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-e evaluation for autonomous capability of ground-attack unmanned aerial vehicle (UAV) comes from the demand of reality,
which determines the operational use of airborne equipment authority. It essentially entails a multicriteria decision-making
process accounting for evaluation model and uncertainties. Firstly, as for the construction of evaluation model, the index model is
proposed from four aspects of observation capability, decision capability, action capability, and security capability, namely,
ODAS, which analogizes cognitive behavior mechanism of human based on airborne equipment; then, to solve uncertainties of
randomness and fuzziness in the process of autonomous capability evaluation, a cloud model approach is proposed, which
expresses uncertainties by the certainty degree distribution. Finally, the cloudmodel-based approach is tested by evaluating typical
UAVs and comparing with Hopfield neural network method. -e results show that the evaluation of the autonomous capability
based on the cloud model is accurate and more representative than the Hopfield neural network method.

1. Introduction

-e ground-attack UAV is ranked as one of themain combat
equipment in the future. -e complex operational tasks and
variable operational environment make it necessary for
UAV to have a high degree of autonomous capability [1]. In
the actual battle, the completion of tasks requires the ef-
fective man-machine division between ground station and
UAV system, which depends on the classification of the
autonomous capability level. Moreover, with the rapid de-
velopment of artificial intelligence theory, it has changed the
operating rules of the previous unmanned system and made
the autonomous system more smart and efficient. For ex-
ample, machine learning algorithms can analyze and predict
sudden communication problems in uncertain and complex
scenes. Applying machine learning algorithms to commu-
nication systems can make systems more intelligent and
autonomous [2, 3]. -erefore, it is of great military signif-
icance to scientifically establish an evaluation system for the
autonomous capability of ground-attack UAV and

formulate the criteria for grading autonomous systems with
the national conditions, which can improve the combat
effectiveness of equipment systematically.

At present, the research on evaluation model of au-
tonomous capability is in its infancy both here and abroad. A
general survey of evaluation models shows that typical ones
include Sheridan’s levels of automation (LOA) [4], auton-
omous control level (ACL) [5], autonomy levels for un-
manned systems (ALFUS) [6], four-level model in man-
machine division [7], and reference frame of autonomous
system [8]. -ese models apply to particular conditions and
have certain limitations. For instance, with the vague clas-
sified implication, ACL divides the UAV system into 10
grade standard and only reflects the relative autonomy
degree between different UAVs. Although some progress has
been made in the evaluation model abroad, there is still a big
gap in the quantitative evaluation. It does not analyze au-
tonomous capability for a particular equipment, nor does it
elaborate on the source of indicators. -erefore, the ODAS
model is proposed for ground-attack UAV by analoging
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man-machine cognitive model. With previous research [9],
it explains the source of evaluation indicator in detail and is
ready for quantitative evaluation of ground-attack UAV.

Due to the uncertainty of physical cognition and
monitoring information of UAV system, the key to quan-
titative evaluation of autonomous capability is to deal with
deviation caused by uncertainty. -ere are two types of
uncertainty that should be considered in autonomous ca-
pability evaluation: (1) randomness, which is often exhibited
in the monitoring and analysis of data-related autonomous
capability; and (2) fuzziness, which is often reflected in the
evaluation of classification standard, evaluation class. Tra-
ditional evaluation methods usually only consider the
fuzziness or randomness and ignore another in evaluation
information. For instance, the fuzzy AHP was used to study
the autonomous evaluation level of unmanned systems in
literature [10] and q-Gaussian fuzzy neural network was
used to evaluate the operational effectiveness of aircraft in
literature [11], which ignore the importance of randomness;
Instead, particle swarm optimization method was used to
evaluate water quality in literature [12] and simulated
annealing optimization algorithm was used to access land
ecological security in literature [13], which ignore the im-
portance of fuzzy.

A new hybrid model considering randomness with
fuzziness, namely, cloud model [14], is an efficient cognitive
technique which is expressed with three fixed parameters-
mathematical expectations, entropy, and superentropy.
Based on the normal distribution and a certainty function,
the normal cloud mode quantifies both randomness and
fuzziness by means of three fixed parameters, being more
advantageous than single randomness or fuzziness type
models. -e normal cloud model has been widely applied in
information science, such as water quality assessment [15],
risk assessment of water inrush in karst tunnels [16], sus-
tainability assessment on mineral resources [17], and target
threat level assessment [18]. Above evaluations, making use
of the cloud model is efficient to solve relatively random and
fuzzy issues.

Based on the abovementioned evaluation model and
evaluation method review, the primary motivations of this
study are outlined as follows:

(1) -rough extending the man-machine cognitive be-
havior, a new model, namely, ODAS model, is
proposed, reflecting the central concept about au-
tonomy, which has no official definition. Moreover,
evaluation index is selected from actual airborne
equipment, which has more practical significance to
develop key equipment technique.

(2) It is the first time to achieve quantitative evaluation
of autonomous capability by introducing cloud
model theory in this field. Furthermore, in order to
prove the validity and rationality of evaluation
theory, the simulation is tested by typical UAVs in
this paper.

(3) In order to reflect subjective differences of experts
and objective differences of indicators, a new weight
method regarding improved distance measure

approach combined with entropy weight is pro-
posed. -e similarity is calculated by the distance of
cloud drop rather than the traditional method based
on ordinate of cloud drop.

To sum up, the rest of the paper is organized as follows:
Section 2 establishes evaluation index system integrated with
the ODAS model on the basis of analyzing the performance
parameters of airborne equipment and introduces basis
theory of cloud model theory. Section 3 discusses the key
issues in evaluation process and provides appropriate so-
lutions. Section 4 illustrates the application of the technique
to typical UAV in America and assesses the validity of the
proposed cloud model-based approach by comparison with
other methods. -e conclusions are given in Section 5.

2. Model and Methodology

2.1. Evaluation Model. Autonomous capability of UAV
refers to the ability of unmanned systems to perceive, ob-
serve, analyze, communicate, plan, make decision, and take
action [1], which means that it can sense the external sit-
uation online, make decision in flight as scheduled, and carry
out the mission autonomously. -e development of au-
tonomous capability of UAV system is a gradual process.
From remote control flight to autonomous flight and man-
in-loop to man-out-loop, it reflects the change of man-
machine relationship. -e US Air Force Research Labora-
tory shows that the highest level of autonomous capability is
fully autonomous swarms, which does not mean that the
UAV can be completely out of human control, and the
human still has the authority to monitor the status of UAV.
From the perspective of man-machine joint cognition, the
man-machine relationship is shown in Figure 1. UAV
system depends on human beings to carry out navigation,
guidance, control, and other tasks. Only using mechanical
and electrical equipment to replace human function can the
fully autonomous operation be realized.

-erefore, the core of autonomous system is to replace
human function in uncertain environment. -e only way to
obtain this capability is that UAV has a human-like behavior
mechanism [19]. -e human nervous system is a perfect
autonomous system, which has three layers of hierarchical
structure to support three different types of behavior
mechanisms: declarative behavior, procedural behavior, and
reflective behavior. Declarative behavior refers to the rea-
soning, judgment, and other high-level cognitive behavior,
which is the most important executive body of decision-
making. Procedural behavior refers to the proficiency be-
havior produced by the middle nerve center, which is re-
sponsible for the transmission of instructions and sensing
information between the upper layer and the lower layer.
Reflex behavior is the control and execution of concrete
behavior by the underlying nerve center, which is the most
important generator of actual control behavior.

Mapping declarative behavior, procedural behavior, and
reflective behavior to structure layer of autonomous system,
it extends four kinds of capabilities, namely, ODAS, from
observation capability, decision capability, action capability,
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and security capability in Figure 2. Among them, obser-
vation capability and security capability respond to proce-
dural behavior; decision capability responds to the
declarative behavior and action capability responds to re-
flective behavior. Based on the above capabilities, an eval-
uation model of ODAS is proposed hierarchically.

Based on the ODASmodel and previous research on the
source of evaluation indicator in detail [9], 31 equipment
parameters are selected as evaluation index for autono-
mous capability of ground-attack UAV. Evaluation index
system is established according to the performance pa-
rameters of existing airborne equipment, which can dis-
tinguish the differences of key technologies. Dividing
evaluation index system into three layers, goal layer rep-
resents four kinds of capabilities extended by the man-
machine cognitive model; subsystem layer represents rel-
ative airborne equipment extended by the goal layer, and
index layer represents relative performance parameters
extended by the subsystem layer. Evaluation index system
is shown in Table 1.

2.2. Evaluation Methods

2.2.1. Definition. Cloud model theory is a modern mathe-
matical theory for the study of compound uncertainties,
which realizes the transformation between qualitative
concepts and quantitative data based on probability statistics
and fuzzy set. Let U be the universe of discourse and C be a
qualitative concept in U. If x ∈ U is a random numerical
realization of C, which satisfies
x ∈ N(Ex, E′2n ),En

′ ∈ (En, H2
e), the certainty degree of x

belonging to concept C satisfies

u(x) � exp −
x − Ex( 􏼁

2

2E
′2
x

⎛⎝ ⎞⎠. (1)

-en, (x, u(x)) is called cloud drop and the distribution
of x in the universe U is a normal cloud [20].

In this way, the normal cloud model C � (Ex, En, He)

can effectively integrate the randomness and fuzziness of
concepts by the three parameters of expectation Ex, entropy
En, and hyperentropy He. As shown in Figure 3, taking the
cloud model C1 � (6, 2, 0.08),C2 � (6, 1, 0.08), and
C3 � (10, 1, 0.08) as example, Ex represents the highest
point in the cloud model, which can represent qualitative
concepts in the universe; En is the uncertainty measure of Ex,
reflecting the acceptable range of cloud drop in the universe;

He is the uncertainty measure of En, reflecting the dispersion
degree of cloud drop [21].

2.2.2. Forward Cloud Generator. Forward cloud generator is
a tool that converts qualitative concepts into quantitative
values and generates cloud drop in accordance with a
probability distribution through parameters (Ex, En, He).
Forward normal cloud model with N drops can be generated
by the following steps:

(1) Generate a normally distributed random number xi

with expectation Ex and variance En.
(2) Generate a normally distributed random number yi

with expectation En and variance He.
(3) Calculate u(xi) � exp(− (xi − Ex)2/2y2

i ); the coor-
dinate of the cloud drop is (xi, u(xi)).

(4) Finally, repeat step 1–step 3 until N cloud drops are
generated.

As shown in Figure 4, considering the importance of
different cloud models in the universe, multiple cloud
models are combined into a comprehensive cloud model,
namely, weighted cloud model. Let C(Ex, En, He) be the
weighted cloud model and C1(Ex1, En1, He1), C2(Ex2,

En2, He2). . .Cn(Exn, Enn, Hen) be the N cloud models in the
domain. -e calculation formula is as follows [22]:

Ex � w1Ex1 + w2Ex2 + · · · + wnExn,

En �
w1Ex1En1 + w2Ex2En2 + · · · wnExnEnn

w1Ex1 + w2Ex2 + · · · wnExn

,

He �

�����������������������

w1H
2
e1 + w2H

2
e2 + · · · wnH

2
en

􏽱

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

where w � w1, w2, . . . , wn􏼈 􏼉 is the weight set of cloud model
in the universe. When w1 � w2 � · · · � wn, the weighted
cloud model C(Ex, En, He) is the average cloud model. For
this article, we use the average cloud model to combine
multiple cloud models into a comprehensive cloud model.
-erefore, the weight of indicator cloud model is same. We
calculate the weight of cloud model from the number of
indicator cloud models. -e formula is as follows:

w1 � w2 � · · · wn �
1
n

, (3)

where n is the number of indicator cloud models.

3. A Cloud Model-Based Assessment Approach

According to the established evaluation index system in
Section 2.1, the cloud model-based assessment approach can
be illustrated in Figure 5. However, three outstanding issues
exist in the process when employing normal cloud model to
quantitative evaluation of autonomous capability:(1) how to
define the ideal bilateral boundaries on given levels (I, II, III,
IV, and V) of autonomous capability; (2) how to calculate
the weight of evaluation index; and (3) how to express the
certainty degree of evaluation index.

Human

Guidance Control UAVs

Mission
goals

Navigation

Estimation

Machine

Figure 1: Man-machine interaction model.
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3.1. Bilateral Boundary. -e division of bilateral boundary
concerning indicator level is the key to confirm parameters
(Ex, En, He) of normal cloud model. Dividing evaluation
indicator into five levels, grade I is the lowest level and grade
V is the highest level. According to the existing database, 200
data of evaluation indicator are selected by bubble sorting
and are divided into five intervals, taking the average value of
five intervals as bilateral boundary on given levels (I, II, III,
IV, and V).-e bilateral boundaries are shown in Tables 2–6
with previous research [9]; it explains the source of evalu-
ation indicator in detail. In order to make the parameters of
different airborne equipment comparable, the data are
processed dimensionless by means of logarithmic method,
weighted arithmetic, and exponentiation. At the same time,
the addition rule is used to express the relationship between
each capability and underlying indicators.

3.2. Index Weight. Index weight reflects the contribution of
evaluation index to autonomous capability, and the differ-
ence among index weight is mainly due to three aspects: (1)
the experts attach different importance to evaluation index,
reflecting subjective differences of experts, (2) the essential
function of each index is different, reflecting the objective
differences among the indicators, and (3) the reliability of
evaluation indexes is different, reflecting the different reli-
ability about information provided by each index. Based on
the abovementioned problems, the index weight is calcu-
lated by a new method about the combination of distance
measure approach and entropy weight method. Distance
measure approach considers subjective factors on the index
weight of subsystem layer mentioned in Section 2.1; entropy
weight method considers objective factors and reliable de-
gree on the index weight of index layer.

3.2.1. Distance Measure Approach. Let evaluation index be
Vi(0≤ i≤ 10), experts be Kj(0≤ j≤ λ), and the weight of
experts Kj on index Vi be uij. For qualitative indicator, it is
ambiguous for experts to give specific weight value di-
rectly. -erefore, uij is expressed as Cij � (Exij, Enij, Heij)

by the forward cloud generator and distance measure
approach is used to calculate uij, according to the simi-
larity between cloud model Cij and average cloud model
Ci . -e formula of average cloud model Ci � (Exi, Eni, Hei)

is as follows:

Exi �
Exi1 + Exi2 + · · · Exij􏼐 􏼑

j
,

Eni �
Ex1En1 + Ex2En2 + · · · ExnEnn

Ex1 + Ex2 + · · · Exn

,

Hei �

�������������������

H
2
ei1 + H

2
ei2 + · · · H

2
eij􏼐 􏼑

j

􏽶
􏽴

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

In order to compare the similarity between cloud
model Ci j and Ci , the distance measure approach is
proposed in the universe. In the cloud model C1 and C2,
T(T<N) cloud drops are selected in interval
[EX − 3En, EX + 3En]. According to the bubble sort of
index value, the certainty degree u(xi) of cloud drops is
stored in space drop1 and drop2, respectively. Compared
to traditional methods [14], the distance between cloud
model C1 and C2 relies on the distance of cloud drop
rather than the ordinate of cloud droplet. -e calculation
formula of the distance measure between cloud model C1
and C2 is as follows:
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Figure 2: Man-machine cognitive model.
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Figure 3: Digital characteristics of cloud model. C1 � (6,2,0.08), blue dots; C2 � (6,1,0.08), red dots; C3 � (10,1,0.08), green dots.

Table 1: Evaluation index of autonomous capability.

Goal layer Subsystem layer Index layer Unit Access

A1. Observation
capability

B1.WindShear threat observation
capability

C1. Minimum detection
distance /km

Wind shear detection and warning
system (AWSDWS)C2. Early warning time /s

C3. Leaking-detecting
probability /%

B2. Operational target
observation capability

C4. Data fusion rate /%

Synthetic aperture radar (SAR)C5. Maximum resolution /m
C6. Operating range /km
C7. Peak power /w

A2. Decision
capability

B3. Tactical decision capability

C8. Attribute value of
decision —

Decision-making expert systemC9. Command value of
combat tactics —

C10. Reasoning value of
tactical rules —

B4. Computing capability C11. Operating speed — Main processing unitC12. Read/write speed GB/s

A3. Action capability

B5. Flight capability

C13. Maximum climb rate m/s

Flight data recorder system

C14. Maximum permissible
overload /g

C15. Maximum penetration
speed km/h

C16. Maximum flight altitude /m

B6. Cooperative guidance
capability

C17. Information dimension —
Air-to-surface missileC18. Position accuracy /%

C19. Beam width —

B7. Cooperative attack capability
C20. Missile scope /km

Aircraft fire control systemC21. Hangers number —
C22. Hitting accuracy /%

B8. Link communication
capability

C23. Transmission rate Mbit/
s

Data bus communication systemC24. Communication mode —
C25. Information delay —
C26. Encryption degree /%
C27. Data loss rate /%

A4. Security
capability

B9. Health management
capability

C28. False alarm rate /%

Prognostics health management (PHM)C29. Fault isolation rate /%
B10. Failure prognostics

capability
C30. Prediction-error time /s

C31. Average predictable time /%
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d C1, C2( 􏼁 � d drop1, drop2( 􏼁

�
1
T

􏽘

T

i�1

��������������������������

x1i − x2i( 􏼁
2

− u x1i( 􏼁 − u x2i( 􏼁( 􏼁
2

􏽱

,

(5)

where u(x1i) is the certainty degree of cloud model C1;
u(x2i) is the certainty degree of cloud model C2. -erefore,
the similarity between cloud model Ci j and average cloud
model Ci can be given as follows:

sim Ci, Cij􏼐 􏼑 � 1 −
d Ci, Cij􏼐 􏼑

xmax − xmin
, (6)

where xmax − xmin represents the range of valid universe.
-en, the expert weight uij and average weight ui given by
all experts can be calculated by

uij �
sim Ci, Cij􏼐 􏼑

􏽐
λ
j�1 sim Ci, Cij􏼐 􏼑

, s.t.
􏽘

λ

j�1
uij � 1,

0≤ uij ≤ 1,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ui �
􏽐

λ
j�1 uij

λ
.

(7)

3.2.2. Entropy Weight Method. Here, a comprehensive
weight calculating algorithm coupled with entropy is pro-
posed, which is expected to balance the potential subjective
factor of distance measure method. -e notion of “entropy”
taken from the theoretical foundation of modern infor-
mation theory means the change degree of evaluation index.
Standardizing evaluation index vi j to rij and forming data
matrix, R � (rij)m×n, as

rij �
vij − min vij􏼐 􏼑

max vij􏼐 􏼑 − min vij􏼐 􏼑
,

R �

r11 r12 · · · r1n

r21 r22 · · · r2n

⋮ ⋮ ⋮ ⋮

rm1 rm2 · · · rmn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(8)

where rij represents the standard value of ith indicator on jth
sample set; m is the number of indicators; n is the number of
sample sets. In autonomous capability assessment, entropy
under ith indicator can be calculated by

pij �
rij

􏽐
n
j�1 rij

,

ei � − k 􏽘
n

j�1
pij · Inpij􏼐 􏼑, k �

1
Inn

,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(9)

where ei represents the uncertainty of sample data with n
potential statements; pij is the frequency of the jth state-
ment. Now, the combined weight in ith indicator wi can be
attained, based on average weight ui mentioned in Section
3.2.1 and entropy-based weight in ith indicator bi, as

bi �
1 − ei( 􏼁

􏽐
m
i�1 1 − ei( 􏼁

,

wi �
uibi

􏽐
m
i�1 uibi

.

(10)

3.3.CertaintyDegree. Before calculating the certainty degree
of evaluation index, cloud model of each indicator should be
generated. According to the bilateral boundary provided in
Tables 2–6, the cloud model parameters (Ex, En, He) are
obtained by the following formula (one has [23]):

E
p
x �

c
p
max + c

p

min􏼐 􏼑

2
,

E
p
n �

c
p
max − c

p

min􏼐 􏼑

6
,

He � β,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

where p is the level of autonomous capability; bilateral
boundary of the form (c

p

min, c
p
max) is the interval value

corresponding to a certain autonomous capability level; β is
usually a constant which represents the degree of ambiguity,
generally 0.001–0.1 [24]. As shown in Figure 6, the cloud
model under given levels (I, II, III, IV, and V) is generated by
the forward cloud generator, in which the horizontal co-
ordinate represents the index value and the vertical coor-
dinate represents the certainty degree.

-en, bringing indicator value ci into generated cloud
model, the certainty degree set u(ci)􏼈 􏼉 is calculated by
Section 2.2.2 under given levels (I, II, III, IV, and V). In order
to eliminate outliers, the distribution function of certainty
degree is approximated by fitting curve.-emaximum value
of distribution function is taken as the maximum certainty
degree of umax(ci).Combining index weight wi with the
maximum certainty degree umax(ci), the comprehensive
certainty degree UP is given as

FCG

{Ex1, Ex2, ..., Exn}

{En1, En2, ..., Enn}

{He1, He2, ..., Hen}

Drop (x, y)

Figure 4: Forward weighted cloud generator.
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Up � 􏽘
m

i�1
umax ci( 􏼁wi, (12)

here p is taken as the autonomous capability level under
comprehensive certainty degree Up.

4. Application: Case Studies

4.1. Metrics. Based on the ODAS model, this section ex-
plains the metrics of autonomous capability level of ground-
attack UAV in detail. -e autonomous capability of ground-
attack UAV is divided into five levels, with the specific

Table 4: Action capability.

Indicator level
Flight capability Cooperative guidance capability

C13m/s C14/g C15 km/h C16 (m) C17 C18 (%) C19
V 150 8 1480 20 12 95 2
IV 100 6.5 1200 15 10 92 1.5
III 65 5.4 850 12 8 88 0.92
II 38 4 350 10 6 84 0.57
I 20 3.2 130 7 3 80 0.32

Step 1: demarcate
bilateral boundaries on

given levels

Input: indicator 
data

Cloud model of 31
evaluation indicator

Step 2: generate
cloud model

Level: I to V

Weight

Step 3: calculate the
weights of indicator

Output: confirm
autonomous capability

level

.....
.....

Step 4: calculate
certainty degree

Figure 5: Evaluation process for autonomous capability of ground-attack UAV.

Table 2: Observation capability.

Indicator level
WindShear threat observation capability Operational target observation capability
C1 (km) C2 (s) C3 (%) C4 (%) C5 (m) C6 (km) C7 (w)

V 6.5 60 1 100 0.1 80 750
IV 5.6 50 3 80 0.2 64 600
III 4.5 35 6 60 0.3 50 320
II 3 25 8 45 1 26 230
I 1.2 15 10 25 2 18 150

Table 3: Decision capability.

Indicator level
Tactical decision capability Computing capability

C8 C9 C10 C11 C12GB (s)
V 50 29 23 600 25
IV 45 22 18 200 18
III 39 18 14 50 10
II 32 12 11 30 3.2
I 25 8 9 20 1.6

Mathematical Problems in Engineering 7



content of each level being mapped to autonomous capa-
bility by referring to literature [25].-e metrics of auton-
omous capability are shown in Table 7.

4.2. Initial Results. -e cloud model-based approach is used
to evaluate autonomous capability levels of three repre-
sentative UAVs. -e weights of evaluation index are shown
in Table 8.

After calculating index weights, the certainty degree
distribution of each level under all indicators is calculated
according to Section 3.3. Due to the large number of
evaluation indicators, only certainty degree distributions on
given levels (I, II, III, IV, and V) of weather threat obser-
vation capability are illustrated in Figure 7 as a reference.

From Figure 7, we obtain different distribution patterns
of certainty degrees at each level of weather threat obser-
vation capability. Not all levels have distributions for most
cases and the distribution ranges are also different for those
levels which have distributions. Certainty degrees at given
levels are determined by the mean of certainty degrees
obtained from 2000 simulations. -e final autonomous
capability levels are calculated by maximum certainty degree
indicating the most probable value.

4.3. Results byReferenceMethod. Based on previous research
[26], the Hopfield neural network method is used to
compare autonomous capability levels of typical UAVs with
cloud model theory. Index coding and simulation result of
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Figure 6:-e certainty degree of index on given levels (I, II, III, IV, and V). Level I, red dots; level II, blue dots; level III, green dots; level IV,
yellow dots; level V, turquoise dots.

Table 6: Security capability.

Indicator level
Health management capability Failure prognostics capability

C28 (%) C29 (%) C30 (s) C31 (%)
V 0.5 100 0.5 10
IV 2 97 1.1 30
III 3.5 93.9 2.5 52
II 5 87.1 3.9 86
I 8 85 5 100

Table 5: Action capability.

Indicator level
Cooperative attack capability Link communication capability

C20 (km) C21 C22 (%) C23Mbit (s) C24 C25 C26/% C27 (%)
V 200 16 98 3 8 5 1 0.2
IV 100 8 95 2 6 18 0.8 2.2
III 50 6 90 1.5 5 30 0.6 5
II 16 4 85 1 2 50 0.3 8.3
I 8 2 80 0.5 1 100 0.1 10
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test samples based on Hopfield neural network are shown in
Figures 8 and 9. Meanwhile, the compared evaluation results
are listed in Table 9.

-e evaluation method based on cloud model theory
provides the membership distribution diagram of evaluation
index under index grades, which enables us to feel the dif-
ference between standard grade value and evaluation index

value more intuitively. However, the Hopfield neural network
method directly provides specific evaluation result, which
cannot provide more difference in detail. -e results show that
autonomous capability levels of UAV1, UAV2, and UAV3 are
grades III, I, and II. Compared with the Hopfield neural
network method, the evaluation method based on cloudmodel
theory is more representative than the reference method.

Table 8: Weights of evaluation index.

Criteria Distance measure approach -ird level indicator Entropy weight Combined weight

Observation capability

B1 0.087
C1 0.42 0.036
C2 0.31 0.027
C3 0.27 0.023

B2 0.126

C4 0.19 0.024
C5 0.42 0.053
C6 0.21 0.026
C7 0.18 0.023

Decision capability
B3 0.185

C8 0.31 0.057
C9 0.29 0.054
C10 0.40 0.074

B4 0.076 C11 0.56 0.043
C12 0.44 0.033

Action capability

B5 0.136

C13 0.15 0.020
C14 0.32 0.043
C15 0.36 0.049
C16 0.17 0.023

B6 0.092
C17 0.39 0.036
C18 0.42 0.039
C19 0.19 0.017

B7 0.087
C20 0.45 0.039
C21 0.28 0.024
C22 0.27 0.023

B8 0.097

C23 0.20 0.019
C24 0.31 0.030
C25 0.19 0.018
C26 0.16 0.015
C27 0.14 0.013

Security capability
B9 0.054 C28 0.63 0.034

C29 0.37 0.020

B10 0.060 C30 0.48 0.029
C31 0.52 0.031

Table 7: Metrics chart.

Level Observation capability Decision capability Action capability Security capability

V Clustering
cooperation Clustering observation Clustering decision Clustering attack Predict failures and

isolate

IV Multi-UAV
cooperation Self-directed tracking Allocate task by

leader
Attack of other air vehicle

within airspace Predict onset of failures

III Real-time adaptive
event

Observe supplemented by
off-board data

Replan by off-board
data Avoid limited threat Compensate for limited

failures

II Complex
anticipated event -reat sensing Adaptive decision by

database
Single attack and evaluate

damage
Real-time health

diagnosis

I Simple anticipated
event

Observe ground target
specifically

Preloaded alternative
decision Single attack Report status

Mathematical Problems in Engineering 9
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5. Conclusions

Based on cognitive control behavior, the ODAS model is
proposed to select 31 evaluation indicators from airborne
equipment affecting autonomous capability of ground-at-
tack UAV. Combining with the weight of evaluation index, a
cloud model-based approach is applied to autonomous
capability evaluation. Confirming autonomous capability
level of ground-attack UAV by certainty degree of cloud
model avoids the influence of subjective factors, and cloud
model-based approach also reveals the distinction of au-
tonomy at each level, which provides much more infor-
mation on autonomy status than Hopfield neural network
methods. Hence, the autonomous capability level calculated
by cloud model-based approach is found to be more actual
and representative than Hopfield neural network methods.
At present, the findings of this paper are being applied to
autonomous evaluation software.
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