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A thermal power supply chain differs from other supply chains in terms of supplier selection, materials transportation, products
marketing, and so on. 'erefore, the green coal supplier evaluation model has its own characteristics. Although many methods
have been developed to solve the green supplier evaluation problem, little is known about how to evaluate the green coal supplier
in the thermal power supply chain. To overcome this drawback, an evaluation index system for the green coal supplier is
established, and new indexes such as price based on calorific value, quality indexes based on the designed coal type, and
transportation indexes such as transportation carbon footprint and environment indexes are created according to the char-
acteristic of the thermal power supply chain. 'en, principal component analysis (PCA) is used to create the main evaluation
indexes, and the support vector machine (SVM) is adopted for the evaluationmodel. Finally, a practical example is applied to show
that the model established in this paper outperforms others in evaluation accuracy.

1. Introduction

Green supply chain, also known as “Environmentally
Conscious Supply chain,” was first presented by Michigan
State UniversityManufacturing Research Society in 1996 [1].
As a modern management method taking the environment
and comprehensive resource utilization into consideration,
its purpose is to guarantee sustainable development of en-
terprises and society. 'erefore, an ecological design is re-
quired for the whole supply chain, from purchasing,
production, and consumption to waste recycling, in order to
ensure harmonization of environmental and supply chain
management [2, 3]. With the increasing pressures of climate
change and sustainable development of global energy, green
supply chain management for the thermal power industry is
receiving significant attention at the moment. For example,
as the largest carbon emission country in the world, the
Chinese government has announced that carbon emissions
in China would reach its peak by 2030, and carbon emissions
per unit of GDP would be reduced by 60%–65% compared
with 2005. Due to its high energy consumption

characteristics, coal and power industries are the key areas
for emission reduction and environment protection, and
building green power supply chains is a key method to solve
this problem.

'e thermal power supply chain consists of coal com-
panies, power plants, electric power transmission and dis-
tribution enterprises, and end-users of various types. Unlike
other industries, the thermal power supply chain has its own
distinguishing feature. Firstly, thermal power plants account
for a large proportion of China’s electricity industry.
According to the National Bureau of Statistics of China,
69.6% of electric power is generated by thermal power plants
in 2019, and more than 50% of total coal output is consumed
by thermal power plants. Coal cost accounts for almost 60%
to 70% of the total cost of power. Secondly, each plant is
designed for a particular type of coal. Power plants select
suppliers who can supply coal with specifications close to the
type the plants are designed for. 'irdly, since electricity
cannot be stored, the electricity generated must be used
immediately in real time; otherwise, it will cause grid
problems. Fourthly, as the final product cannot be stored,
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production strictly depends on demand. 'erefore, the
supply chain must be a demand-pull type, which is the most
significant feature of a power supply chain. If generation is
more than the demand, there will be a waste of electricity.
Conversely, shortage of electric power will affect down-
stream production and consumers’ consumption. Moreover,
electricity demand varies with area, time, season, climate,
and other aspects of people’s lives. Due to the difficulty of
storage and rapidly changing demand, precise control is
required for timely adjustments, to ensure stability of the
entire power supply chain operation. Finally, changes in the
supply chain could affect the entire community significantly
[4, 5].

As mentioned above, the coal supplier is the core link of
the thermal power supply chain, and the green level of the
coal supplier is of key importance to the whole supply chain.
Environmental pollution of coal mines in China has the
following characteristics: (l) emissions of waste water, waste
gas, and waste residue are huge and have a wide range of
environmental impacts; (2) some of the pollutants in waste
water, waste gas, and waste residue have serious effects on
human health and environment; (3) coal mine production
not only gives rise to direct pollution by emissions, but may
also cause indirect pollution; (4) sources of pollution factors
are complicated and are difficult to control; (5) coal-based
industries are resource intensive industries that involve long
construction periods; therefore, their environmental impact
is cyclical and continuity [6, 7].

For green supply chain management, green supplier
evaluation is of great importance since it affects enterprise
comprehensive competitiveness as well as green supply
chain’s operations. During green supplier evaluation, en-
terprises need to consider a group of feasible alternatives
based on certain criteria. 'erefore, green supplier evalua-
tion is a complex and typical multiple criteria decision-
making (MCDM) problem [8]. Many methods have been
developed to solve the green supplier evaluation problem
[9–11]. Lu et al. [12] presented a fuzzy analytic hierarchy
process (FAHP) approach for green supplier evaluation. Tsai
and Hung [13] constructed a fuzzy multilevel and multi-
objective programming model to evaluate green supplier in
the mobile phone industry. Hsu and Hu [14] determined the
best green supplier in hazardous substance management by
using the analytic network process (ANP). Awasthi et al. [15]
proposed a fuzzy TOPSIS method to evaluate the envi-
ronmental performance of green suppliers in the fuzzy
environment. Yeh and Chuang [16] determined the ranking
of green suppliers in production and transportation by using
the multiobjective genetic algorithm. Combined with arti-
ficial neural network (ANN) and two Mada Methods (DEA
and ANP), Kuo et al. [17] proposed a green supplier eval-
uation model. By considering economic and environmental
indicators, Chen et al. [18] integrated ANP and TOPSIS
methods to solve green supplier evaluation and selection in
brightening film industry. Hashemi et al. [19] utilized ANP
and improved gray relational analysis to determine the best
green supplier. Cao et al. [20] proposed an intuitionistic
fuzzy MCDM method to evaluate the green supplier in
which attribute values take the form of intuitionistic fuzzy

numbers and attribute weights are completely unknown in
advance. Sang and Liu [21] put forward an new distance
computing method for interval type-2 fuzzy sets (IT2 FSs)
and then constructed a IT2 FSs-based TODIM approach to
determine the ranking of green suppliers.

Although researchers have made some achievements in
green supplier evaluation, little is known about how to evaluate
the green coal supplier in thermal power supply chains. Only a
few research studies investigate this problem by using fuzzy
satisfaction methods and only consider economic factors (e.g.,
quality, price, and delivery time) as criteria for supplier eval-
uation [22, 23]. 'erefore, none of these methods consider the
special characteristics of thermal power supply chains, as
mentioned above. To address this research gap, in this paper, an
evaluation index system for the green coal supplier is estab-
lished according to the characteristics of the thermal power
supply chain. 'en, the principal component analysis (PCA) is
used to search the main evaluation indexes, and the support
vector machine (SVM) [24] is adopted for evaluation of the
green coal supplier. Finally, the practical examples show that
the model established in this paper outperforms others in
evaluation accuracy. 'e rest of this paper is organized as
follows. In Section 2, we establish the index system. In Section
3, we give the evaluation model based on SVM. Section 4 is the
example application and analysis. Section 5 concludes the
whole paper.

2. Establish the Index System

2.1. Original Indexes. In his seminal paper of green supply
chain management, Handfield [1] pointed out that envi-
ronmental indexes and information should be considered in
supplier evaluation, besides the traditional indexes such as
price, quality, and delivery. With an eye on the special
characteristics of the thermal power supply chain, the
evaluation index system for the green coal supplier is created
as follows.

2.1.1. Price Index. 'e first group includes indexes of price:
as the price varies with the calorific value of coal, X1 is used
to denote the price, as follows:

X1 �
pc + pt( 􏼁

c∗ 1000
, (1)

where pc is the coal price for a power plant (RMB/t), pt is the
transportation cost, and c is the coal calorific value (MJ/kg).
As coal price varies with the type of coal and the trans-
portation cost varies with the distance between the coal mine
and the power plant, they cannot tell the competitiveness of
the supplier. 'erefore, we use the relationship between the
price and calorific value as the price index, which can de-
scribe the actual cost of the supplier.

2.1.2. Quality Indexes. 'e second group includes all in-
dexes of coal quality. Usually, there is a designed coal type
for each thermal power plant. For a given plant, good quality
of coal means it is similar to the designed coal type.
'erefore, the ratio between coal quality indexes and the
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designed coal index is used as the quality index which in-
cludes the following:

Calorific index X2:

X2 �
ci

cd

, (2)

where ci is the coal calorific value of coal from the ith supplier
and cd is the designed value for the plant.

Moisture index X3:

X3 �
mi

md

, (3)

where mi is the coal moisture content from the ith supplier
and md is the designed value.

Volatility index X4:

X4 �
vi

vd

, (4)

where vi is the coal volatility from the ith supplier and vd is
the designed value. Coal volatility refers to the escaped
material (gas or liquid) after subtracting the water content
when it is remained at a certain temperature and isolated
from air. It is an important indicator for coal classification.

Ash index X5:

X5 �
ai

ad

, (5)

where ai is the ash content of coal from the ith supplier and
ad is the designed value.

'e closer the values of X2, X3, X4, and X5 are to 1, the
better the coal quality is for the given plant because it means
all coal quality indexes are close to the designed technical
standard of the plant. 'is would enable the power unit to
operate at high efficiency.

2.1.3. Transportation Indexes. 'e third group includes all
indexes of delivery, including X6 and X7. X6 is the trans-
portation carbon footprint and X7 is the delivery time.

'e transportation carbon footprint is calculated using

X6 � ct + lt, (6)

where ct is the CO2 emission value per km (kg/km) and lt is
coal lost per km; the coal value is transformed into its carbon
dioxide equivalent (kg/km).

Carbon footprint is presented as the basis of the eco-
logical footprint [25, 26], to measure the amount of CO2
emissions caused by an activity (or the aggregate amount in
the life cycle of a product) [27]. Modes of coal transportation
include railways, waterways, and roads. According to dif-
ferent origins of coal, transport mode, and distance, it is
possible to calculate specific energy consumption, and then,
ct can be worked out according to rail, water, or road
transportation of coal.

2.1.4. Environment Indexes. Mining is a labor-intensive
industry. In addition to coal mining and processing, its
associated resources are often developed and processed.

'ere are also some small machinery industries, chemicals
production, textile processing industry, and agriculture and
forestry production surrounding the mine. Although coal
suppliers are of different sizes and economic ownership, the
main pollution factors in coal are similar. 'ere are only
some small differences in secondary pollution as mineral
resource development projects are associated with different
factors.

'e first major concern is air pollution. Mining areas are
affected by coal burning which causes air pollution; main air
pollutants are harmful gases, and dust generated in the
process of underground mining. In China, most coal con-
tains gas. Gas and gas outbursts in mines account for 40% of
the total number of mines; the underground mining process
generates a large amount of mineral dust, CO2, H2 S, CO,
SO2, and other harmful gases. Underground mine explo-
sives, use of power machinery, fuel and coal combustion,
etc., also produce SO2, NOx, and other harmful gases. 'ese
gases are emitted into the atmosphere through the mine
ventilation system and becomemajor pollutants.'e gangue
in the stacking process also produces a large amount of
harmful gases and dust. Coal gangue shale is of a low cal-
orific value, and its stacking process generates and emits
large quantities of suspended dust particles into the atmo-
sphere. Due to bad ventilation and heating conditions,
spontaneous combustion occurs and produces SO2, CO2, H2
S, NOx, and other harmful gases. According to statistics,
spontaneous combustion has happened to 121 waste gangue
dumps in China’s key coal mines, which implies serious
threat to mining.

'e second main pollution is waste water. Coal mine waste
water includes infiltrated surface water, pore water, mine water,
underground aquifers, and water drained out of underground
mines, besides water used in the production process for dust
control, filling, and coal selection. According to statistics,
China’s coal mines’ waste water discharge is 2.2 billionm3, coal
selection waste water is 0.0128 billionm3, other industrial waste
is 0.013 billion m3, and sewage 0.4 billion m3. Among them,
waste water from coal preparation and related industrial
processes contains phenol, cresol, naphthol, and other harmful
organisms, especially flotation pharmacy and ammonia poly-
propylene toxic agents generated in the coal preparation
process, which can induce a variety of diseases. Mine water
contains large amounts of suspended solids, which are less
harmful to humans, but coal mine water constitutes the largest
mass of waste water. Coupled with decomposed plant and
manure, mineral oil, and emulsions leakage, mine water ac-
quires color and stench. Direct emissions seriously pollute
water bodies. In addition, leaching and erosion occur to the
gangue pile because of rains result in a number of harmful and
toxic coal wastes getting dissolved, to form a polluting runoff,
and eventually flow into the mine water system, causing water
pollution.

'e third main type of pollution is soil pollution. Mine
gangue dump is the primary cause of soil pollution.
According to statistics, total gangue dumping is about 3.0
billion tons covering an area of 550,000m2. Firstly, these
gangue dumps directly take up a lot of farmland, and sec-
ondly, due to the sun, wind, precipitation, and other forces
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of nature, a large number of harmful toxic substances such as
mercury, chromium, cadmium, copper, and arsenic pene-
trate into the soil through direct penetration, airborne dust
deposition, and rainfall. 'e radioactive material contained
in coal gangue results in radioactive contamination of soil.
'e dust generated from coal production and transportation
is also an important reason for soil pollution.

'e fourth is noise pollution. Due to the strong vibration
of equipment, such as air compressors, fans, rock drills,
picks, and miner, there are various types of noises on the
surface and under the ground in coal mining areas. Some
coal mines in North China, according to a survey, use
equipments that cause noise in excess of 90 dB account for
70% of all equipments, those making noise of 90–100 dB
account for 45%, and 25% of equipments generate noise of
100–130 dB. 'us, mechanical noise is considered the pri-
mary cause of noise pollution. With the continuous de-
velopment of coal mines, the increasing traffic and tonnage
of trucks traffic noise, noise pollution has become another
main pollution.

Based on the analysis above, the fourth group includes all
indexes of environment protection and energy saving, in-
cluding X8, X9, X10, and X11. X8 represents the environ-
ment protection level which should consider all pollution
factors as mentioned above. 'e value is calculated as
follows:

X8 � ap + wp + sp + np, (7)

where ap denotes air pollution, wp is water pollution, sp

represents soil pollution, and np is for noise. As these are
qualitative indexes, the method of questionnaire is used to
calculate the values. For example, in case of ap, informants
were asked to select “good,” “fine,” “fair,” or “poor” men-
tioned in the questionnaire. On the basis of the selection
frequency and the weight, a final mark is calculated using

ap � v1 v2 v3 v4( 􏼁

w1

w2

w3

w4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (8)

where ap is the final mark for ith supplier, v is the selection
frequency, and w is the mark for each grade; “good” is 4,
“fine” is 3, “fair” is 2, and “poor” is 0.

As mentioned above, mine water, gas, and gangue are
byproducts of the coal production process. Although they
cause a great deal of pollution to the mining area and nearby
regions, they can also be beneficial to mankind if they are
recycled properly. In the past, some mining areas in China
have made some achievements in this area, but the degree of
“three wastes” recycling is still quite low.'e future of “three
wastes” recycling is very broad and offers important eco-
nomic, environmental, and social benefits.

Mine water is a good water source, but our utilization of
mine water is very low.Water availability in somemine areas
is very tight; people get water at a fixed time only, in rationed
amounts. On the contrary, a great amount of mine water is
discharged directly, without being recycled. 'erefore, mine

waste water purification is imperative. As mine water is from
different sources, water quality also varies. 'e principle of
“separating clean water from effluents, separating different
effluents from each other, and treating them separately” can
be followed.

Mine gases contain high concentrations of CH4, which is
a valuable natural resource that can be used not only as high-
quality fuel but also as chemical raw materials. If it can be
recycled into usable resources, environmental, economic,
and social benefits will be significant. 'e main problems in
China’s mine gas recycling are low drainage and utilization
rates. To improve the drainage effect, funds should be
invested to enhance and further improve the drainage
system at the same time.

Gangue generation is about 150 million tons per year. So
far, the total gangue in China has reached more than 30
million tons. 'is solid waste has become a major source of
pollution for coal mines. Comprehensive utilization of
gangue can help save resources, reduce area waste, and
improve the environment, besides optimizing industrial
structure and promoting sustainable development. 'ey can
be comprehensively utilized as follows:

(1) Power generation: usually, gangue contains a certain
amount of fuel. Fixed carbon content is generally
10%–30%, and the heat value is sometimes more
than 12000 kJ/kg. It can either be directly used or
blended with a small amount of coal for power
generation. Its economic and environmental benefits
can be very significant.

(2) Brick-making and cement manufacture: gangue with
a low heat value can be used for production of brick
stone and cement.

(3) Fertilizer production: humid acid-rich gangue can be
used in fertilizer production by adding the right
amount of biological bacteria, phosphorus iron,
starch, and other materials.

(4) Filling collapsed area, land reclamation, or road
building.

Usages of gangue are wide ranging. In addition to the
abovementioned purposes, it can also produce aluminum
chloride, a purifying agent PAC, and can be used for re-
covery of sulfuric acid from pyrite for production of raw
materials used to make pottery.'erefore, utilization gangue
should be encouraged to increase the green level of the
supply chain.

Based on the analysis above, we construct X9 as the index
to evaluate the “three waste” comprehensive utilization rate,
which can be calculated as follows:

X9 � s1 × w1 + s2 × w2 + s3 × w3, (9)

where s1 is the gas utilization rate, s2 denotes the mine water
utilization rate, s3 is the coal gangue utilization rate, and
w1 � w2 � w3 � 1/3 is the weight.

X10 is the local environmental carrying capacity. Experts
are invited to give marks for this qualitative index by using
Table 1.
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2.2. Index Selection by PCA. As some of the original indexes
are co-related to a high degree, information repetition is
hard to avoid. On the contrary, direct calculation is difficult
because the number of indexes is very large. 'erefore,
principal component analysis (PCA) is used to screen the
main indexes.'emain idea of PCA is to use dimensionality
to reduce the number of indicators by deriving composite
indicators. In empirical studies, in order to comprehensively
and systematically analyze problems, we must consider a
number of factors. 'ese factors, commonly referred to as
indicators, are involved in multivariate statistical analysis
and are also known as variables. As each variable reflects a
certain characteristic of the research questions and they have
some correlations among each other, information from such
statistics sometimes overlaps to some extent. When we study
the multivariables problems by statistical methods, toomany
variables increase the amount of computation and increase
the complexity of the problem. For quantitative analysis, it is
good to get more information from fewer variables.

'e purpose of PCA is to use fewer variables to explain
most of the variation of the original data by turning the large
number of related variables into a group of highly inde-
pendent or relevant variables. Usually, some new variables
called principal components are chosen from the original
ones. 'us, principal component analysis is actually a di-
mension reduction method. 'e basis mathematic model is
as follows [28, 29]:

Step 1. All the data are normalized. Suppose
x1, x2, x3, . . . , xk are index variables; after standardization,
we get standard variables X1, X2, X3, · · · , Xk, and

Xj �
xj − xj

sj

. (10)

Here, xj is the mean of samples and sj is the standard
deviation of samples.

Step 2. 'e characteristic value of the correlationmatrix and
the corresponding characteristic vector calculation: if there
is a certain linear transform, then

Y1 � w11X1 + w12X2 + . . . + w1KXK

Y2 � w21X1 + w22X2 + . . . + w2KXK

· · · · · ·

YK � wK1X1 + wK2X2 + . . . + wKKXK

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(11)

Formula (11) transforms standard variables Xj (j� 1,2,
..., k) into Yi, (i� 1,2, ..., k), and this linear transform meets
three properties, as follows:

(1) Yi and Yj are independent of each other, i≠ j, i,
j� 1,2, ..., k

(2) var(Y1)≥ var(Y2)≥ . . . ≥ var(Yk)

(3) w2
i1 + w2

i2 + . . . + w2
ik � 1, j� 1,2, ..., k

Y1, Y2, · · · , Yk are called the principal components of
X1, X2, · · · , Xk.

Step 3. List the indexes according to their contribution rate
from the largest to the lowest and calculate the cumulative
contribution rate. When the cumulative rate meets the re-
quirement of information accuracy (usually above a certain
threshold, such as 95 percent), the corresponding top in-
dexes are selected as the main indexes for the green coal
supplier evaluation in the next step.

2.3. Experts’ Original Evaluation. 'e selected supplier
samples are divided into four categories: “good,” “fine,”
“fair,” and “poor.” Supply chain management experts in the
field of thermal power industry were invited to evaluate each
supplier, and their comments were treated by the Delphi
method. Finally, the category of each project was confirmed
and used to train the SVM evaluation model in the next step.

3. Evaluation Model Based on SVM

Support vector machine (SVM) is a popular method for
classification proposed by Vapnik [24]. 'is approach is sys-
tematic and properly motivated by the statistical learning
theory. Unlike most traditional neural network models that
implement the empirical risk minimization principle, the SVM
implements the structural risk minimization principle, which
seeks to minimize the training error and a confidence interval
term. 'is eventually results in better generalization abilities.

Due to its good properties such as automatic selection of
models (parameters and locations of basic functions), being
trained with quadratic programming (globally optimal so-
lution existed) and good learning ability for small samples,
the SVM has been widely used by academia and industry in
recent years [30].

3.1. Principle of SVM Classification. Let (Yi, zi)􏼈 􏼉
n

i�1 be a
given set of training data of two separate classes, where Yi is
the ith input vector and zi ∈ − 1, +1{ } indicates the corre-
sponding desired output, the class label. 'e objective of
SVM is to determine optimal weight w0 and optimal bias b0
such that the corresponding hyperplane separates the pos-
itive and the negative training data with maximum margin,
and this produces the best generation performance. As the
actual problems in life are usually nonlinear in nature, it is
assumed that the two classes can be separated by a nonlinear
classification method. 'e nonlinear SVM classification
method can be introduced such that the original training
data Yi in input space Y is projected into a high-dimensional

Table 1: Mark of the local environmental carrying capacity.

Situation Cannot load Maintain Sustainable
X10 (0–2) (3–6) (6–10)
X11 is the coal sulfur content, which has great impact on waste emissions of power plants.
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feature space F via a Mercer kernel operator K, followed by
construction of the optimal separating hyperplane in the
feature space. In a word, the whole process is to confirm the
decision function:

f(y) � sign 􏽘
SV

aiziK yi, y( 􏼁 + b0⎡⎣ ⎤⎦, (12)

where ai is the Lagrange multiplier and K is a symmetric
positive definite function that satisfies Mercer conditions as
follows:

K(y, z) � 􏽘
∞

m�1
amϕ(y) · ϕ(z), am ≥ 0,

BK(y, z)g(y)g(z)dydz > 0, 􏽚 g
2
(y)dy <∞,

(13)

in which the kernel represents legitimate inner products in
input space:

K(y, z) � ϕ(y) · ϕ(z). (14)

In the high-dimensional feature space, the dual Lagrange
multiplier is

L(α) � 􏽘
n

i�1
αi −

1
2

􏽘

n

i�1
􏽘

n

j�1
αiαjzizjK yi, yj􏼐 􏼑,

􏽘
n

i�1αizi � 0, αi ≥ 0.

(15)

Many kernel functions can be used in the SVM, such as
the polynomial K(y, z) � (1 + yz)d and the Gaussian
K(y, z) � exp(− |y − z|2/2σ2). 'e training of SVM is a
process to solve function (15), which is also a quadratic
programming problem.

3.2. 3e Multiclassification SVM. 'e basic support vector
machine (SVM) is for pair-class problems. Since green coal
supplier evaluation in this paper is of four categories, a
multiclassification SVM should be established accordingly.
Here the method of SVM decision tree [31] is adopted, and
its structure is shown in Figure 1.

3.3. 3e SVM Evaluation Model. On the basis of data treat-
ment and index selection, the samples can be described as
(Yi, yi)􏼈 􏼉

n

i�1, where Yi is the ith input vector (index value of the
ith project sample); yi ∈ − 1, +1{ } indicates the corresponding
desired output and the class label (evaluation result from
thermal power supply chain experts). By training the SVM
Classifier, a map between the index values and experts’ eval-
uation result is set up, which can be used to judge the green coal
supplier level of a given thermal power plant.

4. Example Application and Analysis

In this section, 20 coal suppliers who have performance of 10
years were selected for themodel.'eir evaluation results for
each year are given by the methodsmentioned in Section 2.3.
In order to enlarge the sample set for SVM, we first regard

the annual performance of each supplier as one sample, and
then, we have 20⊆10� 200 samples. Secondly, we triple the
total samples, and 510 (85%) of them are used to train the
SVM model, and the rest is used to test model accuracy.

4.1. Index Selection by PCA. 'e PCA method is used to
screen the main index, and the result is shown in Table 2.

It can be learned from Table 2 that the cumulative
contribution rate of the top four indexes is above 98%. 'at
is to say the top four indexes can be chosen as indexes for
evaluation in the next step. Since the cumulative contri-
bution rate of the first 4 principal components is above 98
percent, they serve as the new variables. 'e conversion
coefficient between principal components and former in-
dices is shown in Table 3.

4.2.3e Training of SVM. 'e results and discussion may be
presented separately or in one combined section, and may
optionally be divided into headed sections.

Index values (Y1, Y2, Y3, Y4) of samples mentioned
above are used as the input for the SVM, while experts’
evaluation is the output.'eGauss function is selected as the
kernel function:

K 􏽥Yi,
􏽥Yj􏼐 􏼑 � exp −

􏽥Yi − 􏽥Yj

�����

�����
2

σ
⎛⎜⎜⎝ ⎞⎟⎟⎠, (16)

where σ is the width parameter of Gauss kernel.
Usually, the value of parameters σ is selected according

to experience; here, we let σ � 0.25, 0.50, and 1.00 separately
to find the best value of σ.

4.3. Results Analysis. 'e applications results for each σ are
listed in Table 4. 'e same samples and process are also used
in a traditional artificial neural network, and the result of
testing accuracy is 84.44%.

From the above results in Table 4, it can be learned that
the testing accuracy of the SVM model in this paper is well
up to the requirement. 'e maximum testing accuracy is
95.6%, and the minimum value is 90.0%, which are all better
than the ANN model. 'erefore, the proposed model has
strong advantages in solving the green coal supplier eval-
uation problem.

SVM0

CLASS 1:GOOD

CLASS 2:FINE

CLASS 3:FAIR

CLASS 4:POOR

SVM2

SVM1

Figure 1: 'e SVM decision tree.
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5. Conclusions

An evaluation model for the green coal supplier in the
thermal power supply chain is established, based on
principal component analysis and support vector machine,
in this paper. Firstly, an evaluation index system for the
green coal supplier is established according to character-
istics of the thermal power supply chain. 'en, principal
component analysis is used to select the main indexes, and
the SVM is adopted to classify the evaluation results. Fi-
nally, a comparison is made between SVM and ANN. 'e
results from this study demonstrate that the AHP-SVM
evaluation model gives consistently better classification
results as compared with other methods. It can be widely
used in green coal supplier evaluation as well as other
related practical fields.
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