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+e prediction of protein subcellular localization not only is important for the study of protein structure and function but also can
facilitate the design and development of new drugs. In recent years, feature extraction methods based on protein evolution
information have attracted much attention and made good progress. Based on the protein position-specific score matrix (PSSM)
obtained by PSI-BLAST, PSSM-GSD method is proposed according to the data distribution characteristics. In order to reflect the
protein sequence information as much as possible, AAO method, PSSM-AAO method, and PSSM-GSD method are fused
together. +en, conditional entropy-based classifier chain algorithm and support vector machine are used to locate multilabel
proteins. Finally, we test Gpos-mPLoc and Gneg-mPLoc datasets, considering the severe imbalance of data, and select SMOTE
algorithm to expand a few sample; the experiment shows that the AAO+PSSM∗ method in the paper achieved 83.1% and 86.8%
overall accuracy, respectively. After experimental comparison of different methods, AAO+PSSM∗ has good performance and can
effectively predict protein subcellular location.

1. Introduction

Cells are the basic unit of life, and various organelles in
organisms are also called subcells, which are further sub-
divided into cells, including mitochondria, cell membrane,
and nucleus. Many of the life activities of living organisms
are performed by proteins, and thousands of proteins can
only function at specific locations in living organisms. With
the advent of the postgene era, a variety of biological in-
formation has exploded, and many new protein sequences
have been excavated. However, the traditional experimental
localization prediction methods overconsume the experi-
mental cost and time [1], so it is urgent to build an efficient
and accurate computational model to predict the subcellular
location of proteins. For the newly discovered unknown
protein, selecting suitable models with good performance to
predict its subcellular location can help us further under-
stand the life activities of the protein in the organism.
+erefore, protein subcellular localization is of certain sig-
nificance to the study of protein function and structure and

also helps us to recognize new proteins and better under-
stand complex biological functions.

In recent years, more and more models have been
proposed to predict protein subcellular localization, and the
accuracy and calculation speed have been improved con-
tinuously. +erefore, protein subcellular localization pre-
diction has become a major focus in biological information
research. +e prediction model of protein subcellular lo-
calization mainly consists of two parts: one is to select a
reasonable method to extract protein information features to
a great extent; the other is to build a classification prediction
model to obtain better results.

At present, feature extraction methods mainly include
the following: methods based on amino acid sequence in-
formation, methods based on protein evolution information,
methods based on gene ontology, methods based on amino
acid physical and chemical properties. +e traditional
method of amino acid composition [2–4] includes the amino
acid frequency in the protein sequence. Although this
method is simple and easy to understand, the arrangement
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of amino acids is not considered. Subsequently, considering
the sequence of amino acids, Chou et al. propose the
pseudoamino Acid Composition (PseAAC) method [5] by
adding the physical and chemical properties of amino acids.
Since then, this method has been widely used in the pre-
diction of protein subcellular localization [6, 7]. Gene on-
tology involves a vocabulary package of genes and gene
products that integrates cell components, molecular func-
tions, and biological processes. Many scholars make use of
GO information [8, 9] and make continuous improvement
on this basis, achieving good results. In recent studies, the
field has focused on feature extraction methods that use
protein evolution information to extract feature information
and greatly improve classification accuracy. With continu-
ous exploration, methods such as PsePSSM [10], PSSM-S
[11], DipCPSSM [12], and PSSM-SAA [13] are proposed and
apply to the prediction of protein subcellular localization,
achieving good results.

For the classification prediction model of protein sub-
cellular localization, the traditional algorithms mainly in-
clude support vector machine (SVM) [14, 15], K-nearest
neighbor algorithm (KNN) [16], random forest [9], deep
learning [17], and integrated learning [18]. K-nearest
neighbors is a simple and mature classification method,
whose principle is to select the category with the most
frequent occurrence among the K-nearest neighbors as the
judgment category, but its classification results depend very
much on dataset balance and k-value selection. Random
forest is an algorithm that synthesizes multiple decision trees
based on the idea of integration and has high flexibility and
robustness. Although deep learning, integrated learning, and
other classification algorithms have made some progress in
protein subcellular localization prediction, they still have
disadvantages such as high computational complexity.
However, the traditional SVM has better performance and
generalization in solving the nonlinear classification prob-
lems, so it has been widely used in the prediction of protein
subcellular localization. Many researchers have improved
the basis of SVM to propose classifiers with higher accuracy
and better performance. In fact, most proteins are located at
one subcellular site, but some proteins exist at two or more
subcellular sites simultaneously. Multisite protein research is
also a major focus of protein subcellular localization. Good
multilabel classification algorithm can fully explore the re-
lationship between tags and improve classification accuracy.
Common multilabel classification algorithms include binary
relevance [19], classifier chains [20], and MLKNN [21].

Because the classification effect of some classifiers de-
pends very much on the balance of datasets, the classification
performance will be greatly affected if there is a serious
imbalance of datasets. +e most common method to solve
this problem is to directly reduce some majority samples or
add minority samples on the basis of the original data, but
these methods are easy to lose data information and make
minority samples collinear. SMOTE (synthetic minority
oversampling technique) algorithm [22] is the oversampling
algorithm proposed by Chawla et al., which improves the
above problems to some extent and has a good performance
in solving the problem of unbalanced data classification. But

it only applies to single label classification problems. SMOTE
is an improved method based on random sampling, using
the K-nearest neighbor method to artificially create minority
samples, resulting in a rough balance of samples.

2. Materials and Methods

2.1. AAO (Consensus Sequence-Based Occurrence). AAO
method [23] starts with the PSSM matrix of protein and
extracts the information of amino acid evolution in the
process of protein evolution.

If two proteins share a common evolutionary ancestor,
they are homologous. Homologous proteins have similar
amino acid arrangements and, in general, similar functions.
Considering the evolutionary information of proteins, this
study selects the site-specific score matrix PSSM to further
extract protein-related information. +e site-specific score
matrix is to extract as much protein sequence information as
possible by taking the evolutionary information of protein
sequence into consideration on the basis of protein se-
quence. For each protein sequence selected in this study,
PSI-BLAST [24] is used to search and compare related
homologous sequences in SWISS-PROT database, and then
homologous information was numerized by PSSM matrix.
+e PSSM matrix obtained by a protein sequence
P � p1p2 · · · pL of length L is shown as

PSSM �

U
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. (1)

PSSM is a matrix of L× 20 dimensions, where L is the
length of the protein sequence, and the numbers 1∼20
represent the 20 amino acids that make up the protein.
U0

i⟶ j represents the probability score of the
i(i � 1, 2, · · · , L) amino acid in the protein sequence being
encoded as the j(j � 1, 2, . . . , 20) amino acid in the process
of evolution. In other words, each row of the PSSM matrix
reflects the probability that the current amino acid residue
will be replaced by twenty amino acids.

Consensus sequence is an amino acid sequence con-
sisting of the most commonly occurring residues at each
position in a set of protein homologous sequences. AAO
method is to replace the amino acid at each position in the
protein sequence with the amino acid with the highest
probability score, that is, the maximum value of each row in
the PSSM matrix, to obtain a new common sequence Pnew �

o1o2 · · · oL and then calculate the occurrence frequency
fi(i � 1, 2, · · · , 20) of 20 amino acids. So the amino acid
composition of a protein can be represented by a 20-di-
mensional vector as

WAAO � f1, f2, . . . , f20􏼂 􏼃
T
. (2)
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2.2. PSSM-AAO (Simi-Occurrence). PSSM-AAO method
[23] is a feature of protein evolution extracted from PSSM
matrix. Each column of the PSSM matrix is summed up to
represent the evolution of the j-th (j � 1, 2, . . . , 20) amino
acid in the whole protein sequence.

First, the elements in the PSSMmatrix are normalized by
the following method as

Ui⟶j �
U

0
i⟶ j − (1/20)􏽐

20
k�1U

0
i⟶ k

����������������������������������

(1/20)􏽐
20
l�1 U

0
i⟶ l − (1/20)􏽐

20
k�1U

0
i⟶ k􏼐 􏼑

2
􏽱 . (3)

+e standardized score matrix is obtained, denoted as
PSSMstd, as follows:

PSSMstd �

U1⟶1 U1⟶2 · · · U1⟶j · · · U1⟶20

U2⟶1 U2⟶2 · · · U2⟶j · · · U2⟶20

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Ui⟶1 Ui⟶2 · · · Ui⟶j · · · Ui⟶20

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

UL⟶1 UL⟶2 · · · UL⟶j · · · UL⟶20
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. (4)

Based on the above matrix, the protein sequence is
further expressed as equations (5) and (6), namely, the
PSSM-AAO feature sequence:

WPSSM− AAO � U1, U2, U3, . . . , U20( 􏼁
T
, (5)

Uj �
1
L

􏽘

L

i�1
Ui⟶j, j � 1, 2, . . . , 20. (6)

2.3. PSSM-GSD (Grouped Segmented Distribution)

2.3.1. /eoretical Basis. +e central tendency and dispersion
degree of data are two basic characteristics of data distribution.
Most data show the law of fluctuation around a certain center
within a certain range, which is the central tendency of data.+e
main statistics include mean, median, and mode. However, the
distribution of data outside the range cannot be fully dem-
onstrated by these statistics, so statistics such as range, quartile
difference, and variance reflect the degree of dispersion of data.

When a set of data is arranged in ascending order, the
value corresponding to a certain percentile is called the
percentile of this percentile. For the p-th (p � 1, 2, . . . , 20)

percentile, strictly define the p-th percentile as a number such
that at least P% of the data items are less than or equal to this
value, and at least (100 − p)% of the data items are greater than
or equal to this value. In particular, the median is the 50th
percentile, the lower quartile is the 25th percentile, and the
upper quartile is the 75th percentile. +ese three numbers are
the quartiles, which comprehensively reflect the central
tendency and dispersion degree of a group of data.

2.3.2. PSSM-GSD. +e length of each protein sequence is
different, but the input classifier has the same requirement
for the number of features, and the PSSM matrix contains a

lot of information. +e above 20-dimensional vector
extracted from the protein PSSM matrix does not fully
extract the protein sequence information and its amino acid
distribution. +erefore, based on the PSSM matrix, a new
feature algorithm is proposed to reflect the piecewise dis-
tribution of amino acid evolution information along the
protein sequence to add more local information. Improving
the PSSM-SD method [11] proposed by Dehzangi et al., a
new feature extraction algorithm PSSM-GSD method is
proposed considering the high and low replacement scores
of protein sequences.

Since the PSSM matrix reflects the evolutionary infor-
mation of proteins, the larger the element value in the matrix
is, the more likely the homologous proteins at this position
are to be replaced by this amino acid during the evolution.
+e elements in the PSSM matrix were divided into 3 equal
fractions according to the score of amino acid replacement,
and the low-probability replacement group 1, medium-
probability replacement group 2, and high-probability re-
placement group 3 are obtained (see Table 1).

m � max(Ui⟶j) is the maximum value of all elements
of the PSSM matrix, n � min(Ui⟶j) is the minimum value
of all elements of the PSSMmatrix, l � ((m − n)/3) indicates
the numeric length of each group, and
i � 1, 2, . . . , L; j � 1, 2, . . . , 20.

+erefore, the PSSM matrix of each protein can be
transformed into a PSSM grouping matrix denoted by
PSSMgroup as

PSSMgroup �

G1⟶1 G1⟶2 · · · G1⟶j · · · G1⟶20

G2⟶1 G2⟶2 · · · G2⟶j · · · G2⟶20

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Gi⟶1 Gi⟶2 · · · Gi⟶j · · · Gi⟶20

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

GL⟶1 GL⟶2 · · · GL⟶j · · · GL⟶20
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. (7)

+e Gi⟶j(i � 1, 2, . . . , L; j � 1, 2, . . . , 20) values are 1, 2,
and 3, indicating the category to which the element belongs.

In order to reflect the centralization trend and dis-
persion degree of data as much as possible, the distri-
bution of evolutionary information of 20 amino acids in
protein sequence is considered, and the lower quartile,
median quartile, upper quartile, 1st percentile, and 100th
percentile of statistics are introduced. +e distribution
along the protein chain is described by five chain lengths
(percentages), which contain the position coordinates of
the first (1%), 25%, 50%, 75%, and 100% of a group [25].
To facilitate understanding, the extraction method of split
distribution will be described in detail below (see
Figure 1).

First calculate the position Ik1
j where the first element of

group k appears. For column j(j � 1, 2, . . . , 20) of PSSMgroup,
the total numbers T1j, T2j and T3j of groups 1, 2, and 3 are
calculated respectively, and the calculation formula is as

Tkj � 􏽘
L

i�1
Gi⟶j � k

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (8)
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|Gi⟶j � k|(k � 1, 2, 3) refers to if Gi⟶j belongs to the
group k, it is 1or otherwise 0.

+en, for the j-th (j � 1, 2, . . . , 20) column of PSSMgroup,
from the first row of PSSMgroup matrix to the Ik

j row, the
numbers S1j, S2j, and S3j of groups 1, 2, and 3 are calculated
respectively. +e calculation formula is

Skj � 􏽘

Ik
j

i�1
Gi⟶j � k

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌. (9)

When (Skj/Tkj) reaches 25%, 50%, 75%, and 100%, the
corresponding Ik

j is obtained; then, the j-th column of
PSSMgroup can be represented as the 15-dimensional feature
vector GSDj � (I11j , . . . , I15j , I21j , . . . , I25j , I31j , . . . , I35j ). Fur-
ther, the protein sequence can be represented as the 300-
dimensional feature vector:

WPSSM− GSD � GSD1,GSD2, . . . ,GSD20( 􏼁
T
. (10)

Due to the different lengths of protein sequences, the
values of feature vector WPSSM− GSD vary greatly, so Zscore
standardization is performed on it to facilitate subsequent
studies.

2.4. Feature Fusion. In order to consider as much protein
sequence information as possible, based on the idea of
feature fusion, this study proposes a new feature extraction
algorithm for protein subcellular localization prediction. In
this algorithm, the selected feature extraction algorithms
AAO and PSSM-AAO are combined with the new method
PSSM-GSD, which not only consider the evolutionary in-
formation of protein sequence, but also indirectly extract the
evolutionary arrangement information of amino acids,
greatly enriching the protein information. +e protein se-
quence information after fusion can be expressed as

WP � WAAO + WPSSM− AAO + WPSSM− GSD. (11)

Since the feature AAO, PSSM-AAO, and PSSM-GSD of
protein have all been standardized, the protein sequence can
be transformed into 340(20 + 20 + 300) dimensional feature
vector by directly combining the three feature values.

3. Classifier Chains

Many proteins function at only one subcellular site, but in
practice some proteins exist at two or more subcellular sites
simultaneously. It is also very important to predict the
proteins of these multisubcellular sites, and there is a certain
relationship between the location tags of these proteins. How
to construct a fast and accurate multilabel classification
algorithm is the key to solve the localization of multilocation
proteins.

For multilabel classification problems, the most simple
and common method is the binary relevance method,
which transforms multilabel problems into multiple binary
classification problems, and each binary classifier corre-
sponds to a label to be predicted. BR method is easy to
understand and operate, but if there is a correlation be-
tween labels, it will have a great impact on its prediction
ability. Based on BR algorithm, classifier chains (CC) is an
algorithm which further considers the relationship between
tags. Its core idea is to arrange tags in a chain in a certain
order, and the input of the last binary classifier in the chain
depends on the input and output of the previous classifier.
+e principle of CC algorithm determines that the algo-
rithm is very dependent on the ordering of tags on the
chain. If the prediction result of initial tags on the chain is
not accurate, the error information will be transmitted
along the chain. +erefore, label sorting is a very important
part of the algorithm.

Information entropy is a concept proposed by the fa-
mous scientist Shannon to measure the uncertainty or
disorder of random events. For the information source X, its
information entropy is

A Sequence
group1 (the first)

group2 (the first)

group1 (100%)

group2 (100%)
25%

50%
75%

100%

25%

75%50%

100%

Figure 1: Schematic diagram of segmentation distribution feature extraction of sequence: the first 1%, 25%, 50%, 75%, and 100% dis-
tributions of two groups in the same sequence.

Table 1: PSSM matrix grouping.

Group Grouping condition Mark
Group 1 n≤Ui⟶j ≤ n + l × 1 1
Group 2 n + l × 1<Ui⟶j ≤ n + l × 2 2
Group 3 n + l × 2<Ui⟶j ≤m 3
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H(X) � E log
1

P ai( 􏼁
􏼠 􏼡 � − 􏽘

q

i�1
P ai( 􏼁log P ai( 􏼁. (12)

When the information entropy is smaller, the uncer-
tainty or disorder of the random event is smaller. For de-
terministic events, the information entropy is 0. If a binary
classification problem is a deterministic event, that is, all
samples belong to the same category, the prediction results
of other samples will hardly be wrong. +erefore, for labels
with lower information entropy, there is less uncertainty in
prediction, so the labels can be sorted according to the
information entropy of them from low to high.

However, the information entropy does not take into
account the influence between the front and rear labels on
the chain, so the conditional entropy is introduced to define
the average uncertainty of the output of the latter symbol X2
when the former symbol X1 is defined, and the calculation
formula is

H X2 | X1( 􏼁 � 􏽘

q

i�1
P ai( 􏼁H X2 | X1 � ai( 􏼁

� − 􏽘

q

i�1
􏽘

q

j�1
P ai( 􏼁P aj | ai􏼐 􏼑log P aj | ai􏼐 􏼑

� − 􏽘

q

i�1
􏽘

q

j�1
P aiaj􏼐 􏼑log P aj | ai􏼐 􏼑.

(13)

For label sorting, this paper firstly calculates the infor-
mation entropy of all labels and takes the label with the
lowest information entropy as the first label on the CC chain.
+en, the conditional entropy of the remaining labels on the
basis of the on-chain labels is calculated, and the label with
the lowest conditional entropy is added to the chain until all
labels are sorted. Finally, CC algorithm based on conditional
entropy sorting is combined with support vector machine
classifier to perform protein subcellular localization.

4. Experimental Results and Analysis

4.1. Experimental Data and Pretreatment. In this study,
protein data are derived from the Cell-PLoc 2.0 database [26]
(http://www.csbio.sjtu.edu.cn/bioinf/Cell-PLoc-2/), which is
a set of web servers for predicting the subcellular localization
of proteins from different organisms, and is an improvement
of Chou and Shen on Cell-Ploc 1.0.

In order to better test the comprehensive performance
and generalization ability of the proposed method, the
Gram-positive protein Gpos-mPLoc dataset and Gram-
negative protein Gneg-mPLoc dataset are selected for ex-
periments. +e Gpos-mPLoc dataset (see Table 2) contains
519 different proteins with 4 subcellular site labels, 515
proteins in one subcellular site, and 4 proteins in two
subcellular sites. Since a protein located in cytoplasm
contains amino acid U, the protein sequence is deleted. +e
Gneg-mPLoc dataset (see Table 3) contains 1392 different
proteins with 8 subcellular site labels, 1328 proteins in one
subcellular site, and 64 proteins in two subcellular sites.

As can be seen from Table 2, the data of Gram-positive
proteins selected in this paper have serious data imbalance.
+e protein samples located in the cell wall only contain 18
proteins, which is about 1/10 of other types of subcellular
proteins. As can be seen from Table 3, the data distribution
of Gram-negative proteins is also seriously unbalanced,
with only 0.5%, 0.8%, and 2.2% of the proteins located in
the fimbrium, flagellum, and nucleoid. +e pie chart of
Gpos-mPLoc data distribution in Figure 2(a) also shows
that the number of proteins located in the cell wall only
accounts for 3% of the total amount, while the distribution
of other three types of data is relatively balanced. As a
result, the classifier tends to predict a few samples as a
majority of samples, resulting in extremely low classifi-
cation accuracy and ultimately affecting the prediction
performance of the classifier.

In order to minimize the classification errors caused by
unbalanced data distribution, Gpos-mPLoc is taken as an
example to show some data preprocessing results. Select
SMOTE algorithm to generate new sample of Gram-positive
protein in cell membrane, cell wall, and extracell to make the
data relatively balanced and finally use the new and original
data as experimental dataset for experimental analysis. In
this paper, we select the data after SMOTE oversampling and
compare with the original data distribution, finally drawing
Figures 2 and 3. In the figure we can see that the protein data
after SMOTE is evenly distributed in the 4 subcellular sites
with very similar percentage, which greatly alleviates the
imbalance of the original data.

4.2. Evaluation Index. In the prediction of protein subcel-
lular localization, there are many indicators that can be used
to evaluate the performance of the model. In this study, four
commonly used test indicators are selected: sensitivity (also
known as recall rate), specificity, Matthews correlation co-
efficient (MCC), and overall accuracy, calculated as

Table 3: Subcellular location distribution of Gneg-mPLoc protein.

Subcellular site
marker

Protein subcellular
class

Number of
proteins

1 Cell inner membrane 557
2 Cell outer membrane 124
3 Cytoplasm 410
4 Extracell 133
5 Fimbrium 32
6 Flagellum 12
7 Nucleoid 8
8 Periplasm 180

Table 2: Subcellular location distribution of Gpos-mPLoc protein.

Subcellular site
marker

Protein subcellular
class

Number of
proteins

1 Cell membrane 174
2 Cytoplasm 207
3 Cell wall 18
4 Extracell 123
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SNi �
TPi

TPi + FNi

, (14)

SPi �
TNi

TNi + FPi

, (15)

MCCi �
TPi × TNi( 􏼁 − FNi × FPi( 􏼁

��������������������������������������������
TPi + FNi( 􏼁 × TNi + FPi( 􏼁 × TPi + FPi( 􏼁 × TNi+FNi( 􏼁

􏽱 , (16)

OA �
􏽐

4
i�1 TPi

N
, (17)

where for the class i sample, the positive sample is the class i
sample, and the negative sample is the other class samples
except the class i sample. TPi refers to the number of samples
judged as positive; in fact, it is the positive; TNi refers to the

number of samples judged as negative; in fact, it is the
negative; FNi refers to the number of samples judged as
negative; in fact, it is the positive; FPi refers to the number of
samples judged as positive; in fact, it is the negative. N is the
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Figure 2: Pie chart of protein subcellular location distribution. (a) Pie chart of subcellular position distribution in Gpos-mPLoc. (b) Pie
chart of subcellular position distribution in the dataset after SMOTE.
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Figure 3: Histogram of protein subcellular location distribution. +e comparison of distribution of Gram-positive protein dataset Gpos-
mPLoc and data after SMOTE.
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number of all protein samples. +e protein sample data
selected in this study have four subcellular classes, so
i � 1, 2, 3, 4.

4.3. Results and Analysis. In order to evaluate the perfor-
mance of the proposed algorithm and verify the necessity and
advantages of multifeature fusion for protein subcellular
localization prediction, the corresponding protein feature
information is extracted by AAO method, PSSM-AAO
method, PSSM-GSD method, and three feature fusion
methods on Gpos-mPLoc dataset. Support vector machine
(SVM) is used for subcellular localization of protein datasets.
LIBSVM [11, 27] is used to construct the prediction model
classifier. +e linear kernel function is used for the classifier,
and the default settings are used for other related parameters.
In this paper, the retention method (n-fold cross-validation)
is used to verify the prediction performance of model clas-
sification. In each round of validation, one protein sample in
the dataset is selected as the test set, and the rest protein
samples are used as the training set to train the classifier, and
the verification results are unique. As the retention method
selects as much training data as possible in each iteration, the
results obtained by this method are the closest to the expected
results of the entire training dataset, and the retentionmethod
is also recognized as one of the most objective and reliable test
methods.

Due to the randomness of SMOTE algorithm, the mean
of 10 experimental results is selected as the final result in this
paper, the method marked with ∗ has the test after over-
sampling on Gpos-mPLoc dataset, the method without ∗
uses the original Gpos-mPLoc dataset, the classification
algorithm is SVM, and the feature fusion algorithm pro-
posed in this paper is AAO+PSSM∗ (see Table 4).

As can be seen from Table 4, the overall accuracy of
AAO∗method, PSSM-AAO∗method, PSSM-GSD∗method,
and multifeature fusion method on Gram-positive protein
dataset is 44.5%, 71%, 73.5%, and 83.1%, respectively. In this
paper, the feature extraction method AAO+PSSM∗ has the
best overall performance, not only the best accuracy, but also
high sensitivity and specificity.

In order to compare the performance of various feature
extraction methods more directly, the results of the above
indicators are displayed by the bar chart. As can be seen from
Figures 4(a) and 5, the classification effect of AAO∗ method
is obviously weaker than other methods, and the overall
accuracy is the lowest, and some evaluation indexes are even
lower than 0.6, which is still far behind existing protein
characterization models. PSSM-AAO∗ and PSSM-GSD∗
perform well.+e SN, SP, andMCC indexes of PSSM-AAO∗
are higher in cytoplasm, and the SN, SP, andMCC indexes of
PSSM-GSD∗ in cell wall are as high as 0.9.

It can be seen from Figure 5 that after combining the
three feature extraction algorithms, the new method
AAO+PSSM∗ occupies an absolute advantage in almost all
aspects and is the best in sensitivity except for a slight
disadvantage in cell membrane and cytoplasm. In specificity,
almost all feature extraction methods perform well, and
AAO+PSSM∗ is as high as 0.9 at all four locations,

indicating that the specificity of the proposed method is
good. In the Matthews correlation coefficient, the perfor-
mance on the cell membrane is poor, but the other positions
are better than other methods. It can be seen that the single
feature extraction method has a better result for predicting
proteins in some subcellular locations, and after the com-
bination of multiple features, the multiple features of the
protein sequence are fully extracted, and the advantages of
several feature extraction algorithms are greatly brought into
play. +e SN, SP, MCC, and OA indexes of the new mul-
tifeature fusion method are significantly improved com-
pared with the AAO∗method and are significantly improved
compared with PSSM-AAO∗ and PSSM-GSD∗ methods.

Due to the defect of severe imbalance in the selected
dataset, the overall accuracy of the fusion feature extraction
method is only 66.2% without combined SMOTE algorithm,
but increased by 16.9% after adding SMOTE algorithm to
balance the dataset, getting a good classification result. In
Figure 6, it can be seen intuitively that the protein dataset has
a great improvement in the experimental classification after
SMOTE oversampling. Although all indicators decrease
after SMOTE data in the cytoplasm, the sensitivity, speci-
ficity, and Matthews correlation coefficient in cell mem-
brane, cell wall, and extracellular are increased to varying
degrees. +e sensitivity in cell wall and extracellular cell is
increased by 0.642 and 0.21, and the Matthews correlation
coefficient in cell membrane, cell wall, and extracellular cell
is increased by 0.172, 0.593, and 0.307, respectively.
+erefore, after using SMOTE algorithm to deal with Gpos-
mPLoc dataset, the data imbalance is greatly relieved and the
classification performance is improved.

In order to better illustrate the advantages of the support
vector machine classification method selected in this paper,
the nearest neighbor classification method and random
forest are selected in the experiment to compare the results
(see Table 5). +e fusion algorithm AAO+PSSM proposed
in this paper is used for feature extraction methods, and
SMOTE oversampling is used for all data.

As can be seen from Table 5 and Figure 7, the result of
random forest is not satisfactory, the overall accuracy is only
68.1%, while the nearest neighbor method is better than
random forest, and the classification accuracy is 73.7%.
Random forest has good generalization ability, but it may be
due to the small amount of data in this paper or the similar
decision tree generated, so the classification result is not
ideal. +e support vector machine has the highest accuracy
of 83.1% among the three classification methods, which has
been greatly improved. +e three extracellular indicators of
SVM are optimal, and the sensitivity of SVM in cell
membrane, cytoplasm, and extracellular cells is the best, and
the sensitivity of SVM in cell wall is as high as 0.975. +e
specificity indexes of the four subcellular locations were all
above 0.95, and the SVM method shows good specificity. In
terms of Matthews correlation coefficient, SVM is the
highest among the four subcellular locations, especially in
the cytoplasm and extracell. +erefore, the support vector
machine classification algorithm is very good, and its overall
classification accuracy is high and has a low rate of missed
classification and misclassification rate.
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In order to evaluate the proposed method more ob-
jectively, two existing methods are selected and tested on
Gram-positive protein dataset respectively. One of them is
that Yu and Zhang in 2021 combining amino acid com-
position and PSSM matrix to get AAO and PSSM-AAO
feature fusion algorithm, using MLSMOTE balance dataset
and finally using MLKNN classification prediction, putting
forward AAO+PAAO∗ method [23]. +e other is the
PSORTb3.0 predictor [28] proposed by Yu et al. in 2010 (see
Table 6).

As can be seen from Table 6 and Figure 8, compared
with the other two prediction methods, the prediction
results in this paper are better in terms of overall accuracy
and test indexes of each subcellular location, and both of

them have been greatly improved. In terms of overall ac-
curacy, the proposed method is 3% higher than PSORTb3.0
classifier, which performs better among the existing al-
gorithms. In addition, compared with AAO+PAAO∗ and
PSORTb3.0, the sensitivity, specificity, and Matthews
correlation coefficient of the proposed method in cell wall
location are higher and more stable. Compared with the
other two methods, the sensitivity and Matthews corre-
lation coefficient of the proposed method at the four
subcellular sites are the highest, and the specificity of the
proposed method is the best except for the cell wall site,
which is slightly inferior to PSORTb3.0. +erefore, the
proposed method has excellent performance and good
classification effect.

Table 4: Comparison of single feature and fusion feature on Gpos-mPLoc dataset.

Feature extraction method
Subcellular site

OA
Cell membrane Cytoplasm Cell wall Extracell

(SN)
AAO∗ 0.700 0.432 0.101 0.499 0.445
PSSM-AAO∗ 0.622 0.827 0.743 0.716 0.710
PSSM-GSD∗ 0.806 0.692 0.962 0.840 0.735
AAO+PSSM 0.718 0.976 0.333 0.707 0.662
AAO+PSSM∗ 0.744 0.872 0.975 0.917 0.831
(SP)
AAO∗ 0.999 0.940 0.966 1.000 —
PSSM-AAO∗ 0.989 0.979 0.957 0.998 —
PSSM-GSD∗ 0.956 0.925 0.976 0.965 —
AAO+PSSM 0.843 0.994 0.984 0.896 —
AAO+PSSM∗ 0.958 0.968 0.986 0.982 —
(MCC)
AAO∗ 0.769 0.361 0.070 0.523 —
PSSM-AAO∗ 0.725 0.833 0.735 0.781 —
PSSM-GSD∗ 0.774 0.628 0.927 0.810 —
AAO+PSSM 0.558 0.972 0.358 0.595 —
AAO+PSSM∗ 0.730 0.848 0.951 0.902 —
+e bold values are the results of the proposed method in the paper on the Gpos-mPLoc dataset for clearer comparison.
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Figure 4: Comparison of overall accuracy of different methods. (a) Classification accuracy of all kinds of feature extraction algorithms.
(b) Classification accuracy of AAO+PSSM on the original data and data after SMOTE.
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To measure the generalization ability of the proposed
method, an experiment is performed on Gram-negative
dataset (see Table 7). Gneg-mPLoc has larger data volume
and more multilabel protein samples. Also we perform
oversampling on the Gneg-mPLoc dataset and select the
mean of ten SMOTE results as the final result in order to
eliminate randomness. Cim refers to the inner membrane
and com refers to the outer membrane.

+e proposedmethod achieves an overall accuracy of 86.8%
on the Gneg-mPLoc dataset, showing good performance. It is
particularly good in cell outer membrane, fimbrium, flagellum,
and nucleoid and each index is as high as 0.9.+e sensitivity and
the Matthews correlation coefficient are all above 0.8 at 8
subcellular sites. +erefore, the subcellular localization method
proposed in this paper has good generalization ability and can
achieve accurate localization of proteins on different datasets.
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Figure 5: Comparison of evaluation index in various feature extraction algorithms. (a) Sensitivity, (b) specificity, and (c) Matthews
correlation coefficient of AAO∗, PSSM-AAO∗, PSSM-GSD∗, and AAO+PSSM∗.
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Figure 6: Comparison of evaluation index on various datasets. (a) Sensitivity, (b) specificity, and (c) Matthews correlation coefficient on raw
data and data after SMOTE algorithm.

Table 5: Comparison of different classification methods on Gpos-mPLoc dataset.

Classification method
Subcellular site

OA
Cell membrane Cytoplasm Cell wall Extracell

(SN)
RF 0.631 0.554 0.910 0.623 0.681
KNN 0.357 0.658 0.992 0.825 0.737
SVM 0.744 0.872 0.975 0.917 0.831
(SP)
RF 0.984 0.970 0.998 0.973 —
KNN 0.969 0.904 0.947 0.908 —
SVM 0.958 0.968 0.986 0.982 —
(MCC)
RF 0.709 0.617 0.938 0.672 —
KNN 0.430 0.590 0.893 0.729 —
SVM 0.730 0.848 0.951 0.902 —
+e bold values are the results of the proposed method in paper on the Gpos-mPLoc dataset for clearer comparison.
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Figure 7: Comparison of evaluation index in various classification methods. (a) Overall accuracy, (b) sensitivity, (c) specificity, and
(d) Matthews correlation coefficient of KNN, NBC, and SVM.

Table 6: Comparison of the proposed method with other methods on the Gpos-mPLoc dataset.

Method
Subcellular site

OA
Cell membrane Cytoplasm Cell wall Extracell

(SN)
AAO+PAAO∗ 0.625 0.832 0.799 0.669 0.751
PSORTb3.0 0.731 0.763 0 0.074 0.801
AAO+PSSM∗ 0.744 0.872 0.975 0.917 0.831
(SP)
AAO+PAAO∗ 0.959 0.920 0.904 0.874 —
PSORTb3.0 0.910 0.760 1.000 0.954 —
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Figure 8: Comparison of evaluation index in the proposed method and other methods. (a) Overall accuracy, (b) sensitivity, (c) specificity,
and (d) Matthews correlation coefficient of AAO+PAAO∗, PSORTb3.0, and the method of this study.

Table 6: Continued.

Method
Subcellular site

OA
Cell membrane Cytoplasm Cell wall Extracell

AAO+PSSM∗ 0.958 0.968 0.986 0.982 —
(MCC)
AAO+PAAO∗ 0.659 0.740 0.693 0.545 —
PSORTb3.0 0.622 0.520 0 0.034 —
AAO+PSSM∗ 0.730 0.848 0.951 0.902 —
+e bold values are the results of the proposed method in paper on the Gpos-mPLoc dataset for clearer comparison.
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5. Conclusions

Although the method AAO has some advantages, such that
itis simple, the dimension of the feature vector is low, and
the computing speed is fast, the feature only considers the
overall evolution information of 20 amino acids, protein
sequence arrangement of status after protein evolution, but
ignores that the protein is arranged and other information,
at the expense of the classification accuracy. Compared
with AAO method, PSSM-AAO method and PSSM-GSD
method have improved each index in Gram-positive
protein dataset to a certain extent. +ese algorithms not
only consider the evolution information of proteins, but
also extract the sequence information of proteins to a
certain extent, so the combination of AAO method, PSSM-
AAO method, and PSSM-GSD method has achieved ex-
cellent classification effect. A single feature extraction
method cannot completely extract protein information.
+ree feature extraction methods are combined to reflect
the sequence information and evolutionary information of
proteins in a relatively comprehensive way without in-
creasing redundant information and time complexity as
much as possible, laying a solid foundation for subsequent
classification. In addition, the support vector machine also
plays a great advantage in protein subcellular localization,
which has better classification ability than k-nearest
neighbor and random forest method. Comparing the
proposed method with the existing protein subcellular
localization methods, it can be found that the proposed
method has improved to varying degrees in most indica-
tors. But in fact, there is data imbalance in most datasets,
which will seriously affect the accuracy of the model
classification. Considering this, SMOTE oversampling al-
gorithm is added in this study and the model performance
is greatly improved.

Based on the existing research, this paper continuously
deepens and improves the existing knowledge and proposes
a new protein subcellular localization method. +e main
innovations and advantages are as follows:

(1) Based on the centralization trend and dispersion
degree of the two most basic features of data dis-
tribution, a new feature extraction method PSSM-
GSD is proposed. +e feature method comprehen-
sively reflects the data distribution of PSSM matrix
and extracts protein evolution information as much
as possible.

(2) SMOTE algorithm is used to greatly relieve the
imbalance of protein dataset and improve the ac-
curacy of protein subcellular localization to a certain
extent.

(3) Considering that some proteins are located in two or
more subcellular locations, the classifier chain al-
gorithm is used for multilabel protein classification.
+e tags on the chain are sorted according to the
conditional entropy from low to high, so as to avoid
the influence of introducing wrong information on
the final classification.

+e overall accuracy of the proposed method is 83.1%
and 86.8% on Gpos-mPLoc and Gneg-mPLoc datasets, and
the overall performance is quite good and stable on different
datasets, but there are still shortcomings. In the feature
extraction method, we can further propose a method with
more distinguishing ability and generalization ability. For
example, improvements on classical algorithms such as
PseAAC can be considered. In this paper, SVM with good
classification ability is selected, which can be improved to
enhance the comprehensive performance of the classifica-
tion algorithm. +erefore, how to establish efficient and
accurate feature extraction algorithm and classification al-
gorithm is still the most important research of protein
subcellular localization prediction.
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