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*e main outcome of this paper is to introduce the notion of orthogonal gauge spaces and to present some related fixed-point
results. As an application of our results, we obtain existence theorems for integral equations.

1. Introduction

Fixed-point theory is a very important tool for proving the
existence and uniqueness of the solutions to various
mathematical models, such as integral and partial differ-
ential equations, optimization, variational inequalities, and
approximation theory. Fixed-point theory has also gained
considerable importance in the recent past after the famous
Banach contraction theorem [1]. Since then, there have been
many results related to mappings satisfying various types of
contractive inequalities [2–5]. Recently, Gordji et al. [6]
introduced an exciting notion of the orthogonal sets after
which, orthogonal metric spaces were introduced. *e
concept of a sequence, continuity, and completeness has
been redefined in this space. Further, they gave an extension
of the Banach fixed-point theorem on this newly described
shape and also applied their theorem to show the existence of
a solution for a differential equation, which cannot be ap-
plied by the Banach fixed-point theorem.

On the other hand, many definitions and theorems in the
literature do not require that all of the properties of a metric

hold true. In the last decades, many concepts of generalized
metrics (as controlled and double controlled metrics) have
been introduced (see [7, 8]).

Gauge spaces are characterized by the fact that the dis-
tance between two points may be zero even if the two points
are distinct. For instance, Frigon [9] and Chis and Precup [10]
gave a generalization of the Banach contraction principle on
gauge spaces. In the same direction, many interesting results
have been raised obtained by different authors in [11–17]. In
2013, Ali et al. [18] ensured the existence of fixed points for an
integral operator via a fixed-point theorem on complete gauge
spaces. In 2012, Wardowski [19] gave a new type of con-
tractions, named as F-contractions, and established new re-
lated fixed-point results. *is contraction type nicely
generalizes the most famous Banach contraction condition.
Later on, many researchers worldwide generalized this result
(see [20–24]).

To give the ongoing research a new direction, we have
combined the above statements in two directions of re-
search. For this, we apply the concept of orthogonality in
gauge spaces and investigate the existence of solutions of
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integral equations through the fixed-point theorem on or-
thogonal complete gauge spaces.

2. Preliminaries and Basic Definitions

First, we include some basic definitions and theorems which
are useful to understand the results presented in this paper.

Wardowski [19] introduced the familyF of all functions
F: (0,∞)⟶ R so that

(F1 ): for all η1, η2 ∈ (0,∞) with η1 < η2, we have
F(η1)<F(η2)
(F2): for each positive sequence Kn􏼈 􏼉, limn⟶∞Kn � 0
iff limn⟶∞F(Kn) � − ∞
(F3): there is k ∈ (0, 1) so that limK⟶0+ F(K) � 0

*e following are elements in F:

(i) Fα(υ) � ln(υ) for υ> 0
(ii) Fβ(υ) � υ + ln(υ) for υ> 0

(iii) Fc(υ) � − 1/
�
υ

√
for υ> 0

Further, Wardowski [19] introduced F-contractions and
the related fixed-point theorem in the following way.

Theorem 1 (see [19]). Let (X, d) be a complete metric space
and let T: X⟶ X be an F-contraction mapping, that is,
there are F ∈ F and τ > 0 so that for all
ς, υ ∈ X, d(Tς, Tυ)> 0 implies

τ + F(d(Tς, Tυ))≤F(d(ς, υ)). (1)

=en T admits a unique fixed point in X.

Minak et al. [25] generalized this result as follows.

Theorem 2 (see [25]). Let (X, d) be a complete metric space
and T: X⟶ X be a self-mapping. Suppose that there are
F ∈ F and τ > 0 so that

τ + F(d(Tς, Tυ))≤F max d(ς, υ), d(ς, Tς), d(υ, Tυ),
d(ς, Tυ) + d(υ, Tς)

2
􏼨 􏼩􏼠 􏼡, (2)

for all ς, υ ∈ X, with d(Tς, Tυ)> 0. If F or T is continuous,
then T admits a unique fixed point.

Now, we explain the notion of a pseudometric.

Definition 1 (see [26]). Let X be a nonempty set. A function
d: X × X⟶ [ 0,∞ ) is said to be a pseudometric on X if
for all ϱ, ρ, σ ∈ X:

(i) d(ϱ, ϱ) � 0
(ii) d(ϱ, ρ) � d(ρ, ϱ)
(iii) d(ϱ, σ)≤ d(ϱ, ρ) + d(ρ, σ)

Example 1. Denote by X � C[ 0,∞ ),R ) the set of con-
tinuous real-valued functions f: X⟶ Rwith t0 ∈ [ 0,∞ ).
*is point t0 then induces a pseudometric on X defined as
d(f, g) � |f(t0) − g(t0)| forf, g ∈ X.

In 2017, Gordji et al. [6] initiated the notion of an or-
thogonal set (or o-set).

Definition 2 (see [6]). Let X≠∅ and ⊥ be a binary relation
defined on X × X. *e pair (X,⊥) is called an orthogonal set
(or an o-set), if

∀y ∈ X y⊥x0( 􏼁

or ∀y ∈ X x0⊥y( 􏼁.
(3)

*e element x0 is said to be orthogonal. An orthogonal
set may have more than one orthogonal element.

Example 2 (see [6]). Let X � Z. We write that ϱ⊥ ρ if there
is k ∈ Z so that ρ � kϱ. Note that 0⊥ϱ for each ϱ ∈ Z.
Hence, (X, ⊥) is an o-set.

Definition 3 (see [6]). Let (X,⊥) be an o-set. Any two el-
ements ϱ, ρ ∈ X are said to be orthogonally related iff ϱ⊥ ρ.

Definition 4 (see [6]). Let (X,⊥) be an o-set. A mapping
Γ: X⟶ X is said to be ⊥-preserving if for all orthogonally
related elements ϱ, ρ, we have Γ(ϱ)⊥Γ(ρ).

Definition 5 (see [6]). Let (X,⊥) be an orthogonal set.
ϱn􏼈 􏼉n∈N is said to be an orthogonal sequence (briefly, an
o-sequence) if

∀n, ϱn⊥ϱn+1( 􏼁

or ∀n, ϱn+1⊥ϱn( 􏼁.
(4)

3. Orthogonal Gauge Space

*e simplest way of defining an orthogonal gauge space is
that the gauge space defined on an o-set is called an or-
thogonal gauge space. *e precise discussion is given below.

Let (X,⊥) be an o-set and d: X × X⟶ [ 0,∞ ) be a
pseudometric on X, then (X, d,⊥) is said to be an or-
thogonal pseudometric space (or an o-pseudometric space).

Example 3. Let X � C( [ 0,∞ ),R ) be the set of continuous
real-valued functions f: X⟶ R with t0 ∈ [ 0,∞ ). *is
element induces an orthogonal pseudometric on X defined
by d(ϱ(t), ρ(t)) � |ϱ(t0) − ρ(t0)| for ϱ(t), ρ(t) ∈ X and the
orthogonality on X is given as ϱ⊥ ρ iff ϱ(t)ρ(t)≥ ϱ(t) or
ϱ(t)ρ(t) ≥ ρ(t).

Definition 6. Let (X, d,⊥) be an orthogonal pseudometric
space. *en, the orthogonal d-ball (or d-ball) of radius μ> 0
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and centered at σ ∈ X is the set B(σ, d, μ) �

ξ ∈ X: d(σ, ξ)< μ􏼈 􏼉.
Note that when we say that d is an o-pseudometric on X,

it means that (X,⊥) is an o-set and d is a pseudometric onX.

Definition 7. A familyM � dλ: λ ∈ U􏼈 􏼉 of o-pseudometrics
on X is said to be separating if for each pair (ϱ, ρ) such that
ϱ ≠ ρ, there is dλ ∈M with dλ(ϱ, ρ)≠ 0.

Definition 8. Let M � dλ: λ ∈ U􏼈 􏼉 be the family of
o-pseudometrics on X. *en, the topologyT(M) having as
a subbasis the set of balls

β(M) � B ϱ, dλ, ε( 􏼁: ϱ ∈ X, dλ ∈M, ε> 0􏼈 􏼉 (5)

is said to be the topology induced by the set M of
o-pseudometrics. *e pair (X,T(M),⊥) is called an or-
thogonal gauge space.

Definition 9. Let (X,T(M),⊥) be an orthogonal gauge
space with respect to the family M � dδ: δ ∈ U􏼈 􏼉 of
o-pseudometrics on X.

(i) An orthogonal sequence υn􏼈 􏼉 converges to υ ∈ X if

∀ε> 0,∃n0 ∈ N so that dδ υn, υ( 􏼁< ε, ∀n≥ n0,∀δ ∈ U.

(6)

(ii) An orthogonal sequence υn􏼈 􏼉 is Cauchy if

∀ε> 0,∃n0 ∈ N so that dδ υm, υn( 􏼁< ε, ∀m, n≥ n0,∀δ ∈ U.

(7)

(iii) (X,T(F),⊥) is an o-complete gauge space iff each
Cauchy o-sequence in (X,T(F),⊥) converges to
an element of X.

(iv) A subset of X is called closed if it contains the limit
of each convergent o-sequence.

4. Fixed-Point Results on Orthogonal
Gauge Structure

In this section, we study the existence of fixed points for a
mapping satisfying certain conditions on an orthogonal
gauge structure. *roughout this article, U is a directed set

and X is a nonempty o-set with an orthogonal element (say
ωa) and also endowed with a separating o-complete gauge
structure dλ: λ ∈ U􏼈 􏼉 of o-pseudometrics.

Theorem 3. Let X be a nonempty o-set endowed with a
separating o-complete gauge structure dλ: λ ∈ U􏼈 􏼉 of
o-pseudometrics. Let T: X⟶ X be a mapping with F ∈ F
and τ > 0 so that

α(x, y)≥ 1⇒τ + F dλ(Tx, Ty)( 􏼁≤F aλdλ(x, y)(

+ bλdλ(x, Tx) + cλdλ(y, Ty) + eλdλ(x, Ty)

+ Lλdλ(y, Tx)􏼁,

(8)

for all x, y ∈ X with x⊥y and for each λ ∈ U, whenever
dλ(Tx, Ty)≠ 0 for λ ∈ U, where

aλ, bλ, cλ, eλ, Lλ ≥ 0 and aλ + bλ + cλ + 2eλ � 1 for all
λ ∈ U. Further, assume that

(i) T is ⊥-preserving
(ii) =ere is an element ω0 ∈ X with ω0⊥Tω0 and

α(ω0, Tω0)≥ 1
(iii) For each x, y ∈ X with x⊥y and α(x, y)≥ 1, we

have α(Tx, Ty)≥ 1
(iv) For any o-sequence ρn􏼈 􏼉 in X such that

α(ρn, ρn+1)≥ 1 for each n≥ 1 and
ρn⟶ ρ as n⟶∞, we have α(ρn, ρ)≥ 1 and ρn⊥ρ
for each n≥ 1

=en, T possesses a fixed point.

Proof. Due to (ii), there is ω0 ∈ X with ω0⊥Tω0 and
α(ω0, Tω0)≥ 1, and by considering (iii), we get
α(Tω0, T2ω0)≥ 1. Moreover, we have Tω0⊥T2ω0, since T is
⊥-preserving. Repetition of the same arguments implies
α(Tnω0, Tn+1ω0)≥ 1 and Tnω0⊥Tn+1ω0 for each n ∈ N.
Consider ωn � Tnω0 for each n≥ 1. *en we say that ωn􏼈 􏼉 is
an o-sequence with α(ωn,ωn+1)≥ 1 for each n≥ 0. Also, note
that if there is some m0 ∈ N so thatωm0

� ωm0+1, then ωm0
is a

fixed point of T. *us, we assume there does not exist any
such a natural number. As ω0 ∈ X with ω0⊥ω1 and
α(ω0,ω1)≥ 1, then from (8), we have

τ + F dλ ω1,ω2( 􏼁( 􏼁 � τ + F dλ Tω0, Tω1( 􏼁( 􏼁

≤F aλdλ ω0,ω1( 􏼁 + bλdλ ω0, Tω0( 􏼁 + cλdλ ω1, Tω1( 􏼁 + eλdλ ω0, Tω1( 􏼁 + Lλdλ ω1, Tω0( 􏼁( 􏼁

� F aλdλ ω0,ω1( 􏼁 + bλdλ ω0,ω1( 􏼁 + cλdλ ω1,ω2( 􏼁 + eλdλ ω0,ω2( 􏼁 + Lλ.(0)( 􏼁

≤F aλdλ ω0,ω1( 􏼁 + bλdλ ω0,ω1( 􏼁 + cλdλ ω1,ω2( 􏼁 + eλ( 􏼁 dλ ω0,ω1( 􏼁 + dλ ω1,ω2( 􏼁( 􏼁

� F aλ + bλ + eλ( 􏼁dλ ω0,ω1( 􏼁 + cλ + eλ( 􏼁dλ ω1,ω2( 􏼁( 􏼁, forall λ ∈ U.

(9)

Since F is strictly increasing, from above we get

dλ ω1,ω2( 􏼁< aλ + bλ + eλ( 􏼁dλ ω0,ω1( 􏼁 + cλ + eλ( 􏼁dλ ω1,ω2( 􏼁,

(10)

that is,

1 − cλ − eλ( 􏼁dλ ω1,ω2( 􏼁

< aλ + bλ + eλ( 􏼁dλ ω0,ω1( 􏼁, for all λ ∈ U.
(11)
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Since aλ + bλ + cλ + 2eλ � 1, we have

dλ ω1,ω2( 􏼁< dλ ω0,ω1( 􏼁, for all λ ∈ U. (12)

Now, from (9), we have

τ + F dλ ω1,ω2( 􏼁( 􏼁≤F dλ ω0,ω1( 􏼁( 􏼁, for all λ ∈ U. (13)

Also, we know that ω1⊥ω2 and α(ω1,ω2)≥ 1. From (8),
we get

τ + F dλ ω2,ω3( 􏼁( 􏼁 � τ + F dλ Tω1, Tω2( 􏼁( 􏼁

≤F aλdλ ω1,ω2( 􏼁 + bλdλ ω1, Tω1( 􏼁 + cλdλ ω2, Tω2( 􏼁 + eλdλ ω1, Tω2( 􏼁 + Lλdλ ω2, Tω1( 􏼁( 􏼁

� F aλdλ ω1,ω2( 􏼁 + bλdλ ω1,ω2( 􏼁 + cλdλ ω2,ω3( 􏼁 + eλdλ ω1,ω3( 􏼁 + Lλ.(0)( 􏼁

≤F aλdλ ω1,ω2( 􏼁 + bλdλ ω1,ω2( 􏼁 + cλdλ ω2,ω3( 􏼁 + eλ( 􏼁 dλ ω1,ω2( 􏼁 + dλ ω2,ω3( 􏼁( 􏼁

� F aλ + bλ + eλ( 􏼁dλ ω1,ω2( 􏼁 + cλ + eλ( 􏼁dλ ω2,ω3( 􏼁( 􏼁, for all λ ∈ U.

(14)

Since F is strictly increasing, again from above we get

dλ ω2,ω3( 􏼁< aλ + bλ + eλ( 􏼁dλ ω1,ω2( 􏼁 + cλ + eλ( 􏼁dλ ω2,ω3( 􏼁,

(15)

that is,

1 − cλ − eλ( 􏼁dλ ω2,ω3( 􏼁< aλ + bλ + eλ( 􏼁

dλ ω1,ω2( 􏼁, for all λ ∈ U.

(16)

As aλ + bλ + cλ + 2eλ � 1, thus we have

dλ ω2,ω3( 􏼁<dλ ω1,ω2( 􏼁. (17)

Now, from (14), we have

τ + F dλ ω2,ω3( 􏼁( 􏼁≤F dλ ω1,ω2( 􏼁( 􏼁. (18)

By the obtained inequalities, we get

F dλ ω2,ω3( 􏼁( 􏼁≤F dλ ω1,ω2( 􏼁( 􏼁 − τ

≤F dλ ω0,ω1( 􏼁( 􏼁 − 2τ, for all λ ∈ U.

(19)

Working on the same steps, we conclude that

F dλ ωn,ωn+1( 􏼁( 􏼁≤F dλ ω0,ω1( 􏼁( 􏼁 − nτ,

for each n ∈ N and for all λ ∈ U.
(20)

Letting n⟶∞ in (20), we get
limn⟶∞F(dλ(ωn,ωn+1)) � − ∞ for all λ ∈ U. *us, by
property (F2), we have limn⟶∞dλ(ωn,ωn+1) � 0∀ λ ∈ U.
Let (dλ)n � dλ(ωn,ωn+1) for all λ ∈ U and for each n ∈ N.
Using (F3), there is η ∈ (0, 1) so that

lim
n⟶∞

dλ( 􏼁
η
nF dλ( 􏼁n( 􏼁 � 0, for all λ ∈ U. (21)

From (20), we have

dλ( 􏼁
η
nF dλ( 􏼁n( 􏼁 − dλ( 􏼁

η
nF dλ( 􏼁0( 􏼁≤ − dλ( 􏼁

η
nnτ

≤ 0, for each n ∈ N and λ ∈ U.
(22)

Letting n⟶∞ in (22), we get

lim
n⟶∞

n dλ( 􏼁
η
n � 0, for all λ ∈ U. (23)

*is implies that there is n1 ∈ N with n(dλ)
η
n ≤ 1 for each

n≥ n1 and for all λ ∈ U. *us, we have

dλ( 􏼁n≤
1

n
1/n, for each n≥ n1 and λ ∈ U. (24)

To ensure that ωn􏼈 􏼉 is a Cauchy o-sequence, take
m, n ∈ N with m> n> n1. Using (24) and triangular in-
equality, we have

dλ ωn,ωm( 􏼁≤ dλ ωn,ωn+1( 􏼁 + dλ ωn+1,ωn+2( 􏼁 + · · · + dλ ωm− 1,ωm( 􏼁

� 􏽘
m− 1

i�n

dλ( 􏼁i≤ 􏽘
∞

i�n

dλ( 􏼁i≤ 􏽘
∞

i�n

1
i
/1η, for all λ ∈ U.

(25)

*e series 􏽐
∞
i�n 1/i1/n is convergent, so

limn,m⟶∞dλ(ωn,ωm) � 0 for all λ ∈ U. It yields that ωn􏼈 􏼉 is
a Cauchy o-sequence. Since X is o-complete, there is ω∗ ∈ X

so that ωn⟶ É∗ as n⟶∞. By (iv), we have α(ωn,ω∗)≥ 1
and ωn⊥ω∗ for each n ∈ N. We now claim that
dλ(ω∗, Tω∗) � 0 for all λ ∈ U. On contrary, suppose that

4 Mathematical Problems in Engineering



there is λ0 ∈ U with dλ0(ω
∗, Tω∗)> 0, then there exists

n0 ∈ N such that dλ0(ωn+1, Tω∗)> 0 for each n≥ n0. Now,
note that we haveωn,ω∗ ∈ Xwith α(ωn,ω∗)≥ 1,ωn⊥ω∗, and
dλ0(Tωn, Tω∗)> 0 for all n≥ n0. *en, from (8), we get

τ + F dλ0 Tωn, Tω∗( 􏼁􏼐 􏼑≤F aλ0dλ0 ωn,ω∗( 􏼁􏼐

+ bλ0dλ0 ωn, Tωn( 􏼁 + cλ0dλ0 ω∗, Tω∗( 􏼁 + eλ0dλ0 ωn, Tω∗( 􏼁 + Lλ0dλ0 ω∗, Tωn( 􏼁􏼑, for all n≥ n0.
(26)

*is implies that

dλ0 Tωn, Tω∗( 􏼁< aλ0dλ0 ωn,ω∗( 􏼁 + bλ0dλ0 ωn, Tωn( 􏼁 + cλ0dλ0 ω∗, Tω∗( 􏼁 + eλ0dλ0 ωn, Tω∗( 􏼁 + Lλ0dλ0 ω∗, Tωn( 􏼁, for all n≥ n0.

(27)

*us, by considering the triangular property and (27),
we have for each n≥ n0

dλ0 ω∗, Tω∗( 􏼁≤dλ0 ω∗,ωn+1( 􏼁 + dλ0 ωn+1, Tω∗( 􏼁

� dλ0 ω∗,ωn+1( 􏼁 + dλ0 Tωn, Tω∗( 􏼁

<dλ0 ω∗,ωn+1( 􏼁 + aλ0dλ0 ωn,ω∗( 􏼁 + bλ0dλ0 ωn,ωn+1( 􏼁 + cλ0dλ0 ω∗, Tω∗( 􏼁

+ eλ0dλ0 ωn, Tω∗( 􏼁 + Lλ0dλ0 ω∗,ωn+1( 􏼁.

(28)

At the limit n⟶∞, one obtains

dλ0 ω∗, Tω∗( 􏼁≤ cλ0 + eλ0􏼐 􏼑dλ0 ω∗, Tω∗( 􏼁<dλ0 ω∗, Tω∗( 􏼁.

(29)

It is a contradiction, so dλ(ω∗, Tω∗) � 0 for all λ ∈ U. As
X is separating, we obtain ω∗ � Tω∗. □

Example 4. Let X � D([0, 100],R) be the collection of all
twice differentiable real-valued functions. Take the metric

dn(x, y) � maxt∈[0,n]|x(t) − y(t)| (30)

for each n ∈ 1, 2, 3, . . . , 100{ }. For x, y ∈ X, consider
x⊥y⇔xy � 0. Let T: X⟶ X be defined by

Tx( t ) �

x(t)

3
+
d2x(t)

dt
2 , x(t)≥ 0∀t,

dx(t)

dt
, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(31)

Given α: X × X⟶ [ 0,∞ ) as

α(x, y) �
1, x, y both are constant or linear functions,

0, otherwise.
􏼨

(32)

Suppose that x, y ∈ X with x⊥y and α(x, y) � 1. *en
x and y are both constant functions with at least one of them

is the zero function. Say x � 0 and y≠ 0. *en, we have the
following two cases:

Case 1: for x � 0 and y> 0, we have Tx � 0 and
Ty � y/3.*us, dn(Tx, Ty) � y/3 and dn(x, y) � y for
each n ∈ 1, 2, 3, . . . , 100{ }.
Case 2: for x � 0 and y< 0, we have Tx � 0 and Ty � 0.
*us, dn(Tx, Ty) � 0 and dn(x, y) � − y for each
n ∈ 1, 2, 3, . . . , 100{ }.

Take aλ � 1 and bλ � cλ � eλ � Lλ � 0 for all λ ∈
1, 2, 3, . . . , 100{ }. *en

α(x, y)≥ 1⇒dλ(Tx, Ty)≤
aλ

3
dλ(x, y)≤

aλ

exp(1)
dλ(x, y).

(33)

By taking τ � 1 and F(t) � ln t, one can conclude that (8)
holds for all x, y ∈ X with x⊥y and for each
λ ∈ U � 1, 2, 3, . . . , 100{ }.

Also, for x⊥y, we have x(t)y(t) � 0 for each t, then at
least one of them is the zero function, and hence,
Tx(t)Ty(t) � 0 for each t, that is, Tx⊥Ty. *us, T is
⊥-preserving. Further, for w0 � − 1, Tw0 � 0, and so
w0 ⊥Tw0 and α(w0, Tw0) � 1. Furthermore, for all x, y ∈ X

with x⊥y and α(x, y) � 1, we know that x and y are
constant functions, then Tx and Ty are also constant
functions, and so α(Tx, Ty) � 1.

Moreover, for each o-sequence ρn􏼈 􏼉 in X with
α(ρn, ρn+1) � 1 for each n≥ 1 and ρn⟶ ρ as n⟶∞, we
have ρ � 0. *erefore, α(ρn, ρ)≥ 1 and ρn⊥ρ for each n≥ 1.
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Consequently, all the conditions in *eorem 3 are
verified. One can conclude that T possesses a fixed point.

Remark 1. For the functions defined in the above example,
note that (8) does not hold for every x, y ∈ X. It suffices to
take x(t) � − 5t and y(t) � − 15t, then Tx(t) � − 5 and

Ty(t) � − 15. Also note that d1(x, y) � 10 and
d1(Tx, Ty) � 10.

Theorem 4. Let X be a nonempty o-set endowed with a
separating o-complete gauge structure dλ: λ ∈ U􏼈 􏼉 of
o-pseudometrics. Let T: X⟶ X be a self-mapping with
F ∈ F and τ > 0 so that

α(x, y)≥ 1⇒τ + F dλ(Tx, Ty)( 􏼁

≤F aλ max dλ(x, y), dλ(x, Tx), dλ(y, Ty),
dλ(x, Ty) + dλ(y, Tx)

2
􏼨 􏼩 + bλdλ(y, Tx)􏼠 􏼡,

(34)

for all x, y ∈ X with x⊥y and for each λ ∈ U, whenever
dλ(Tx, Ty)≠ 0 for λ ∈ U, where aλ, bλ are positive real
numbers with aλ + bλ � 1 for all λ ∈ U. Further, assume that

(i) T is ⊥-preserving
(ii) =ere is ω0 ∈ X with ω0⊥Tω0 and α(ω0, Tω0)≥ 1
(iii) For each x, y ∈ X with x⊥y and α(x, y)≥ 1, we

have α(Tx, Ty)≥ 1
(iv) For any o-sequence ρn􏼈 􏼉 in X so that α(ρn, ρn+1)≥ 1

for each n ∈ N and ρn⟶ ρ as n⟶∞, we have
α(ρn, ρ)≥ 1 and ρn⊥ρ for each n ∈ N

=en, T admits a fixed point.

Proof. Using (ii), there is ω0 ∈ X with ω0⊥Tω0 and
α(ω0, Tω0)≥ 1, and by considering (iii), we get
α(Tω0, T2ω0)≥ 1. Moreover, we have Tω0⊥T2ω0, since T is
⊥-preserving. Repetition of the same arguments implies that
α(Tnω0, Tn+1ω0)≥ 1 and Tnω0⊥Tn+1ω0 for each n≥ 1.
Consider ωn � Tnω0. *en ωn􏼈 􏼉 is an o-sequence with
α(ωn,ωn+1)≥ 1 for each n≥ 0. Also, note that if there is some
m0 ≥ 1 such that ωm0

� ωm0+1, then ωm0
is a fixed point of T.

*us, we assume that such a natural number does not exist.
As ω0 ∈ X with ω0⊥ω1 and α(ω0,ω1)≥ 1, then from (34), we
get

τ + F dλ ω1,ω2( 􏼁( 􏼁 � τ + F dλ Tω0, Tω1( 􏼁( 􏼁

≤F aλ max dλ ω0,ω1( 􏼁, dλ ω0, Tω0( 􏼁, dλ ω1, Tω1( 􏼁,
dλ ω1, Tω0( 􏼁 + dλ ω0, Tω1( 􏼁

2
􏼨 􏼩 + bλdλ ω1, Tω0( 􏼁􏼠 􏼡

<F max dλ ω0,ω1( 􏼁, dλ ω1,ω2( 􏼁􏼈 􏼉( 􏼁, for all λ ∈ U.

(35)

If we assume that max dλ(ω0,ω1), dλ(ω1,ω2)􏼈 􏼉 � dλ(ω1,

ω2), then we have a contradiction with respect to (35). *us,
max dλ(ω0,ω1), dλ(ω1,ω2)􏼈 􏼉 � dλ(ω0,ω1) for all λ ∈ U.
Using (35), we have

τ + F dλ ω1,ω2( 􏼁( 􏼁<F dλ ω0,ω1( 􏼁( 􏼁, for all λ ∈ U. (36)

Again, we know that ω1⊥ω2 and α(ω1,ω2)≥ 1; then,
from (34), we have

τ + F dλ ω2,ω3( 􏼁( 􏼁 � τ + F dλ Tω1, Tω2( 􏼁( 􏼁

≤F aλ max dλ ω1,ω2( 􏼁, dλ ω1, Tω1( 􏼁, dλ ω2, Tω2( 􏼁,
dλ ω2, Tω1( 􏼁 + dλ ω1, Tω2( 􏼁

2
􏼨 􏼩 + bλdλ ω2, Tω1( 􏼁􏼠 􏼡

<F max dλ ω1,ω2( 􏼁, dλ ω2,ω3( 􏼁􏼈 􏼉( 􏼁, for all λ ∈ U.

(37)
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If we assume that max dλ(ω1,ω2, dλ(ω2,ω3 )􏼈 􏼉 � dλ(ω2,

ω3 ), then we have a contradiction to (37). *us,
max dλ(ω1,ω2), dλ(ω2,ω3)􏼈 􏼉 � dλ(ω1,ω2)∀ λ ∈ U. *us,
from (37), we have

τ + F dλ ω2,ω3( 􏼁( 􏼁<F dλ ω1,ω2( 􏼁( 􏼁, for all λ ∈ U. (38)

From (36) and (38), we have

F dλ ω2,ω3( 􏼁( 􏼁<F dλ ω0,ω1( 􏼁( 􏼁 − 2τ, for all λ ∈ U.

(39)

Working with the same steps, we obtain

F dλ ωn,ωn+1( 􏼁( 􏼁<F dλ ω0,ω1( 􏼁( 􏼁 − nτ,

for each n ∈ N for all λ ∈ U.
(40)

Letting n⟶∞ in (40), we get
limn⟶∞F(dλ(ωn,ωn+1)) � − ∞ for all λ ∈ U. *us, by
property (F2), we have limn⟶∞dλ(ωn,ωn+1) � 0. Let
(dλ)n � dλ(ωn,ωn+1) for all λ ∈ U and for each n ∈ N. From
(F3), there is η ∈ (0, 1) so that

lim
n⟶∞

dλ( 􏼁
η
nF dλ( 􏼁n( 􏼁 � 0, for all λ ∈ U. (41)

From (40), we have

dλ( 􏼁
η
nF dλ( 􏼁n( 􏼁 − dλ( 􏼁

η
nF dλ( 􏼁0( 􏼁< − dλ( 􏼁

η
nnτ ≤ 0

for each n ∈ N and for all λ ∈ U.
(42)

Letting n⟶∞ in (42), we get

lim
n⟶∞

n dλ( 􏼁
η
n � 0, ∀ λ ∈ U. (43)

*is implies that there is n1 ∈ N so that n(dλ)
η
n ≤ 1 for

each n≥ n1 and for all λ ∈ U. *us, we have

dλ( 􏼁n≤
1

n
1/η, for each n≥ n1 and for all λ ∈ U. (44)

We claim that ωn􏼈 􏼉 is a Cauchy o-sequence. Take the
integers m, n with m> n> n1. Using (44) and the triangular
inequality, one writes

dλ ωn,ωm( 􏼁≤ dλ ωn,ωn+1( 􏼁 + dλ ωn+1,ωn+2( 􏼁 + · · · + dλ ωm− 1,ωm( 􏼁

� 􏽘
m− 1

i�n

dλ( 􏼁i≤ 􏽘
∞

i�n

dλ( 􏼁i≤ 􏽘
∞

i�n

1
i
1/η, for all λ ∈ U.

(45)

*e series 􏽐
∞
i�n 1/i

1/η converges, so
limn,m⟶∞dλ(ωn,ωm) � 0 for all λ ∈ U. *at is, ωn􏼈 􏼉 is a
Cauchy o-sequence. Since X is o-complete, there is ω∗ ∈ X

so thatωn⟶ ω∗ as n⟶∞. By (iv), we have α(ωn,ω∗)≥ 1
and ωn⊥ω∗ for each n ∈ N. We now claim that

dλ(ω∗, Tω∗) � 0 for all λ ∈ U. On contrary, suppose that
there is λ0 ∈ U with dλ0(ω

∗, Tω∗)> 0. *en, there exists
n0 ∈ N such that dλ0(ωn+1, Tω∗)> 0 for each n≥ n0. Now,
note that ωn,ω∗ ∈ X with α(ωn,ω∗)≥ 1, ωn⊥ω∗ and
dλ0(Tωn, Tω∗)> 0 for all n≥ n0. *en, from (34), we get

τ + F dλ0 Tωn, Tω∗( 􏼁􏼐 􏼑≤F aλ0 max dλ0 ωn,ω∗( 􏼁, dλ0 ωn, Tωn( 􏼁, dλ0 ω∗, Tω∗( 􏼁,
dλ0 ω∗, Tωn( 􏼁 + dλ0 ωn, Tω∗( 􏼁

2
􏼨 􏼩􏼠

+ bλ0dλ0 ω∗, Tωn( 􏼁􏼑.

(46)

*is implies that

dλ0 Tωn, Tω∗( 􏼁< aλ0 max dλ0 ωn,ω∗( 􏼁, dλ0 ωn, Tωn( 􏼁, dλ0 ω∗, Tω∗( 􏼁,
dλ0 ω∗, Tωn( 􏼁 + dλ0 ωn, Tω∗( 􏼁

2
􏼨 􏼩 + bλ0dλ0 ω∗, Tωn( 􏼁.

(47)
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*us, for each n≥ n0, by considering the triangular
property and (47), we have

dλ0 ω∗, Tω∗( 􏼁≤dλ0 ω∗,ωn+1( 􏼁 + dλ0 ωn+1, Tω∗( 􏼁

� dλ0 ω∗,ωn+1( 􏼁 + dλ0 Tωn, Tω∗( 􏼁

<dλ0 ω∗,ωn+1( 􏼁 + aλ0 max dλ0 ωn,ω∗( 􏼁, dλ0 ωn, Tωn( 􏼁, dλ0 ω∗, Tω∗( 􏼁,
dλ0 ω∗, Tωn( 􏼁 + dλ0 ωn, Tω∗( 􏼁

2
􏼨 􏼩

+ bλ0dλ0 ω∗, Tωn( 􏼁

≤dλ0 ω∗,ωn+1( 􏼁 + aλ0 max
⎧⎨

⎩dλ0 ωn,ω∗( 􏼁, dλ0 ωn, Tωn( 􏼁, dλ0 ω∗, Tω∗( 􏼁,

dλ0 ω∗,ωn( 􏼁 + dλ0 ωn, Tωn( 􏼁 + dλ0 ωn,ω∗( 􏼁 + dλ0 ω∗, Tω∗( 􏼁

2
􏼩 + bλ0dλ0 ω∗, Tωn( 􏼁

≤dλ0 ω∗,ωn+1( 􏼁 + aλ0 dλ0 ωn,ω∗( 􏼁 + dλ0 ωn, Tωn( 􏼁 + dλ0 ω∗, Tω∗( 􏼁􏼐 􏼑 + bλ0dλ0 ω∗, Tωn( 􏼁.

(48)

Letting n⟶∞ in the above inequality, we have

dλ0 ω∗, Tω∗( 􏼁≤ aλ0dλ0 ω∗, Tω∗( 􏼁< dλ0 ω∗, Tω∗( 􏼁. (49)

It is a contradiction, so dλ(ω∗, Tω∗) � 0 for all λ ∈ U. As
X is separating, hence we obtain ω∗ � Tω∗.

In the following corollaries, we assume that X is a
nonempty o-set with an orthogonal element (say ωa) and
endowed with a separating o-complete gauge structure
dλ: λ ∈ U􏼈 􏼉. Further, assume that a directed graph

G � (V, E) is defined on X so that the set of its vertices V

coincides with X (i.e., V � X) and the set of edges E is so that

Δ ⊂ E, where Δ � (σ, σ): σ ∈ X{ }. Moreover, G is supposed
that it has no parallel edges.

*e following corollaries can be obtained from our re-
sults by defining α: X × X⟶ [ 0,∞ ) as

α( x, y ) �
1, if (x, y) ∈ E,

0, otherwise.
􏼨 (50)

□

Corollary 1. Let T: X⟶ X be a mapping with F ∈ F and
τ > 0 such that

(x, y) ∈ E⇒τ + F dλ(Tx, Ty)( 􏼁≤F aλdλ(x, y) + bλdλ(x, Tx) + cλdλ(y, Ty) + eλdλ(x, Ty) + Lλdλ(y, Tx)( 􏼁, (51)

for each x, y ∈ X with x⊥y and for each λ ∈ U, whenever
dλ(Tx, Ty)≠ 0 for λ ∈ U, where aλ, bλ, cλ, eλ, Lλ ≥ 0 and aλ +

bλ + cλ + 2eλ � 1 for all λ ∈ U. Further, assume that

(i) T is ⊥-preserving
(ii) =ere is an element ω0 ∈ X with ω0⊥Tω0 and

(ω0, Tω0) ∈ E

(iii) For each x, y ∈ X with x⊥y and (x, y) ∈ E, we have
(Tx, Ty) ∈ E

(iv) For any o-sequence ωn􏼈 􏼉 in X with (ωn,ωn+1) ∈ E for
each n ∈ N and ωn⟶ x as n⟶∞, we have
(ωn, x) ∈ E and ωn⊥x for each n ∈ N

=en, T admits a fixed point.

Corollary 2. Let T: X⟶ X be a mapping with F ∈ F and
τ > 0 such that

(x, y) ∈ E⇒τ + F dλ(Tx, Ty)( 􏼁

≤F aλ max dλ(x, y), dλ(x, Tx), dλ(y, Ty),
dλ(x, Ty) + dλ(y, Tx)

2
􏼨 􏼩 + bλdλ(y, Tx)􏼠 􏼡,

(52)

for each x, y ∈ X with x⊥y and for each λ ∈ U, whenever
dλ(Tx, Ty)≠ 0 for λ ∈ U, where aλ, bλ are positive real
numbers with aλ + bλ � 1 for all λ ∈ U. Further, assume that

(i) T is ⊥-preserving

(ii) =ere exists an element ω0 ∈ X with ω0⊥Tω0 and
(ω0, Tω0) ∈ E

(iii) For each x, y ∈ X with x⊥y and (x, y) ∈ E, we have
(Tx, Ty) ∈ E
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(iv) For any o-sequence ωn􏼈 􏼉 in X such that
(ωn,ωn+1) ∈ E for each n ∈ N and
ωn⟶ x as n⟶∞, we have (ωn, x) ∈ E and
ωn⊥x for each n ∈ N

=en, T admits a fixed point.

5. Application to Integral Equations

Consider the following Volterra-type integral equation:

x( t ) � g( t ) + 􏽚
f( t )

0
K( t, s, x( s ) )ds, t ∈ I � [ 0,∞ ),

(53)

where

(i) g: I⟶ [ 1,∞ ) is continuous
(ii) f: I⟶ [ 0,∞ ) is continuous
(iii) K: I × I × R⟶ R+ � [ 0,∞ ) is a continuous

function

Let X � C( [ 0,∞ ),R+ ) be the space of all real-valued
continuous functions from [0,∞) into [0,∞). We can
define orthogonality relation on X by

x⊥y⇔x(t)y(t) ≥y(t) orx(t)y(t)≥ x(t). (54)

Define the family of pseudometrics as
dn(x, y) � maxt∈[0,n]|x(t) − y(t)|e− |τt|, for each n ∈ N,
where τ is a positive real number. Clearly, F � dn: n ∈ N􏼈 􏼉

defines a gauge structure on X, which is separating and
o-complete.

Theorem 6. Take X � C( [ 0,∞ ),R+ ). Define the operator
T: X⟶ X by

Tx( t ) � g( t ) + 􏽚
f( t )

0
K( t, s, x( s ) )ds , t ∈ I � [ 0,∞ ),

(55)

where g: I⟶ [ 1,∞ ), f: I⟶ [ 0,∞ ), and
K: I × I × R⟶ R+ � [ 0,∞ ) are continuous functions.
Also, assume that there are τ > 0 and c: X⟶ (0,∞) so that
for all x, y ∈ X with x(t)y(t)≥y(t) or x(t)y(t) ≥x(t) and
t, s ∈ [0, n], we have

|K(t, s, x) − K(t, s, y)|≤
e

− τ

c(x + y)
dn(x, y) for each n ∈ N.

(56)

Moreover,

􏽚
f(t)

0

1
c(x(s) + y(s))

ds≤ e
|τt|

, (57)

for each t ∈ I. =en, (53) admits at least one solution.

Proof. For x ∈ X, take

Tx(t) � g(t) + 􏽚
f(t)

0
K(t, s, x(s))ds≥ 1, (58)

for every t ∈ I � [ 0,∞ ). Note that Tx(t)Ty(t) ≥Ty(t) for
every t ∈ I. Hence, we say that if x⊥y, then Tx⊥Ty. Also,
note that for each ω0 ∈ X, we have ω0(t)Tω0(t)≥ω0(t) for
every t ∈ I, that is, ω0⊥Tω0.

Now, for all x, y ∈ X with x(t)y(t)≥y(t)orx(t)y(t)≥
x(t) and t ∈ [0, n] for each n≥ 1, we have

|Tx(t) − Ty(t)|≤ 􏽚
f(t)

0
|K(t, s, x(s)) − K(t, s, y(s))|ds

≤ 􏽚
f(t)

0

e
− τ

c(x(s) + y(s))
dn(x, y)ds

� e
− τ

dn(x, y) 􏽚
f(t)

0

1
c(x(s) + y(s))

ds

≤ e
|τt|

e
− τ

dn(x, y).

(59)

*us, we have

|Tx(t) − Ty(t)|e
− |τt| ≤ e

− τ
dn(x, y). (60)

*is implies that

dn(Tx, Ty)≤ e
− τ

dn(x, y). (61)

One writes

lndn(Tx, Ty)≤ ln e
− τ

dn(x, y)( 􏼁. (62)

*at is,

τ + ln dn(Tx, Ty)≤ ln dn(x, y) for each n ∈ N. (63)

*erefore, it can be concluded that *eorem 4 is applied
for the operator T with the choice of α(ς, υ) � 1 for all
ς, υ ∈ X, aλ � 1 and bλ � cλ � eλ � Lλ � 0 for each λ ∈ N and
F(x) � ln(x). Hence, T possesses a fixed point, i.e., (53)
admits at least one solution.

Take

x( t ) � g( t ) + 􏽚
b

a
K( t, s, x( s ) )ds, t ∈ I � [ 0,∞ ),

(64)

where

(i) g: I⟶ R is continuous
(ii) K: I × I × R⟶ R is continuous

*e above equation is a Fredholm-type integral
equation. □

Theorem 7. Let X � C( [ 0,∞ ),R ) and let the operator
T: X⟶ X be defined by

Tx( t ) � g( t ) + 􏽚
b

a
K( t, s, x( s ) )ds, t ∈ I � [ 0,∞ ),

(65)
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where g: I⟶ and K: I × I × R⟶ R are continuous
functions (a< b). Assume that

(i) If

x(t)y(t)≥y(t) or x(t)y(t)≥x(t), (66)

then we have

Tx(t)Ty(t) ≥Ty(t) orTx(t)Ty(t) ≥Tx(t). (67)

(ii) =ere are τ > 0 and c: X⟶ (0,∞) so that for each
x, y ∈ X with x(t)y(t)≥y(t) or x(t)y(t)≥ x(t)

and t, s ∈ [0, n], we have

|K(t, s, x) − K(t, s, y)|≤
e

− τ

c(x + y)
dn(x, y) for each n ∈ N.

(68)

Moreover,

􏽚
b

a

1
c(x(s) + y(s))

ds≤ 1. (69)

(iii) =ere is ω0 ∈ X so that
ω0(t)Tω0(t)≥Tω0(t) or ω0(t)Tω0(t)≥ω0(t).

(iv) For any sequence ωn􏼈 􏼉 in X with ωnωn+1 ≥ωn or
ωnωn+1 ≥ωn+1 for each n ∈ N and ωn⟶ x, we have
ωnx≥ωn or ωnx≥ x.

=en, (64) admits at least one solution.
Let X � ( C[ 0,∞ ),R ) be the set of all real-valued

continuous functions. Again, define orthogonality relation on
X by

x⊥y⇔x(t)y(t) ≥y(t) orx(t)y(t)≥ x(t) (70)

and family of pseudometrics given as dn(x, y) �

maxt∈[0,n]|x(t) − y(t)|e− |τt|, for each n ∈ N, where τ is a
positive real number. Note that F � dn: n ∈ N􏼈 􏼉 defines a
gauge structure on X, which is separating and o-complete, so
the conclusion of this theorem can be obtained from =eorem
4 by taking α(ς, υ) � 1 for all ς, υ ∈ X, aλ � 1 and bλ � cλ �

eλ � Lλ � 0 for each λ ∈ N and F(x) � ln(x).
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