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.is paper presents actuator fault detection of discrete-time nonlinear descriptor systems by means of nonlinear unknown input
observers. .e approach is based on the exact factorization of the estimation error in order to overcome the well-known problem
of unmeasurable scheduling variables within the observation of convex models, thus avoiding the use of Lipschitz constants,
differential mean value theorem, or robust techniques. As a result, the designing conditions are cast in terms of linear matrix
inequalities and efficiently solved via commercially available software. Numerical as well as academic setups are provided to
illustrate the advantages and performance of the proposal.

1. Introduction

.e use of state observers [1] is important for many tasks
within control theory. In particular, unknown input (UI)
observers whose task is to estimate both the state and un-
known inputs (they may be disturbances) have been de-
veloped in [2], and they are of particular interest also for
fault detection and isolation [3, 4] or fault tolerant control
schemes [5, 6]; they can be also applied in other fields [7].
For linear systems, there are several UI observers, e.g.,
[8–10]; for nonlinear systems, linear methods are mostly
chosen because of its simplicity [11]. Nonlinear techniques
such as sliding mode [12], adaptive schemes [13], Lipschitz
approaches [14], high-gain observers [15], or combinations
of them require certain structure of the model or performing
nonlinear transformations.

On the other hand, convex models (a convex model is a
collection of linear models interconnected by scalar func-
tions (also known as scheduling functions), which are
nonlinear and hold the convex sum property in a region
[16, 17]. If the convex model is the result of the sector

nonlinearity [18], it is an exact representation of the non-
linear system) [19, 20] have been directly combined with the
direct Lyapunov method; thus obtaining conditions in terms
of linear matrix inequalities (LMIs) [21]. Conditions in the
form of LMIs are preferred since they are numerically
solvable via convex optimization techniques [22]. Within
this context, there exist several state observers for both
continuous [23, 24] and discrete-time systems [25–27]. In
the case of UI observers, there are some works concerning
proportional-integral setups [28, 29] or non-Luenberger
forms [30–34].

Nevertheless, within the convex framework, the observer
design presents an open problem: if the scheduling variables
do not exclusively depend on measurable/available signals,
the designing conditions get involve and difficult to cast as
LMIs. Recent works have intended to tackle this issue by
employing Lipschitz constraints [24, 35], the differential
mean value theorem (DMVT) [36, 37], and robust H∞
approaches to mitigate the influence of the unknown
scheduling parameters [38]; more recently, in [39, 40], a
transformation that enlarges the size of the state is proposed.
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In this work, we follow the ideas of [41] for solving this
problem: algebraic rearrangements in order to properly
factorize the error signal.

A generalized representation for standard state-space
models is given by descriptor systems [42]; within this setup,
a special case considers that the descriptor matrix is in-
vertible [43]. For this class of descriptor systems, in [27], a
convex observer design has been developed, and it considers
only available scheduling variables; in [44, 45], an UI ob-
server has been proposed, and it can handle unmeasurable
scheduling variables by robust argumentations.

.e estimation of the states and parameters makes
possible the fault diagnosis, which is divided into fault
detection, fault isolation, and fault identification [46, 47].
.e fault detection (FD) is used to identify when there is a
malfunction in the system and determine the moment when
the fault occurs [48]. In FD, there exist some results using the
UI observer for actuator fault, for example, [13] where an
adaptive approach is developed for an aircraft actuator fault.
In [49], UI observers are employed for fault detection and
isolation.

Contributions: a novel convex UI observer scheme is
used for discrete-time descriptor models with unmeasurable
scheduling variables; the scheme makes use of algebraic
manipulations instead of Lipschitz constraints, the differ-
ential mean value theorem, or robust techniques in order to
obtain an adequate estimation error dynamics, thus relaxing
the results. Actuator fault detection and estimation is per-
formed by means of the proposed UI observer.

.e rest of the paper is organized as follows: Section 2
provides the background for further developments and
notation. Section 3 states the LMI conditions for the non-
linear UI observer design via convex models. In Section 4,
the UI observer is applied to actuator fault detection and
estimation of nonlinear systems. Section 5 illustrates the
proposal via the numerical example and train system.
Section 6 concludes the paper by giving some final remarks.

2. Problem Statement

Consider the following discrete-time nonlinear descriptor
model:

E yk( 􏼁xk+1 � A xk( 􏼁xk + B yk( 􏼁uk + D yk( 􏼁dk, yk � C xk( 􏼁xk,

(1)

where xk ∈ Rn is the state vector, uk ∈ Rm is the input
vector, and dk ∈ Rq is the unknown input vector, yk ∈ Ro is
the output vector; A(xk), B(yk), C(xk), D(yk), and E(yk)

are matrix functions whose entries are smooth and bounded
in a region Ωx ⊂ Rn including the origin. .is work only
considers the particular case when E(·) is full rank (the case
whendescriptormatrix is not invertible has been recently treated
in [50, 51], this case is also referred as differential-algebraic-
equation (DAE) systems or singular ones [52], and it is out of the
scope of this work. Fault diagnosis schemes for this type of
systems have been addressed in [53]) for xk ∈ Ωx; that is, from
(1), it is always possible to obtain a standard state-space
representation:

xk+1 � E
− 1

yk( 􏼁 A xk( 􏼁xk + B yk( 􏼁uk + D yk( 􏼁dk( 􏼁

� f xk, uk, dk( 􏼁.
(2)

In what follows, arguments will be omitted when their
meaning can be inferred from the context.

.e approach is based on designing an observer for the
estimation of both the state xk and the unknown input dk; to
this end, an augmented vector is employed [29, 44], that
is, χk � xT

k dT
k􏽨 􏽩

T
, dk � dT

k dT
k+1 . . . dT

k+p􏽨 􏽩
T ∈ R(p+1)q,

where p is such that (z − 1)p+1dk ≈ 0 as proposed in [45]; for
instance, for p � 1, we have

dk+1 � Sdk, with dk+1 �
dk+1

dk+2
􏼢 􏼣, S �

0 1

− 1 2
􏼢 􏼣. (3)

Hence, an augmented system yields

E yk( 􏼁χk+1 � A xk, yk( 􏼁χk + B yk( 􏼁uk, yk � C xk( 􏼁χk,

(4)

where χ ∈ Rn+(p+1)q, S ∈ R(pq+q)×(pq+q) is a known matrix,
and

(5)

In the literature, most of the observer design ap-
proaches deal with systems in standard form (2); for in-
stance, without the unknown input, xk+1 � f(xk, uk) and
yk � Cxk; they consider special cases xk+1 � Axk+

Bf(yk, uk) + ϕ(xk); thus, the task is to stabilize an error
system with the form ek+1 � (A − LC)ek + ϕ(xk) − ϕ(􏽢xk),
where ek � xk − 􏽢xk is the estimation error, 􏽢xk is the esti-
mated state vector, L is the observer gain to be designed,
and the function ϕ(·) is assumed to hold Lipschitz bounds,
i.e., ‖ϕ(x) − ϕ(􏽢x)‖≤ ‖Lx − 􏽢x‖, L> 0 being a Lipschitz
constant [54, 55]. In the context of convex models, most of
the works only consider that the scheduling variables are
available and then ϕ(xk) − ϕ(􏽢xk) � 0 [25], which, in
practice, is not realistic. For the general case, when
ϕ(xk) − ϕ(􏽢xk)≠ 0, this expression is treated by means for
Lipschitz bounds [24], as a perturbation via H∞ approach
[38], as an uncertainty via robust approaches [56]; other
works employ the differential mean value theorem [37],
Jacobian [57], or transformations that enlarge the size of
the state [40]. Nevertheless, these approaches are con-
servative approximations, or increase the computational
complexity of the problem, or are only valid for particular
cases [58]; additionally, none of them consider observers
for systems of form (1). Next section presents a meth-
odology that avoids the use of previous ones.
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2.1. An Amenable Descriptor Error Form. In order to obtain
an amenable error system for Lyapunov analysis, in [41], a
methodology that avoids the use of Lipschitz-like bounds
has been presented; it is based on algebraic operations in
order to factorize the estimation error at the left side of error
dynamic difference equation. .us, the variation of the

Lyapunov function along the trajectories of the error system
can be written as ΔV(e) � eT

k Q(·)ek and ΔV(e)< 0 if
Q(·)< 0, and the latter is guaranteed via convex models and
linear matrix inequalities. Motivated by these ideas, the
following observer structure is adopted:

E yk( 􏼁􏽢χk+1 � A 􏽢xk, yk( 􏼁􏽢χk + B yk( 􏼁uk + L 􏽢xk, yk( 􏼁 yk − 􏽢yk( 􏼁, 􏽢yk � C 􏽢xk( 􏼁􏽢χk. (6)

with

(7)

and the nonlinear observer gain L(􏽢xk, yk) ∈ R(n+pq+q)×o

depending only on all the available signals; it should be
designed such that the estimation error

ek � χk − 􏽢χk �
xk − 􏽢xk

dk − 􏽢dk
􏼢 􏼣 (8)

satisfies lim
k⟶∞

ek � 0. .us, in [41], it has been proven that,
under mild assumptions, it is always possible to write the
error dynamics as

E yk( 􏼁ek+1 � A xk, 􏽢xk( 􏼁 − L 􏽢xk, yk( 􏼁C xk, 􏽢xk( 􏼁􏼐 􏼑ek, (9)

where A(xk, 􏽢xk)ek � A(xk, yk)χk − A(􏽢xk, yk)􏽢χk and
C(xk, 􏽢xk)ek � C(x)χk − C(􏽢x)􏽢χk have bounded entries in
Ωx ×Ω􏽢x. For instance, consider a polynomial expression
p(x) − p(􏽢x) with p(x) � x1x2 and p(􏽢x) � 􏽢x1􏽢x2; following
[41], we have p(x) − p(􏽢x) � 0.5(x2 + 􏽢x2)e1 + 0.5
(x1 + 􏽢x1)e2, e1 � x1 − 􏽢x1, e2 � x2 − 􏽢x2. Now, consider a
nonpolynomial expression 􏽥p(x) − 􏽥p(􏽢x), with 􏽥p(x) � sinx1
and 􏽥p(􏽢x) � sin 􏽢x1; a third-order Taylor approximation will
give 􏽥p(x) − 􏽥p(􏽢x) ≈ x1 − (x3

1/6) − 􏽢x1 + (􏽢x3
1/6), and then we

can apply similar procedure as before.
Now, error system (9) has an amenable form for

Lyapunov-based analysis. However, if the aim is to obtain
LMI conditions, (9) should be expressed as an exact convex
model, and this is the matter of the following section.

2.2. Convex Expressions. .e sector nonlinearity [18] is
employed to express bounded nonconstant terms
z(·) ∈ [z0, z1] as a convex sums of its bounds, that is,
z(·) � w0(z)z0 + w1(z)z1, where z0 and z1 are the mini-
mum and maximum of z(·) in a region; the functions w0 �

(z1 − z(·))/(z1 − z0) and w1 � 1 − w0 hold the convex sum
property in the same modeling region, i.e., w0(z) + w1(z) �

1 and w0, w1 ∈ [0, 1].
Note that, in (9), matrices E(yk), A(xk, 􏽢xk), and

C(xk, 􏽢xk) contain nonconstant terms depending on xk, 􏽢xk,
and yk; clearly, all the state variables are not fully available;

thus, a useful convex rewriting must take this into account.
.e following steps extend the sector nonlinearity to our
case:

Step 1: identify all the nonconstant terms, also known as
scheduling variables, inE(yk),A(xk, 􏽢xk), andC(xk, 􏽢xk)

depending exclusively on available signals, and capture
them in the vector z(􏽢xk, yk) ∈ Rs while all the rest of the
terms should be grouped in ζ(xk, 􏽢xk, yk) ∈ Rσ . Each
entry is assumed to be bounded in Ωx ×Ω􏽢x, i.e.,
zi(􏽢xk, yk) ∈ [z0

i , z1
i ], i ∈ 1, 2,{ . . . , s}, and

ζj(xk, 􏽢xk, yk) ∈ [ζ0j , ζ1j], j ∈ 1, 2, . . . , σ{ }.
Step 2: construct, for each zi(􏽢xk, yk), i ∈ 1, 2, . . . , s{ },
and ζj(xk, 􏽢xk, yk), j ∈ 1, 2, . . . , σ{ } a pair of scalar
convex functions as follows:

w
i
0(􏽢x, y) �

z
1
i − zi(􏽢x, y)

z
1
i − z

0
i

,

w
i
1(􏽢x, y) � 1 − w

i
0(􏽢x, y),

ωj
0(x, 􏽢x, y) �

ζ1j − ζj(x, 􏽢x, y)

ζ1j − ζ0j
,

ωj
1(x, 􏽢x, y) � 1 − ωj

0(x, 􏽢x, y);

(10)

by construction, these functions hold the convex sum
property in Ωx ×Ω􏽢x, i.e., wi

0(􏽢x, y) + wi
1(􏽢x, y) � 1,

wi
0(􏽢x, y), wi

1(􏽢x, y) ∈ [0, 1], ωj
0(x, 􏽢x, y) + ωj

1(x, 􏽢x, y) �

1, ωj
0(x, 􏽢x, y),ωj

1(x, 􏽢x, y) ∈ [0, 1].
Step 3: define the scheduling functions as

wi(z) � w
j
i1

z1( 􏼁w
2
i2

z2( 􏼁, . . . , w
s
is

zs( 􏼁,

ωj(ζ) � ω1
j1

ζ1( 􏼁ω2
j2

ζ2( 􏼁, . . . ,ωσ
jσ

ζσ( 􏼁,
(11)

with i ∈ 1, 2, . . . , r{ }, j ∈ 1, 2, . . . , ρ􏼈 􏼉ij ∈ 0, 1{ }, r � 2s,
ρ � 2σ ; moreover, the sets of indexes [i1i2, . . . , is] and
[j1j2, . . . , jσ] are a s-digit and σ-digit binary repre-
sentation of (i − 1) and (j − 1), respectively. .e
scheduling functions also hold the convex sum prop-
erty in Ωx ×Ω􏽢x, that is, 􏽐

r
i�1 wi(z) � 1, wi(z) ∈ [0, 1],

􏽐
ρ
j�1 ωj(ζ) � 1, and ωj(ζ) ∈ [0, 1].

Step 4: compute the vertex models Ei � E(yk)|wi�1,
Aij � A(xk, x

⌢

k)|wiωj�1, Cij � C(xk, 􏽢xk)|wiωj�1, i ∈ 1, 2,{

. . . , r}, j ∈ 1, 2, . . . , ρ􏼈 􏼉.
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.us, an exact convex representation of (9) is

􏽘

r

i�1
wi zk( 􏼁Eiek+1 � 􏽘

r

i�1
􏽘

ρ

j�1
wi zk( 􏼁ωj ζk( 􏼁 Aij − L 􏽢xk, yk( 􏼁Cij􏼐 􏼑ek.

(12)

.e nonlinear observer gain is L(􏽢xk, yk) and will be
defined later on.

2.2.1. Notation. For convex expressions, the following
shorthand notation will be employed throughout the
manuscript: single convex sums Υw(zk) � 􏽐

r
i�1 wi(zk)Υi and

its inverse Υ− 1
w(zk) � (􏽐

r
i�1 wi(zk)Υi)

− 1, with delayed sched-
uling functions Υw(zk+1) � 􏽐

r
m�1 wm(zk+1)Υm, or depending

on nonavailable variables Υω(ζk) � 􏽐
ρ
j�1 ωj(ζk)Υj, and so on.

Additionally, A> 0(< 0) means that A ∈ Rn×n is positive
(negative) definite. An asterisk (∗ ) will be used in matrix
expressions to denote the transpose of the symmetric ele-
ment; for in-line expressions, it will denote the transpose of
the terms on its left side:

A B
T

B C

⎡⎣ ⎤⎦ �
A (∗ )

B C
􏼢 􏼣 andA + B + A

T
+ B

T
+ C

� A + B +(∗ ) + C.

(13)

Hence, system (12) is shortly written as

Ew zk( ))ek+1 � Aw zk( )ω ζk( ) − L 􏽢xk, yk( 􏼁Cw zk( )ω ζk( )􏼒 􏼓ek.

(14)

.e following lemmas are useful in order to derive LMI
conditions for the design of L(􏽢xk, yk). .e first one concerns
a sum-relaxation scheme based on [59]; the second one
allows avoiding the computation of E− 1(yk) while adding
slack variables [27].

Lemma 1 (see [59]). Let Υjm

il � (Υjm

il )T, (i, l, m) ∈ 1, 2,{

. . . , r}3, j ∈ 1, 2, . . . , ρ􏼈 􏼉, be matrices of adequate dimensions.
8en, Υw(zk)w(zk)w(zk+1)ω(ζk)< 0 holds if

2
r − 1
Υjm

ii + Υjm

il + Υjm

li < 0, (15)

for all (i, l, m) ∈ 1, 2, . . . , r{ }3, j ∈ 1, 2, . . . , ρ􏼈 􏼉.

Lemma 2 (see [60]). Let ξ ∈ Rn, Q � QT ∈ Rn×n, and
B ∈ Rm×n, rank(B)< n; then, the following statements are
equivalent:

(i) ξT
Qξ < 0, ∀Bξ � 0, ξ ≠ 0

(ii) ∃Z ∈ Rn×m: Q + ZB + BTZT < 0

Now, we are ready to establish LMI conditions for the
stabilization of error system (9) at the origin e � 0 via its exact
convex representation (12).

3. LMI-Based Stabilization of the Error System

.is section provides LMI conditions to compute L(􏽢xk, yk).

.e developments are based on a convex Lyapunov function

candidate (in the context of TS models, it has been introduced
as nonquadratic Lyapunov function [61], in the context of
fuzzy systems as fuzzy Lyapunov functions [62], in the context
of LPV models, as parameter dependent Lyapunov functions
[63]. Here, the name convex Lyapunov function is adopted
due to its dependence on the convex functions wi(zk)):

V(e) � e
T
k Pw zk( )ek, Pw zk( ) � 􏽘

r

i�1
wi zk( 􏼁Pi, (16)

with Pi ∈ R(n+pq+q)×(n+pq+q): Pi > 0, i ∈ 1, 2, . . . , r{ }; its vari-
ation is

ΔV(e) � e
T
k+1Pw zk+1( )ek+1 − e

T
k Pw zk( )ek, (17)

which can be expressed as follows (without substituting the
dynamics of estimation error (9)):

ΔV(e) �
ek

ek+1
􏼢 􏼣

T − Pw zk( ) 0

0 Pw zk+1( )

⎡⎢⎣ ⎤⎥⎦
ek

ek+1
􏼢 􏼣. (18)

Note that function (16) is convex and it only depends on
available signals. With this in mind, the following result states
LMI conditions for the design of the nonlinear gain L(􏽢xk, yk).

Theorem 1. 8e origin e � 0 of error system (9), with an
exact convex representation (12), is asymptotically stable if
there exist matrices Pl ∈ R(n+pq+q)×(n+pq+q), Nl ∈ R(n+pq+q)×o,
and Gl ∈ R(n+pq+q)×(n+pq+q), l ∈ 1, 2, . . . , r{ } such that Pl > 0
and the LMIs in (15) are satisfied with

Υjm

il ≔
− Pl (∗ )

GlAij − NlCij − GlEi − E
T
i G

T
l + Pm

⎡⎣ ⎤⎦, (19)

for all (i, l, m) ∈ 1, 2, . . . , r{ }3, j ∈ 1, 2, . . . , ρ􏼈 􏼉. 8en, the
observer gain is computed as L(􏽢xk, yk) � G− 1

w(zk)Nw(zk).
Moreover, any trajectory ek starting in the outermost Lya-
punov level set e: V(ek)≤ c􏼈 􏼉 ⊂ Ωx ×Ω􏽢x, c> 0 goes to zero as
time goes to infinity.

Proof. Recall the variation of the Lyapunov function
expressed as in (18); thus, error system (9), with exact convex
representation (12), is also expressed as

Aw zk( )ω ζk( ) − L 􏽢xk, yk( 􏼁Cw zk( )ω ζk( ) − Ew zk( )􏽨 􏽩
ek

ek+1
􏼢 􏼣 � 0.

(20)

By Lemma 2, (18) and (20) can be written together:

Z1

Z2
􏼢 􏼣 Aw zk( )ω ζk( ) − L 􏽢xk, yk( 􏼁Cw zk( )ω ζk( ) − Ew zk( )􏽨 􏽩

+(∗ ) +
− Pw zk( ) 0

0 Pw zk+1( )

⎡⎢⎣ ⎤⎥⎦< 0.

(21)

Hence, by choosing Z1 � 0 and Z2 � Gw(zk) and the
definition L(􏽢xk, yk) � G− 1

w(zk)Nw(zk), Gw(zk) ∈
R(pq+q+n)×(pq+q+n), Nw(zk) ∈ R(pq+q+n)×o, and we have
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Υw zk( )w zk( )w zk+1( )ω ζk( ) ≔
− Pw zk( ) (∗ )

Gw zk( )Aw zk( )ω ζk( ) − Nw zk( )Cw zk( )ω ζk( ) − Gw zk( )Ew zk( ) +(∗ ) + Pw zk+1( )

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦< 0. (22)

Finally, by means of relaxation Lemma 1, the desired
result yields. □

Remark 1. .e speed convergence of observer (6) can be
increased if the following condition is verified
ΔV(e)≤ (α2 − 1)V(e), 0< α≤ 1 which can be translated into
LMIs, that is, solving the LMIs in (15) with

Υjm

il ≔
− α2Pl (∗ )

GlAij − Nlij − GlEi − E
T
i G

T
l + Pm

⎡⎢⎣ ⎤⎥⎦, (23)

for all (i, l, m) ∈ 1, 2, . . . , r{ }3, j ∈ 1, 2, . . . , ρ􏼈 􏼉.
.e following result provides LMI conditions for stan-

dard systems and its corresponding observer, i.e., (6) with
E(yk) � In, where In is the identity matrix. Hence, the next
result follows directly from .eorem 1.

Corollary 1. 8e origin of error system (9), with E(yk) � In,
is asymptotically stable if there exist Pl ∈ R(n+pq+q)×(n+pq+q),
Nl ∈ R(n+pq+q)×o, and Gl ∈ R(n+pq+q)×(n+pq+q), l ∈ 1, 2, . . . , r{ }

such that Pl > 0 and LMIs in (15) hold with

Υjm

il �
− Pl (∗ )

GlAij − NlCij − Gl − G
T
l + Pm

⎡⎣ ⎤⎦, (24)

for all (i, l, m) ∈ 1, 2, . . . , r{ }3, j ∈ 1, 2, . . . , ρ􏼈 􏼉. 8e nonlinear
observer gain L(􏽢xk, yk) � G− 1

w(zk)Nw(zk). Moreover, any tra-
jectory ek starting in the outermost Lyapunov level set
e: V(e)≤ c{ } ⊂ Ωx ×Ω􏽢x, c> 0 goes to zero as time goes to
infinity.

Proof. It follows directly by considering E(yk) � In from the
developments in .eorem 1. □

Remark 2. .e methodology in previous approaches starts
by computing a convex model of the given nonlinear one
(standard or descriptor), and then, the estimation error is
computed; if the problem involves unmeasurable scheduling
variables, it is solved by considering the already defined
scheduling functions. In contrast with those works, the
methodology hereby presented begins by obtaining the
nonlinear estimation error dynamics via factorizations; then,
it employs the sector nonlinearity approach for writing an
equivalent convex representation; thus, a fitter convexmodel
is employed and the observer gain includes all the available
signals.

Remark 3. In this work, a convex Lyapunov function such as
the one introduced in [61] is employed; naturally delayed
scheduling functions can be included similar to [25] or to the
generalization [27]. For instance, following [25], the Lya-
punov function candidate would be V(e) � eT

k Pw(zk− 1)ek,
Pw(zk− 1) � 􏽐

r
m�1 wm(zk− 1)Pm together with the observer gain

L(􏽢xk, 􏽢xk− 1, yk, yk− 1) � G− 1
w(zk)w(zk− 1)Nw(zk)w(zk− 1).

Remark 4. .e numerical complexity of .eorem 1 can be
approximated by log10(n3

dnl) where
nd � r(n + pq + q)(0.5(n + pq + q + 1) + n + pq + q + o) is
the number of decision variables and nl � 2r3ρ(n + pq + q)

is the number of LMI rows [64]. Moreover, if the number
LMI conditions in .eorem 1 is large, one can reduce its
complexity by “judiciously eliminating” some convex
functions either from the Lyapunov function or the observer
gain.

In the case without unknown inputs (dk � 0) in (1), the
states of the resulting system can be estimated by the fol-
lowing nonlinear observer:

E yk( 􏼁􏽢xk+1 � A 􏽢xk, yk( 􏼁􏽢xk + B yk( 􏼁uk + L 􏽢xk, yk( 􏼁 yk − 􏽢yk( 􏼁, 􏽢yk � C 􏽢xk, yk( 􏼁􏽢xk, (25)

where 􏽢xk ∈ Rn is the observer state and L(􏽢xk, yk) ∈ Rn×o is
the observer gain to be designed. Following the methodology
previously presented, the error dynamics is

E yk( 􏼁ek+1 � A xk, 􏽢xk( 􏼁 − L 􏽢xk, yk( 􏼁C xk, 􏽢xk( 􏼁( 􏼁ek, (26)

where A(xk, 􏽢xk)ek � A(xk)xk − A(􏽢xk, yk)􏽢xk and C(xk,

􏽢xk)ek � C(xk)xk − C(􏽢xk, yk)􏽢xk. .us, we have the next
result.

Corollary 2. 8e origin of error system (26) is asymptotically
stable if there exist Pl ∈ Rn×n, Nl ∈ Rn×o, and Gl ∈ Rn×n,
l ∈ 1, 2, . . . , r{ } such that Pl > 0 and LMIs in (15) hold with

Υjm

il �
− Pl (∗ )

GlAij − NlCij − GlEi − E
T
i G

T
l + Pm

⎡⎣ ⎤⎦, (27)

for all (i, l, m) ∈ 1, 2, . . . , r{ }3, j ∈ 1, 2, . . . , ρ􏼈 􏼉. 8e nonlinear
observer gain L(􏽢xk, yk) � G− 1

w(zk)Nw(zk). Moreover, any tra-
jectory ek starting in the outermost Lyapunov level set
e: V(e)≤ c{ } ⊂ Ωx ×Ω􏽢x, c> 0 goes to zero as time goes to
infinity.

Proof. .e proof follows a similar path than the one for
.eorem 1, with a Lyapunov function candidate
V(e) � eT

k Pw(zk)ek, Pi > 0, Pi ∈ Rn×n, i ∈ 1, 2, . . . , r{ }, and the
nonlinear error dynamics (26) expressed in a convex form as
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Aw zk( )ω ζk( ) − L 􏽢xk, yk( 􏼁Cw zk( )ω ζk( ) − Ew zk( )􏽨 􏽩
ek

ek+1
􏼢 􏼣 � 0,

(28)

and by the use of Finsler’s lemma, with
L(􏽢xk, yk) � G− 1

w(zk)Nw(zk), Z1 � 0, and Z2 � Gw(zk), we have

Υw zk( )w zk( )w zk+1( )ω ζk( ) ≔
− Pw zk( ) (∗ )

Gw zk( )Aw zk( )ω ζk( ) − Nw zk( )Cw zk( )ω ζk( ) − Gw zk( )Ew zk( ) +(∗ ) + Pw zk+1( )

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦< 0. (29)

Finally, by means of relaxation Lemma 1, we conclude
the proof.

Recall that most of the previous works do not consider
scheduling functions depending on unmeasurable variables
[25, 27] nor descriptor systems of form (1) [25]. □

4. Actuator Fault Detection and Estimation

In this section, an application of the UI observer devel-
oped above is employed in order to estimate and detect
actuator faults [46, 47]. .us, let us now consider non-
linear discrete-time descriptor system (1) with an actuator
fault:

E yk( 􏼁xk+1 � A xk( 􏼁xk + B yk( 􏼁uk + fa uk, yk( 􏼁 + D yk( 􏼁dk, yk � C xk( 􏼁xk, (30)

where fa(uk, yk) ∈ Rm represents the actuator fault vector;
if it can be included inside of the unknown input, then (30)
can be expressed as (1); in this case, conditions in.eorem 1
can be used. As customary in fault detection schemes, a
residual signal based on the observer estimation of the
unknown input is generated [65, 66]:

rk � 􏽢dk

����
����. (31)

.e residual can be filtered to get a clear signal. .e
estimation of the fault can be done once the fault is con-
sidered as an unknown input [67].

Remark 5. It is possible to apply a mix of H∞ and H per-
formances, for instance, H∞ attenuation in order to make
residual (31) robust to uncertainties, noise, and the fault and the
index H index in order to make more sensitive the detection
of the fault [68, 69].

5. Examples

In this section, two examples are presented. .e first one is
intended to compare the performance of our proposal in
contrast with recent approaches while the second one il-
lustrates the estimation of actuator faults in the train system.
.e LMI conditions have been implemented in YALMIP

[70] with SeDuMi [71], while simulations have been run in
Simulink for MATLAB2019b.

Example 1. Consider descriptor system (1) with matrices

E yk( 􏼁 �
2 − 1 + x

2
1􏼐 􏼑

− 1

1 + x
2
1􏼐 􏼑

− 1
1

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦,

A xk( 􏼁 �
x
2
2 − 0.5β

0.7 sinx1
􏼢 􏼣,

B �
0.1
0.1

􏼢 􏼣,

D �
0.2
0.2

􏼢 􏼣,

C �
1
0

􏼢 􏼣

T

,

(32)

with β> 0 is a known parameter. It is assumed that the
unknown input has dynamics such as (z − 1)2dk ≈ 0, i.e.,

dk+1 � Sdk with S �
0 1

− 1 2􏼢 􏼣. In order to estimate both the

state xk and the unknown input dk, an extended system of
form (4) and its corresponding observer (6) are constructed.
.us, the error dynamics ek � χk − 􏽢χk can be computed as

E yk( 􏼁ek+1 �

x1x
2
2 − 0.5βx2 + 0.2d1

0.7x1 + x2 sinx1 + 0.2d1

d2

− d1 + 2d2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

􏽢x1􏽢x
2
2 − 0.5β􏽢x2 + 0.2􏽢d1

0.7􏽢x1 + 􏽢x2 sin 􏽢x1 + 0.2􏽢d1

􏽢d2

− 􏽢d1 + 2􏽢d2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− L(·)(y − 􏽢y). (33)
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Applying the factorization methodology in [41] and con-
sidering that y � x1, we have x2

2 − 􏽢x2
2 � (x2 + 􏽢x2)(x2 − 􏽢x2) �

(x2 + 􏽢x2)e2 leading to final error dynamics

2 − 1 + x2
1( 􏼁

− 1 0 0

1 + x2
1( 􏼁

− 1 1 0 0

0 0 1 0

0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

􏽼√√√√√√√√√√√√√√􏽻􏽺√√√√√√√√√√√√√√􏽽
E yk( )

ek+1 �

0 x1 x2 + 􏽢x2( 􏼁 − 0.5β 0.2 0

0.7 sinx1 0.2 0

0 0 0 1

0 0 − 1 2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

􏽼√√√√√√√√√√√√√√􏽻􏽺√√√√√√√√√√√√√√􏽽
A xk,􏽢xk( )

− L(·) 1 0 0 0􏼂 􏼃
􏽼√√√√√􏽻􏽺√√√√√􏽽

C

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ek. (34)

In order to synthesize the nonlinear observer gain via
LMIs, it is necessary to express (34) in a convex form (12); to
this end, let us consider the compact sets Ωx �

|x1|≤ 0.5, |x2|≤ 0.8􏼈 􏼉 and Ω􏽢x � |􏽢x2|≤ 0.8􏼈 􏼉. .us, the non-
constant terms and their bounds are z1 � (1 + x2

1)
− 1

∈ [0.8, 1], z2 � sinx1 ∈ [− 0.4794, 0.4794], z3 � x1 ∈
[− 0.5, 0.5], z4 � 􏽢x2 ∈ [− 0.8, 0.8], and ζ1 � x2 ∈ [− 0.8, 0.8]

(nonavailable signals). .e scalar convex functions are
wi(z) � w1

i1
(z1)w

2
i2

(z2)w
3
i3

(z3)w
4
i4

(z4), wi
0(zi) � (z1

i − zi)/
(z1

i − z0
i ), wi

1(zi) � 1 − wi
0(zi), i ∈ 1, 2, 3, 4{ }, and

ωj(ζ) � ω1
j1

(ζ1), ω1
0(ζ1) � (ζ11 − ζ1)/(ζ

1
1 − ζ01), ω1

1 � 1 − ω1
0.

.e vertex matrices are

Ei �

2 − z
i1
1 0 0

z
i1
1 1 0 0
0 0 1 0
0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Aij �

0 z
i3
3 ζj1

1 + z
i4
4􏼐 􏼑 − 0.5β 0.2 0

0.7 z
i2
2 0.2 0

0 0 0 1
0 0 − 1 2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(35)

For example, if i � 6 and j � 1, we have
w6(z) � w1

0(z1)w
2
1(z2)w

3
0(z3)w

4
1(z4), ω1(ζ) � ω1

0(ζ1), and

E6 �

2 − z
0
1 0 0

z
0
1 1 0 0

0 0 1 0

0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

2 − 0.8 0 0

0.8 1 0 0

0 0 1 0

0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

A6,1 �

0 z
0
3 ζ01 + z

1
4􏼐 􏼑 − 0.5β 0.2 0

0.7 z
1
2 0.2 0

0 0 0 1

0 0 − 1 2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

0 − 0.5β 0.2 0

0.7 0.4794 0.2 0

0 0 0 1

0 0 − 1 2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(36)

Several numerical tests have been performed in order to
show the effectiveness of the proposal in contrast with recent
works:

(i) LMIs in.eorem 1 have been run as well as the ones
in [45], .eorem 2, with a Lyapunov function
candidate (16) and decay rate α � 0.95 (see Remark
1), seeking feasibility for the largest β> 0. It results
that our proposal is feasible up to β � 0.863, while
the one in [45], .eorem 2, is only up to β � 0.794.
Comparisons have been done with the same Lya-
punov function (16) and under the same relaxation
scheme.

(ii) In terms of the number of decision variables, for this
example, we have that numerical complexity for
.eorem 1 is 12.86 while for [45] is 10.24.

(iii) A UI observer uses the generalization in [27], and
although it is for discrete-time descriptor systems, it
cannot be applied as it only considers available
scheduling variables.

(iv) If UI observer schemes for standard state-space
models are to be applied [33, 39], then the inverse of
the matrix E(yk) has to be computed. For instance,
using conditions in Corollary 1 yields numerical
problems because 65568 LMIs have to be solved.
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For illustration purposes, the LMI conditions in form (1)
have been found feasible for β � 0.85 and a decay rate
α � 0.95, and some of the computed matrices are

N1 � 1 × 10− 4

0.3502

0.4455

0.0786

− 0.0245

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

G1 � 1 × 10− 4

0.4528 0.4482 − 0.1117 − 0.0147

− 0.4197 0.6839 0.0704 − 0.0772

0.0656 − 0.3033 0.7189 − 0.5508

− 0.0796 0.1505 − 0.5751 0.4700

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

N5 � 1 × 10− 4

0.4936

0.5295

0.0875

− 0.0429

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

G5 � 1 × 10− 4

0.3710 0.5399 − 0.2236 0.0594

− 0.4458 0.6316 0.0105 − 0.0417

0.0960 − 0.2168 0.6811 − 0.5264

− 0.0961 0.0893 − 0.5422 0.4492

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

N16 � 1 × 10− 4

− 0.1330

0.7569

0.1866

− 0.0911

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

G16 � 1 × 10− 4

0.8122 − 0.3260 0.0464 − 0.0970

− 0.0814 0.9592 − 0.2018 0.0460

− 0.0773 − 0.1013 0.6744 − 0.5174

− 0.0047 0.0364 − 0.5419 0.4463

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(37)

A first simulation has been performed without unknown
inputs, i.e., dk � 0 and the known input uk � 0.4 sin(0.6k).
Figure 1 shows evolution of the error signals converging
asymptotically to the origin. A second simulation considers
uk � 0, and the unknown input is defined as

dk �

0.4k, if 3≤ k< 5,

0.8, if 5≤ k< 12,

0, otherwise,

⎧⎪⎪⎨

⎪⎪⎩
(38)

and initial conditions x(0) � [0.4 − 0.6]T, d(0) � 0 0􏼂 􏼃
T,

􏽢x(0) � 0 0􏼂 􏼃
T, and 􏽢d(0) � 0 0􏼂 􏼃

T. Figure 2 shows the
state x2 being adequately estimated while in Figure 3, it can
be seen that the observer effectively reconstructs the un-
known input.

.e next example provides an application of the UI
observer hereby proposed for the task of actuator fault
detection in a train system.

Example 2. .is example provides a fault detection scheme
via the proposed UI observer for a train system, and see
Figure 4 for a diagram. Let us consider first the fault-free
case, and thus, a continuous-time model is [72–74]

M _v(t) � bT(v(t))uT(t) − bB(v(t))uB(t) − w(v(t)) − g(θ(p)),

_p(t) � v(t),

(39)

where v(t) is the speed of the train, p(t) is the position of the
train, bB(v) is the maximum coefficient of the braking force,
uB(t) is the relative braking force, bT(v) is the maximum
coefficient of the traction force, uT(t) is the relative traction
force, g(θ) is the force of declivity or external force, w(v) is
the friction force, and M is the mass of the train. In practical
cases, the declivity force is considered as g(θ(p)) �

Mg sin(θ(p)), where θ(p) is the slope angle on the position
p(t) and g is the gravity force [75]. In [76], the friction force
w(v) can be estimated via David’s equation:

w(v) � w0 + w1v + w2v
2
, (40)

where w0, w1, and w2 are real coefficients that depend on the
train characteristics and rail type; their values are unknown
in the practice, but there exist some methods for their es-
timation [76]. By means of the Euler approximation
_x(t) ≈ (xk+1 − xk)/Ts, where Ts is the sampling time.
.erefore, a discrete-time train system of (23) is

Mvk+1 � bT vk( 􏼁uTk
− bB vk( 􏼁uBk

− w vk( 􏼁􏼐

− g θ pk( 􏼁( 􏼁􏼁Ts + Mvk, pk+1 � vkTs + pk.

(41)

.e fault studied in this example is the jamming fault,
and it may occur only during the braking. .is fault
depends on the adherence conditions between the wheel
and the track, producing that when the brake locks the
wheel, the wheel slides on the track [68, 74]; in the real
setup, the fault can occur depending on weather condi-
tions. .e main issue of a jamming fault is the impact
directly on the measurements, producing a wrong esti-
mate of both position and speed of the train. In Figure 5, it
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can be seen that the speed vk under the fault is lower, and
this is because the wheel is locked during the fault and the
sensor is not able to provide the right measure and thus
both the speed and position are erroneous; for example,
the measured position differs 4.10 meters from the real
position, see Figure 6. .erefore, this fault can be con-
sidered as an actuator fault or exogenous input, when it
occurs, the control is inhibited [72–74]. .e actuator fault
to be considered is

fa uTk
, uBk

􏼐 􏼑 � − bT vk( 􏼁uTk
− bB vk( 􏼁uBk

+ ξk􏼐 􏼑fk, (42)

where fk ∈ [0, 1] represents the grade of the fault; if fk � 0,
then the system is fault-free; iffk � 1, a total fault occurs and

the control is inhibited. .e term ξk ∈ R represents a re-
sistive force produced by the fault, and it is unknown [74].

As the previous examples, the unknown input is as-
sumed to comply with dk+1 � Sdk; therefore, we have an
augmented system of form (3) with χ � vk pk dk dk+1􏼂 􏼃

T

and matrices
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2

Figure 2: State x2 and its estimation 􏽢x2.
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Figure 3: Unknown input dk and its estimation 􏽢dk.
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Figure 5: Comparison between the time evolution of the speed vk

with fault and without fault.
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Figure 1: Error signal ek in the absence of unknown inputs.
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Figure 4: Fault detection scheme.
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E �

M 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

A yk( 􏼁 �

− w1 − w2vk( 􏼁Ts + M Tsg
θ pk( 􏼁( 􏼁

pk

Ts 0

Ts 1 0 0

0 0 0 1

0 0 − 1 2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B �

b

0

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

C �

1

0

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

,

(43)

and the parameter b is a constant value for bB(v) and bT(v),
producing a unique control signal uk, where uk > 0 and
uk < 0 correspond to uTk

and uBk
, respectively. Let us con-

sider the braking period, i.e., when the train is arriving to the
station and there are no big slopes, we have
g(θ(pk)) � Mg sin(θ(pk)), with θ(pk) � βpk ∈ [− 1, 1],
where β is a constant.

.us, with UI observer (4), the error dynamics ek �

χk − 􏽢χk is

Eek+1 �

− w1vk − w2v
2
k + dk􏼐 􏼑Ts + Mvk − TsMg sin βpk( 􏼁

Tsvk + pk

dk+1

− dk + 2dk+1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

− w1􏽢vk − w2􏽢v
2
k + 􏽢dk􏼐 􏼑Ts + M􏽢vk − TsMg sin β􏽢pk( 􏼁

Ts􏽢vk + 􏽢pk

􏽢dk+1

− 􏽢dk + 2􏽢dk+1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− L(·)(y − 􏽢y).

(44)

Applying the factorization in [41] and considering that
yk � vk (the only available signal is the velocity vk), we have
v2k − 􏽢v2k � (vk + 􏽢vk)e1 � 2yke1, e1 � vk − 􏽢vk, as for sin(βpk)

− sin(β􏽢pk), two terms of the series Taylor are taken; then, the
error dynamics yields:

Eek+1 � A yk, χk, 􏽢χk( 􏼁 − L yk( 􏼁C􏼐 􏼑ek, (45)

with matrices
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Figure 6: Comparison between the time evolution of the position pk with fault and without fault.
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A yk, χk, 􏽢χk( 􏼁 �

− w1 + 2w2yk( 􏼁Ts + M TsMg − 1 −
β3

6
p
2
k + pk

􏽢pk + 􏽢p
2
k􏼐 􏼑􏼠 􏼡 Ts 0

Ts 1 0 0

0 0 0 1

0 0 − 1 2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

C �

1

0

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

.

(46)

.erefore, considering that vk ∈ [0, 30](m/s) and
pk, 􏽢pk ∈ [0, 600](m), we have that the nonconstant terms
are z � vk ∈ [0, 30] (available), ζ1 � p2

k ∈ [0, 360000],
ζ2 � pk ∈ [0, 600], ζ3 � 􏽢pk ∈ [0, 600], and ζ4 � 􏽢p

2
k ∈

[0, 360000] (nonavailable signals). .e scheduling functions

are defined as ωj(ζ) � ω1
j1

(ζ1)ω2
j2

(ζ2)ω3
j3

(ζ3)ω4
j4

(ζ4),
ωj
0(ζj) � (ζ1j − ζj)/(ζ

1
j − ζ0j), ωj

1 � 1 − ωj
0(ζj), and

w1(z) � (z1 − z)/(z1 − z0), w2(z) � 1 − w1(z). .e vertex
matrices are

Ai,j �

− w1 + 2w2z
i

􏼐 􏼑Ts + M TsMg − 1 −
β3

6
ζj1
1 + ζj2

2 ζ
j3
3 + ζj4

4􏼐 􏼑􏼠 􏼡 Ts 0

Ts 1 0 0

0 0 1 0

0 0 − 1 2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (47)

where i � 1, 2{ } and j � 1, 2, 3, 4{ }. .e LMI conditions in
.eorem 1 have been found feasible with a decay rate α � 0.7
(see Remark 1), and the parameters are M � 408.5 tons,

w0 � 3.525(N), w1 � 2.98 × 10− 3(N/m), w2 � 4.575×

10− 4(N2/m2), and Ts � 0.001(s). .e computed matrices
are
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N1 � 1 × 10− 5

139.52295

0.00157

− 0.00023

0.00003

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

N2 � 1 × 10− 5

151.49720

0.00172

− 0.00022

0.00003

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

G1 � 1 × 10− 5

0.34152 0.00284 − 0.00070 0.00035

0.000007 0.0000001 − 0.00000003 0.00000002

− 0.000001 − 0.00000003 0.00000001 − 0.00000001

0.0000008 0.00000002 − 0.00000001 0.000000008

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

G2 � 1 × 10− 5

0.36992 0.00305 − 0.00071 0.00035

0.000007 0.0000001 − 0.00000003 0.00000002

− 0.000001 − 0.00000003 0.00000001 − 0.00000001

0.0000008 0.00000002 − 0.00000001 0.000000008

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

P1 � 1 × 10− 5

125.55422 0.00267 − 0.00065 0.00033

0.00267 0.00000009 − 0.00000003 0.00000002

− 0.00065 − 0.00000003 0.00000001 − 0.00000001

0.00033 0.00000002 − 0.00000001 0.0000000075

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

P2 � 1 × 10− 5

129.30379 0.00278 − 0.00068 0.00035

0.00278 0.0000001 − 0.00000003 0.00000002

− 0.00068 − 0.00000003 0.00000001 − 0.00000001

0.00035 0.00000002 − 0.00000001 0.000000007

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(48)

A simulation has been performed for initial conditions
v(0) � 28, p(0) � 0, d(0) � 0 0􏼂 􏼃

T, 􏽢v(0) � 27.9,
􏽢p(0) � 0.05, and 􏽢d(0) � 0.05 0.01􏼂 􏼃

T, with a constant
braking force uk � − 0.5, β � 0.0016, and the unknown input
dk � fa(uk), with ξk � 2M and the fault occurrence

fk �

1, if 4≤ k≤ 4.2,

1, if 6≤ k≤ 6.2,

1, if 8≤ k≤ 8.2,

0, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(49)

As the previous example, first simulation has been
performed without unknown inputs, i.e., dk � 0. Figure 7
shows the speed being adequately estimated while Figure 8
plots the Lyapunov function, whose signal is always positive
and monotonously decreases to zero.

In the case where dk � fa(uk), in order to detect the
fault, the unknown input estimation is used as residual rk �

|􏽢dk| with a single threshold of ϵ � M/2. If the residual rk is
bigger than ϵ, then the fault is occurring; otherwise, the fault
has finished. .us, we obtain a delay average of 0.003 sec-
onds to detect when the fault begins and 0.006 to detect
when the fault ends. As we can see from Figure 9, our
proposal is enough to detect when the fault occurs.
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6. Conclusions

It has been presented a methodology for the design of
unknown input observers for discrete-time nonlinear
descriptor systems. It is based on algebraic rearrangements
and allows overcoming the problem of unmeasurable
premise variables as to get a compatible error dynamic
system with the direct Lyapunov method; thus, sufficient
conditions in terms of LMIs have been obtained. .e
resulting UI observer is proven to be less conservative than
those in the literature. Moreover, the proposed scheme has
been employed to solve the detection and estimation of
actuator faults. .e advantages of the proposal have been
illustrated via numerical example and applied to the fault
detection in train systems.
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