (s E0) Gl p) (33)
<(yi- x{)<0(y{) + mQ(%))[I(EE‘;?A )H;%(v“;h,A)

+]"‘(Ezg’g‘,A Y)H"' (b, A)]

Proof. For the kernel defined in (14) and function A, the o x\® e x\" X!
following inequality holds: Q(x) < h<<7‘,> >h<1 —(%) )(Q(yl’) + mQ(J))
Y1~ * Y- X m
]"I(Egg?,A Y)A’ (x)g]"l(Egg’g‘,A Y)A'(x), x € (x, ) (35)
(34) From (34) and (35), we have the following integral
i lity:
Using refined («, h — m)-convexity of ), we have tnequatty

/(g a)ocon cos <55 ax) (a0 +ma( )

;V,l AN AN
XJ h<<x, xl,) >h<1—<x, xl,) )A'(x)dx.
X, Yi— X Yi— X

(36)




Using (13) of Definition 10 on the right-hand side and
making change of the variable by setting v = x — x,/y, — x;
on the right-hand side of the above inequality, we obtain

50,k
(sFy2ek10) (xtoo: p)
<1"3(E%&"" A'Y)( ) a0+ mo ) Vi o5 1 a)
=7\ FopE > V1 1 Y1 m V5 A).

(37)

'

I\ TeBE T

X1

!
Y1

X
x)

Using (12) of Definition 10 on the left-hand side and
making change of the variable on the right-hand side of the
above inequality, we obtain

.05kt
(sF22510) (v p)
!
1 okt AL X 1
< ];,1<E{M JA; Y) (y) - x{)<Q(y{) + mQ(Wi»H}‘(v ihA).
(40)

Now, using Lemma 1, we can write

1

Y1 ’
J ]x,<EV,6,k,t A; Y)A’ ()Q(x)dx < ];}<Ey,6,k,L

)0 sma ()

h(( x,'xl,) )h(l —( x,_xl,> )A' (x)dx.
Yi— X% Yi— X

Mathematical Problems in Engineering

The following inequality also holds true for x € (xi, y;):
];II<EZ:;§:§”, A; Y)A' (x) < ]ii(EZ‘;’g’ A; Y>A' (x).  (38)

From (35) and (38), the following integral inequality is
obtained:

(39)

’ x|+ Y X 3.kt
L, Q< 2 yl)];(Eg;ﬁ;’; Y (e

1 2% -1 " X ke o l
< h(2—>h<2—> ona ) [ (EE AN (00 (9dx,

1

(41)

which by using (13) of Definition 10 gives the following
integral inequality:

h(12%)h (2% = 1/2%) (m + 1)
,7,0,k,1
< <A[F]9{,/;’,E,y;*0> (x1,0;p).

Again, using Lemma 1, we can write

! !
o) (st ) o

1 2% -1 N T )
< h(?>h<z—“> mew [ (B 7)o (o010

(43)

1

! !
X1+ ) Y.p.0.k,
7 ><A[F9)ﬁy>&yil 1) (x1,0:p)

(42)

which by using (12) of Definition 10 gives the following

fractional integral inequality:

! !
X1+ )

h(172%)h (2% = 1/2%) (m + 1)

Y,y,8,k,
<(uFYI20) (o p).

Y,y,8,k,1
() o)
(44)
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Inequality (33) will be obtained by using (37), (40), (42),  Theorem 4. Under the assumptions of Theorem 3, if
and (44). 0<h(t)<1, then the following refinement holds:
The following theorem is the refinement of Theorem 3. [

1 Q x +y
h(12%)R (2% = 1/2%) (m + 1)

x<< [F;ﬁy;kf ) X1, 0; p)+(A Zg?;l ) V1,0 P))
(1/2“) + mh 2 -1/2%) Q<xll ; yl)
w((sFE28) (o) + (FX850) o )

< (aFgera) (ehoip) +(aFypesie) (s p) (45)

<(ni- x{)<9(y{) * mn(%))[ﬂ(fsgg';m >Hy (v h,A)
T (ELSE A ) (5, 0)]

< (i =) (7B a0 ) + 7 EgE 8 Y))
A T R ) Er Ear )

Proof. From (35), one can see that, for 0<h(t) <1,

(=) P0G Joo (i)
Sh((yxl_ : )) (i) + mh(l —<yx1 _’2))9(2)

Hence, by following the proof of Theorem 3, one can  Corollary 3. Under the assumptions of Theorem 3, (33) gives

(46)

obtain (45). This completes the proof. O  the following result:
1 xll + )’1’ <( Y,y,0,kt ) [
h(12%)h (2% = 1/2%) (m + 1)0( 2 ) aFgey 1) (105 p)
6kt Skt 6kz !
*( [F:gfy >( no; P)> < Y;sys : )("1"’ p)+ ( Zggy >(y1,0;p) (47)

Y1

<2(yi- x1)<9()/1) + mQ( 1>>JXI<EZ?§[’ A; Y)H;i (Vs b, ).
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Now, we give the refinement of Theorem 6 in [9] in the
following corollary.

1 Q(xl’ +y ((AU:Y,y,ﬁ,k:L
W (1/2) (m + 1) 2 Koy

Mathematical Problems in Engineering

1 xI, + yll Y,y,0.k. ro. Y, y,0,k. o
Sh(l/Z)(I’}’l+ 1) Q( ) <<A[FK_%5,},’{Q> (xb a; P) +<AFK,%E’X’1+1>(J/1>0" P))

< ( N Q) (x),0:p) +< FYroki ey

KBEY, AN kBEyy

Corollary 4. The following inequality for refined
(h — m)-convex function holds:

1) (et p) + (P15 ) (oo )

) (y105p) (48)

' xq X} 3kt ’ /
<2( 201 +mo %) {8 7) (0D - A,

<2( 201 +mo %) (58 7) (0D - Al

Proof. For h € L[0,1] and a =1 in (45), one can obtain
(48). O

Remark 3

(i) For h(t) = tandm = 1 = «, inequality (33) coincides
with Theorem 5 in [19]

(ii) For h(t) = tand m = 1 = «, inequality (47) coincides
with Corollary 2 in [19]

By using 0<h(t) <1 and making different choices of
functions / and A and the parameters in (33), one can get the

KBy

refinements of many well-known inequalities for different
classes of convex functions which are mentioned in Remark
5 of [9].

Theorem 5. Let Q, A be differentiable functions such that
|Q'| is refined (o, h — m)-convex and A be strictly increasing
over [x1, y|] and differentiable over [x], y,]. Also, Y/x be an
increasing function on [x|, y|] and ,&,y,1 € R, p,x,9,8>0,
0<k<8+x and 0<k<8+9. Then, for x € (x,y,), we
have

( AFCTOEQ A) (x,0; p) +< aFarer Qs A) (x,0; p)‘

< P 80 ) G- ) (100 (ei)| + e () ) ) (49)

L0,k X
+ 1B Y ) O = (0 D]+ e ()] )3, 045, ),

where

(JZZ’f’y'f’iQ " A) (x,0p) = J , ]Q(EV‘;’,; A; Y)A’ (HQ' (B)dt,
PS>V x| B>

(50)

» ,
(A[F;{’ﬁ{gﬁjg " A) (x, 05 p) = J J;‘(Egj,‘ij’g’ A Y)A’ (HQ' (B)dt.

Proof. Using refined (a, h — m)-convexity of [Q!]| over
[x}, y;] implies
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following inequality:

| (t)lsh(( i
X — x,

—h(( x—t’
X — X

!

P W(r-(Z5) Y cor o (2)

Absolute value property implies the following relation:

) J(1-(Z25) Yo remfer(2)

)sQ’ (t)

- h((xx—_;;>a>h(l '(xx—_;;>a>(|9' Dl (7))

From (17) and the second inequality of (52), we have the

J. (e

S W=

X — x;

>A’ (O (Hdt < ]jl(

which leads to the following fractional integral inequality:

< FOroki o o A

AT ey

x) 0.kt
g];(EZ’ﬁ’E ,

)0 p)

7,6,
Ex,ﬁ,

) it (2)

t,) )A’ (t)dt,

A; Y) (x- x{)(]ﬂ' (x1)] + m'Q(%)l)Hf‘(u'x; h,A).

Also, inequality (17) and the first inequality of (52) give
the following fractional integral inequality:

Y,y,0,k,1
F " Q
(A (RS

V>0,

> - ]?(EK,;;,,:

«4) (0 p)

Again, using refined (e, h — m)-convexity of |Q'| over

! ! .
[x1, 1], we can write

and

t—x
I_

1

ot ({5 Mo

t—x
!

yi— X

LA Y) (x - xl')<|Q' (x)] + m‘Q'(%)DHf‘ (u;h,A).

) Yol ) o),

11

(51)

(52)

(53)

(54)

(55)

(56)
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() JC-Grs) Yol Gl e onn) s
i (L) W) ol )

From (22) and the second inequality of (57), the fol-
lowing fractional integral inequality is obtained:

(57)

+ (1))

(sFigiyina)esoip)

(58)
L0k, X
<I5(Bg 0 ) 01 = 019 O]+ mfe ()] )3, 045, ),

and (22) and the first inequality of (57) give the following
fractional integral inequality:

Y,y,0,k,1 .
(sFageyyes) waip
(59)

X ,0,K,1 ! ! ! ! X X o
> - 7B A ) 0 - ) (10 0 +m‘Q (;)DH%(V 1, ).

Inequality (49) will be obtained by using (54), (55), (58), = Theorem 6. Under the assumptions of Theorem 5, if

and (59). Hence, the proof is completed. 0<h(t) <1, then the following refinement holds:
Next, we give refinement of Theorem 5 in the following
theorem. O

.0,k Q% p,8,k,1
(A[Fzﬁy‘&ykk,ﬂ * A) (x,0;p) +<A[F;/?E,yf, . ,A) (x, 0 p)l

< (BR800 ) e =19 e+l () s, )
Ny *
+ T By ) - )(J )] + ml“(;)DHii(V‘x;h’A)

(60)

<P 8 ) (e - ) (1 (eI s )

+m‘Q/<£>
m

! ! X o ! X
<10 (Dl (07, A)+m‘0 ()

H5 (1 - u*h, A)) = ]i;(Egj;ff”, A; Y) (y1-x)

Hyfl(l—‘l/ ,h,A))

Proof. From (51), one can see that, for 0<h(t) <1,
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(K
() Yo it emn{a-(3) o

Hence, by following the proof of Theorem 5, one can
obtain (60). This completes the proof. O

( Zg;kiQ*A>(x o; p)+<

X L0kt
<Jx (Eiﬁf VA Y) (x - xl’)(lﬂ’ (x1)] + m‘Q'

o Iy (Bl ) 0 -

Yy5kt
&y,

(10 o)+ e

13

=) Yol mler(Z))

(61)

Corollary 5. Under the assumptions of Theorem 5, (49) gives
the following result:

Qh) (o p)‘
<%>|>H§ (u®; b, A) (62)

(2

The following corollary presents the refinement of  Corollary 6. The following inequality for refined
Theorem 7 in [9]. (h — m)-convex function holds:
Y,y,0,k,t Yy(Sk:
(A[Fx,ﬁ,f, +Q*A>(x,0 p)+< 985y, 10*g>(x,0 p)‘
[]"(Ezg’g A:; Y) (A(x) - A(x{))<|0’ ()| + m’Q’(%)D
15 (Bl 0 ) (A ) = a )19 )]+ e ()] )i (63

<[ () o a il Gl ()

AN
+ Ty (B

Proof. For he L [0,1] and a=1 in (60), we obtain
(63). O

Remark 4
(i) For h(t) = tandm = 1 = «, inequality (49) coincides
with Theorem 6 in [19]
(ii) For h(t) = tand m = 1 = «, inequality (62) coincides
with Corollary 3 in [19]

By using 0<h(t)<1 and making different choices of
functions /1 and A and the parameters in (49), one can get the
refinements of many well-known inequalities for different

)(A (1) - A(X))<|Q yl)l + le

)|) e

classes of convex functions which are mentioned in Remark
6 of [9].

4. Inequalities for Fractional Integral Operators

In this section, we present the bounds of some of the
fractional integral operators which will be deduced from the
results of Section 3.

Proposition 1. Under the assumptions of Theorem 1, the
following result holds:
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r (ﬁ)((ﬁlx;+(2) (x) + (ﬁlyl,o) (x))
<(A(x)-A (x{))ﬂ”(o (x]) + mQ(%)) (x — x)HS (u; b, A)

(00N =) (20 +ma(Z)) (4] - ), (b ),
(64)

Proof. For Y(t) =tf,$>0, and p=0 =0 in the proof of
Theorem 1, we obtain (64). O

Proposition 2. Under the assumptions of Theorem 1, the
following inequality holds:

F([S)((x;+IYQ> (x) +(y;+IYQ> (x)>
<Y (x-x)( Q) +mo(2)) J: B () (1 - u®)du

+Y(ri-0)(00h +mo(2)) j; (Y (1= v")dv,
(65)

Mathematical Problems in Engineering

Proof. Using A as identity function with 0 = p =0 in the
proof of Theorem 1, we obtain the required result. O

Corollary 7. For Y (t) = F(ﬁ)tﬁ/k/kfk (B) with >k and
p=0=0, (12) and (13) reduce to the fractional integral
operators (8) and (9), which satisfy the following upper bound:

kT, (B) [(’21;;+Q> (x) +<ﬁ1§;+()> (x)]

< (A(x) - A(xl'))“‘”"‘l(a(x;) ¥ mQ(%)) (x — x))H (u; b, A)

(66)

(00D =26) " () +ma(2)) (4] - x)Hy (4 h.0).

Remark 5. For 0<h(t) <1, (66) gives refinement of Cor-
ollary 8 in [9].

Corollary 8. Using Y (t) = t# and A as identity function for
B>1 along with p =0 =0, (12) and (13) give fractional in-
tegral B +1Q(x) and B IQ(x) defined in [15], which satisfy
the folldwing upper bound:

r(ﬁ)((ﬁzxro (x)> (x) +(§1y;+9> (x))
< (== () +mo(2)) j: B () (1 - u*)du

+(y - x)ﬂ(Q(yl') + mﬂ(%)) J; h(v*)h(1 = v)dv.

(67)

Corollary 9. Using Y (t) = F(ﬂ)l‘ﬁ/k/kl",< (B) and A as iden-
tity function along with p = 0 = 0, (12) and (13) reduce to the

fractional integral operators ﬁI%Q(x) and ﬂI%Q(x) given
in [21], which satisfy the following upper bound:

(/31;;9) (x) +(’31§,{Q) (x)

(68)

Remark 6. For 0<h(t)<1, (68) gives refinement of Cor-
ollary 10 in [9].
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Corollary 10. For k = 1in Corollary 9, the following upper
bound for Riemann-Liouville fractional integral is
satisfied:

(ﬁzx;n) (x) +(ﬁ‘1y;+9) (%)< %ﬁ) [ (x- xl')ﬁ(Q (1) + mg(%))
x J;h(u)ah(l —u®)du + (y] - x)ﬁ(ﬂ(y{) + mﬂ(%))

x J;h(v"‘)h(l - v”’)dv].
(69)

Remark 7. For 0<h(t)<1, (69) gives refinement of Cor-
ollary 11 in [9].

Similar bounds can be obtained for Theorems 3 and 5,
which we leave for the reader.

5. Conclusions

This article is about the bounds of unified integral operators
via refined (a, h — m)-convexity. The obtained results are the
refinements of some already published results. Moreover,
some deducible fractional integral operators and their re-
lated bounds are also given.
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