Hindawi

Mathematical Problems in Engineering
Volume 2021, Article ID 8831872, 12 pages
https://doi.org/10.1155/2021/8831872

Research Article

Hindawi

Research into Power Transformer Health Assessment Technology
Based on Uncertainty of Information and Deep

Architecture Design

Shuguo Gao,' Jun Zhao,! Yunpeng Liu,>? Zigiang Xu,2 Zhe Li®,> Lu Sun,' and Yuan Tian'

!Electric Power Research Institute of State Grid Hebei Electric Power Co., Ltd., Shijiazhuang 050000, China
2Hebei Provincial Key Laboratory of Power Transmission Equipment Security Defense, North China Electric Power University,

Baoding 071003, China

3State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University,

Beijing 102206, China

Correspondence should be addressed to Zhe Li; lizhe@ncepu.edu.cn

Received 18 September 2020; Revised 10 March 2021; Accepted 17 March 2021; Published 2 April 2021

Academic Editor: Gaetano Zizzo

Copyright © 2021 Shuguo Gao et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The uncertainty of the evaluation information is likely to affect the accuracy of the evaluation, when conducting a health
evaluation of a power transformer. A multilevel health assessment method for power transformers is proposed in view of the three
aspects of indicator criterion uncertainty, weight uncertainty, and fusion uncertainty. Firstly, indicator selection is conducted
through the transformer guidelines and engineering experience to establish a multilevel model of transformers that can reflect the
defect type and defect location. Then, a Gaussian cloud model is used to solve the uncertainty of the indicator criterion boundary.
Based on association rules, AHP, and variable weights, the processed weights are calculated from the update module to obtain
comprehensive weights, which overcomes the uncertainty of the weights. Improved DSmT theory is used for multiple evidence
fusion to solve the high conflict and uncertainty problems in the fusion process. Finally, through actual case analysis, the defect
type, defect location, and overall state of the transformer of the device are obtained. By comparing with many defect cases in a
case-study library, the evaluation accuracy rate is found to reach 96.21%, which verifies the practicability and efficiency of

the method.

1. Introduction

With the continuous development of China’s electric power
industry, the transformer remains an indispensable part of
the transmission and distribution links therein. The stable
and healthy operation of transformers is related to the re-
liability of power transmission, so the real-time health as-
sessment of a transformer can ensure the safety and stability
of power grid operation. There are many transformer
components, and there are many indicators that can reflect
the running state thereof. There is an inseparable relation-
ship between each state indicator and between the indicators
and the components. Therefore, the health assessment of the
transformer should not only consider the reflection of the
indicators on the operation of the transformer but also

consider the correlation between the indicators [1]. The
overall health assessment of a transformer entails uncer-
tainty in the assessment process and conclusion, so it is
necessary to research the uncertainty around transformer
health from the perspectives of indicator criteria, weight
setting, and information fusion.

In recent years, much research into the evaluation of
transformer health conditions has been undertaken, among
which the main idea is to determine transformer health
conditions according to transformer monitoring data and
running conditions [1-9]. The literature [1] proposes a state
evaluation method using association rule analysis and
variable weight coeflicient and mines the deep relationship
between single state quantity and comprehensive state
quantity through copious field data. However, that work [1]
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is too absolute in terms of dividing the criterion boundary of
the indicator and fails to consider the uncertainty of the
boundary while neglects the multilevel structure of trans-
formers and using a scoring method that is too simple. A
previous study [3] proposes a defect diagnosis method of
integrated set pair analysis and association rules and im-
proves the weight setting and positive judgment rate based
on association rules. However, the fuzzification function of
the indicator is too rigid to conform to the actual function
distribution and has the problem of no hierarchy. The state
quantity fusion method also has certain defects. In reference
[4], the fuzzy membership function is employed to describe
the boundary uncertainty of the criterion, and the indicator
is considered; however, the weight setting in [4] does not
take actual failure cases into consideration. The DS evidence
theory fusion used therein cannot solve the problem of high
conflict existing in transformer state quantity data fusion. In
view of the above analysis, the existing transformer state
evaluation method still lacks a more practical and perfect
system.

In view of the above problems, in the present research, a
multilevel health assessment method is proposed for power
transformers that account for information uncertainty. First,
a deep architecture design of the equipment health assess-
ment system was conducted, and a hierarchical assessment
indicator system comprising an equipment layer, compo-
nent layer, defect layer, and indicator layer was constructed.
Then, based on the Gaussian cloud model, the degree of
deterioration of the state indicators was evaluated, and the
relative importance of the factors at each level is measured by
combining the analytic hierarchy process, the association
rule analysis method, and the deterioration variable weight
method. Thereafter, improved DSmT theory is used to in-
tegrate the evaluated results from each level and reconcile
any conflicts between the conclusions. Finally, the verifi-
cation case study shows that the proposed method can be
used to identify abnormalities in such equipment. This paper
overcomes a previous problem whereby the evaluation
obtained using the traditional method is insufficiently tar-
geted. The new combination method of weights better re-
flected the true operating status of components and
equipment. Based on the improved DSmT theory, this paper
addresses the problem whereby traditional evidence theory
cannot effectively integrate highly conflicting evidence.

2. Establishment of Assessment System
and Process

2.1. Selection of State Indicators and Defect Types. The
multisource heterogeneous indicator of a transformer in-
cludes real-time monitoring data, routine test data, infrared
images, and other indices, which can reflect the operation of
transformers from different perspectives and at different
levels; therefore, it is the primary problem of the transformer
state evaluation to select and process state quantity rea-
sonably and accurately. At present, Guide for Condition
Assessment of Oil-Immersed Power Transformers (Reac-
tors) [10] and IEEE Guide for Assessment and Maintenance
of Liquid-Immersed Power Transformers [11] are used as the
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benchmark for the construction of a state evaluation system,
which covers the composition of state variables from dif-
ferent sources and forms of the transformer, taking into
account the types of different indicators. Under the principle
of guaranteeing the comprehensive acquisition of key pa-
rameters of transformers, 66 final transformer indicators are
screened by association rules in this paper (Table 1). At the
same time, the book information, defect information, his-
torical defect, family defects, bad working conditions, op-
erating environment, and other information about each
transformer are also collected on site.

The deterioration of transformer health is usually ac-
companied by the occurrence of transformer defects.
Therefore, the evaluation of transformer defect type can
effectively help the operation and maintenance personnel
discover problems with transformers. At the same time,
solving transformer defects timeously and restoring trans-
formers to a healthy condition can ensure the safe and stable
operation of the power grid. Based on the distribution
statistics of defect types of a large number of on-site defect
cases and the experience of on-site personnel, we summarise
11 types of typical and frequent transformer defects
(Table 2).

A transformer is a comprehensive and complex system,
composed of multiple components. The evaluation results
obtained by the simple fusion of all indices by the traditional
method cannot reflect the multilevel differences in a
transformer, and the evaluation accuracy is poor, so it is
important to classify the evaluation levels according to the
actual structure and mechanism of operation of the trans-
former under inspection [12]. From the perspective of
components, the transformer can be divided into five parts:
the body, bushing, on-load tap changer, cooler system, and
nonelectric power protection device. Among them, the body
and bushing are the main parts of transformer operation,
and these two parts are subject to various stresses over a long
time and are prone to failure, so the specific failure types of
these two parts need to be considered; however, there is no
clear defect classification for such a cooler system, on-load
tap changer, and nonelectric power protection device in
service, so the state can be directly reflected by other
indicators.

2.2. Deep Architecture Design of the Transformer Evaluation
System. Based on the above analysis, a multilevel compre-
hensive health assessment model of four layers, namely, the
indicator layer, defect type layer, component layer, and
equipment layer, is constructed, which represents the overall
operating health condition of the transformer, operating
conditions of transformer components, transformer defect
type evaluation, and deterioration of multisource indicators
of the transformer (Figure 1). The overall health condition of
the transformer is the top layer, which is also the final
evaluation result. The current operating health condition of
the transformer can be judged by the evaluation result. Then,
the whole system is divided into five parts: the body, the
bushing, the on-load tap changer, the cooler system, and the
nonelectric power protection device. The operating
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TaBLE 1: Distribution of transformer indicators.

Part Single indicator
H, content C,H, content
C,H, content C2H6 content
CH, content Total hydrocarbon content
Absolute gas production rate of H, Absolute gas production rate of C,H,
Absolute gas production rate of total hydrocarbon Relative gas production rate of total hydrocarbon
Absolute CO gas production rate Absolute CO, gas production rate
Initial difference of winding DC resistance Imbalance rate of winding DC resistance
Body Apparent discharge Core grounding current
Core insulation resistance Polarization index
Winding insulation resistance Winding absorption ratio
Initial difference of short-circuit impedance Imbalance rate of short-circuit impedance
Difference of winding voltage to initial value Initial difference of winding capacitance
Loss factor of oil medium Furfural content
Winding frequency response test Insulation paper degree of polymerisation
CO content CO, content
Water content in oil Winding dielectric loss
H, content C,H, content
CH, content Dielectric loss factor of bushing
Bushing Initial difference of bushing capacitance Insulation resistance of bushing end screen
Insulation resistance of bushing Infrared image analysis
C,H, content Total hydrocarbon content
Bushing leakage Bushing oil level indicator
Tap switch oil level indication Oil filter for tap changer
Tap changer respirator Limit device of tap changer
OLTC Tap position Tap switch slide

Tap leakage

Tap switch transmission mechanism
Number of tap changers

Tap switch control loop
Action characteristics of tap changer
Tap switch oil pressure

Oil flow relay state
Cooler system

Fan, oil pump, water pump state

Radiator working state
Cooler system motor operation

Cooler control system state

Thermometer indication
Gas relay malfunction

Nonelectric protective device

Oil level indicator indication
Pressure release valve malfunction

Consistency from a distance

TasLE 2: Distribution of defect types by component.

Part Single defect
Winding interturn short circuit Winding deformation
Bod Iron core multipoint grounding Partial discharge
Y Aging of oil paper insulation Arc discharge
Current circuit overheating Wetted insulation
Bushing Thermal performance of the bushing decreases Insulation performance of the bushing decreases

Mechanical performance of the bushing decreases

condition of each part can be obtained through the evalu-
ation. For the relatively important body and bushing, it is
divided into defect type layer, including winding interturn
short circuit, partial discharge, the thermal performance of
the bushing decreases, and so on, and the distribution of
grade membership degree of each defect type can be ac-
quired by evaluation. The bottom layer contains many
operating indicators pertinent to the transformer, corre-
sponding to different defect types, respectively. The cooler
system, on-load tap changer, and nonelectric power pro-
tection device directly correspond to the indicator layer.

3. The Uncertainty Information
Processing Method

3.1. The Indicator Uncertainty Method Based on a Gauss Cloud
Model. A transformer is a complex multilevel system, so the
simple deterioration method based on warning value ignores
the problem that the indicator criterion is too absolute and
cannot truly reflect the uncertainty existing in the actual
operation of a transformer. Therefore, Gaussian cloud
processing is conducive to improving the accuracy of the
evaluation [13].
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FIGURE 1: Transformer multilevel comprehensive architecture model.

3.1.1. Treatment of Deterioration of Indicators. There are
many indicators of the transformer with different orders of
magnitude, so here we use a relative degree of deterioration
to normalise the indices. For structured data, it can be di-
vided into a positive degradation indicator and negative
degradation indicator according to whether it increases or
decreases from normal to abnormal degradation. A positive
deterioration indicator refers to the trend of increasing the
value of a transformer indicator when it deteriorates, such as
the grounding current of iron core and furfural content. A
negative degradation indicator indicates that, when the
indicator deteriorates, the value shows a decreasing trend,
such as DC resistance.

A positive deterioration indicator is treated as in the
followingequation:

[ Xt = Xino
#’ XrtO < Xrt < Xrta’
rta rt0
xrt = 1’ Xrt ZXrta’ (1)
- 0’ Xrt < XrtO'

A negative deterioration indicator is treated as in the
following equation:

( X,0-X
H’ er < Xrt < XrtO’
rt0 rta
xrt = 1’ Xrt < Xrta’ (2)
L 0, X=X,

In (2), x,, is the normalised degree of deterioration of the
indicator, r is the number of defect types, ¢ is the number of
indices, X,, is the measured value of the indicator, X,,, is the
initial value of the indicator, and X,,, is the warning value of the
indicator. Its value refers to DL/T 596-1996 Preventive Test
Rules for Electric Power Equipment, in which only the attention
value is given in the regulation, and the warning value is
converted by multiplying by 1.3 (positive deterioration indi-
cator) or dividing by 1.3 (negative deterioration indicator).
According to Guide for Condition Assessment of Oil-Immersed
Power Transformers (Reactors) and the existing references, the
health state of power transformers is generally divided into four
grades, and the corresponding relationship with the deterio-
ration degree of indicators is listed in Table 3.
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TaBLE 3: Classification of transformer state.

Relative degree of

Level degradation Meaning

Normal [0, 0.2] Normal equipment: the transformer can run stably and healthily

Attention (0.2, 0.4] Suspicious equipment state: the transformer can cqntinue to run under the premise of enhanced
monitoring

Abnormal (0.4, 0.7] The equipment is in a poor condition or has minor defects

Serious (0.7, 1] Equipment has a serious failure and needs to arrange overhaul as soon as possible

3.1.2. Gaussian Cloud Model. In probabilistic terms, the
Gaussian distribution is one of the most important and
widely used probability distributions: the Gaussian mem-
bership function is the most commonly used membership
function in fuzzy theory. The Gaussian cloud model uses the
Gaussian distribution to realise the distribution of cloud
titration values twice and uses the Gaussian membership
function to realise random determination [14, 15].

Let U be a quantitative domain of precise numerical
representation and C (E, E, H,) be a qualitative concept on
U. If the quantitative value x€ U, and x is a random real-
isation of the qualitative concept C, x follows the Gaussian
distribution with E, as the expectation and E,, as the
variance, namely, x~N (E,, E,,). Among them, E,, follows
the Gaussian distribution with E, as expectation and E,, as
variance, ie., E,~N (E,, H,), and the determinacy of
quantitative value x to qualitative concept C is as follows:

-E.)
y=exp —% : (3)

where x is the degree of deterioration of an evaluation in-
dicator; E,, E,, and H, are the mathematical characteristic
values of a standard grade corresponding to the evaluation
indicator; E,, is a normal random number with expected
value E, and standard deviation H,.

By constructing a forward cloud generator, a cloud drop
sample diagram of E, =1, E,, = 0.1, and H, = 0.01 is generated,
in which the number of cloud drops is set to 500 (Figure 2).
The envelopes of the cloud droplets represent the inner and
outer correlation curves [; and I, of the Gaussian cloud,
respectively, and the curve at the middle position is the
expected curve [ of the Gaussian cloud. The expressions of
the three are as shown in equations (4) to (6):

—E
I, = exp —2(](;_3;)[)2 ; (4)
(X B Ex)2
I = I Gt I
2=\ (B, +3H,) 2
2
I =exp —% (6)

For a fixed cloud drop x, the intersection of the three
curves represents the minimum correlation yy,;,, the max-
imum correlation y,,.x, and the expected correlation degree
Yexp calculated by the extension cloud model: the size of the

superentropy H, represents the degree of deviation of the
cloud droplet distribution from the Gaussian distribution,
that is, the range of fluctuation of the correlation k is
determined.

Based thereon, building a standard grade cloud model is a
key step in the process of assessing the deterioration of state
indicators. The extension cloud theory regards the hierar-
chical boundary as a double-constrained space [cuin, Cmaxl-
After considering the uncertainty of the boundary value of the
constrained space, it is appropriately expanded into a
Gaussian cloud. According to the definition of cloud ex-
pectation, the central value of the constraint interval can best
represent the concept of rank, so the calculation of grade
cloud expectation E, is as given in (7). As a measure of state-
level concept ambiguity, the value of the level cloud entropy
E, is the most critical, and its size reflects the range of values
that the state-level concept can accept, which will affect the
adjudged indicator degradation. The calculation process is as
shown in equation (8). The superentropy H, of the grade
cloud generally takes a fixed constant value, and this can be

optimised and adjusted according to prevailing
circumstances.
Cin + €
Ex — min 2 max) (7)
Cmax — Cimi
En — max 6 mm. (8)

In the section of “Treatment of deterioration of indi-
cators,” the membership functions of the four states cor-
responding to the related indices can be calculated by using
the aforementioned Gaussian cloud correlation function
formula.

3.2. Weight Uncertainty Based on Comprehensive Weight
Assignment Method. In transformer state assessment,
weight setting is extremely important. Considering the
limitations of the subjective weighting method and the
objective weighting method, a method of weight combi-
nation of state indicators based on AHP and association rule
analysis is proposed, making the assessment results better
aligned with actual requirements.

3.2.1. Association Rules. An association rule is used to reveal
the correlation between different indicators of an event.
Based on data mining, an association rule finds the subset of
indicators or attributes frequently occurring upon the oc-
currence of the event and the correlation between them
through statistical rules [16, 17].
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FiGure 2: Gaussian cloud model.

In general, association rules between two events are
calculated with support and confidence. Support is defined
as hypothesis set A ¢ D,B ¢ D, and An B = &. Support for
association rule AN B = & is the percentage of database D
containing Al J B, denoted as

Sup(A — B) = P(AUB). 9)

At this point, the closer the support is to 1, the stronger
the relationship between occurrences A and B.

The confidence of association rule A — B is the per-
centage of database D containing both A and B, that is, the
conditional probability P(B|A), denoted as

P<AUB)
" P(A)

x 100%. (10)

C(A— B)=P(B|A) =
Confidence represents the reliability of association rules,
that is, the higher the confidence, the higher the reliability of
A when B occurs; therefore, in transformer state assessment,
if the severity of defects is described by the deterioration of
indices, the objective weight of indices corresponding to
each defect type should be judged by the degree of confi-
dence. That is to say, the higher the confidence in a certain
indicator is, the greater the influence of its deterioration on
defects.
The confidence of each transformer indicator corre-
sponding to the defect type can be calculated as follows:

(1) Transaction database D ={any
overstandard state quantity}

comprehensive

(2) Event A;; ={the j single state quantity in the i
comprehensive state quantity exceeds the norm}

(3) Event B; = {type i defect occurrence}

In the system used here, when analysing a defect and its
indicators, database D is item set B; therefore, according to

(11), the degree of confidence of a defect association rule
A;; — B; can be calculated as follows:

P<Ai,jUBi> ‘7<Ai,jUBi>/|D|

=80 "0y ™ ol o
(11)
o(4;)

The degree of confidence of a single indicator in each
defect type is calculated using equation (11), and then, the
degree of confidence of each indicator in the same defect
type is compared, and the constant weight coeflicient of each
indicator in this defect type is determined according to the
degree of confidence of each indicator. The calculation is as
follows:

w;; = Ciy 12

MG, +Cp+Cyy+ e+ Gy (12)

where w; ; is the constant weight coefficient of the i single
indicator in the i™ defect type and C;; represents the
confidence of the j'" single indicator in the i defect type. m;
is the number of single indicators contained in the i defect

type.

3.2.2. Analytic Hierarchy Process. The analytic hierarchy
process (AHP) is a multiobjective decision-making analysis
method combining qualitative and quantitative components
as formally proposed by Saaty in the mid-1970s. Its concept
involves the combination of complex multiobjective deci-
sion-making techniques. The problem is hierarchical and
standardised: the relevant factors are compared layer by
layer, and the rationality of the comparison is tested layer by
layer to provide credible analytical results. Therefore, in the
present research, the analytic hierarchy process was used to
determine the subjective constant weight of the state
indicator, as follows:
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Step 1. For an evaluation target involving # state indicators,
industry experts construct judgment matrix A by comparing
the importance of the state indicators according to the nine-
level scale criterion, in equation (13), where a;; is the relative
importance score of state index i to state index j:

A= :(aif)nxn' (13)

Step 2. Calculation of the approximate weight y; of each
state index under the evaluation target. Commonly used
calculation methods include the geometric average method
and canonical column average method. The former is se-
lected here, and the calculation process is as follows:

)
Vi= o (14)
D=1 Hj:lamj

Step 3. To verify the rationality and validity of the weight
distribution, a consistency test must be performed on the
judgment matrix. The test is as given by equations (15) and
(16). When CR < 0.1, the consistency test is successful;
otherwise, the judgment matrix must be readjusted until it
passes the consistency test:

CR =9, (15)
RI
o il (16)
n-—1

In (16), Amax represents the largest characteristic root of
the judgment matrix; CI is the consistency index; RI is the
average random consistency index, which is the sampling
average of the consistency index, and its value can be found
from standard tabulated values; CR represents the consis-
tency ratio index.

Here, 428 sets of defect sample data of large power
transformers rated at 66kV and above are selected. The
objective weight, subjective weight, and comprehensive
weight of each indicator relative to each defect type are
calculated by using association rules and AHP, as shown in
the supplementary material (available here).

3.2.3. Variable Weight Coefficient. Variable weight theory is
widely used and is an important modelling principle invoked
in factor space theory. The following variable weight formula
is introduced in the comprehensive health assessment of
transformers:

w = (wi/xi)
l ZZ=1(wp/xp)’

where w! is the variable weight coefficient of defect type i; x;
is the score of the defect type i; n is the number of defect
types; w; is the constant weight coefficient of defect type i.

(17)

Elsewhere [18], the equilibrium function is introduced
into the form of the variable weight synthesis mode, and the
variable weights are given by

wx @
W= (18)

Yo Wy,

In (18), « is an equilibrium function, 0 <a <1, whose
value depends on the relative importance of each defect type.
When the degree of equilibrium of defect types is not high,
take & > 0.5; when serious defects of some comprehensive
state variables are excluded, a < 0.5; when & = 1, the model
degrades to the constant weight model. To maximize the
influence of the deterioration of the evaluation factors on the
overall evaluation of components and equipment, « = 0 is
used.

By introducing variable weight coeflicients, the weight
coefficient of state quantity can be automatically adjusted
when severely degraded. This can better represent the state of
deterioration of the transformer and meet engineering re-
quirements at that time.

The comprehensive weight is calculated based on 428
defect cases, but it is difficult to maintain the accuracy of the
evaluation for a long time based on the existing defect case
database alone. Therefore, a self-updating module of weights
is added to incorporate continuously new defect data into
the database. This is then adjusted to achieve more accurate
and comprehensive assessment results. When a new
transformer defect occurs on site, the staff enter the defect-
related data into the evaluation system. While assessing the
transformer state, the database is also updated. The constant
weights based on association rules will be recalculated and
then changed. The updated comprehensive weights are
processed and used as the basis for the next evaluation.

3.3. Transformer Uncertainty State Fusion Method Based on
Improved DSmT. DSmT is a new fuzzy contradictory rea-
soning theory proposed by Dezert and Smarandache, which
can be regarded as a natural extension of D-S evidence
theory (Dempster—Shafer theory), but there are important
differences between them. When the conflict between in-
formation sources is large, D-S theory often fails to merge or
produces paradoxical results after fusion. DSmT can deal
with the fusion of uncertain, highly conflicting, and inac-
curate information sources that D-S cannot resolve [19, 20].
Considering that different states of the transformer have
different weights, DSmT needs to be improved before being
merged.

Considering that DSmT model constructed in this paper
is constrained by completely exclusive conditions, it is
necessary to be based on proportional conflict redistribution
(PCR) rules. Distribute the conflict reliability generated in
the fusion process to the synthetic reliability according to a
certain ratio, so as to use the evidence more effectively.
According to different allocation ratios, PCR rules are
mainly divided into PCR1 to PCR6 rules, of which PCR6 is
the most precise combination rule in mathematical logic
[21].



The specific definition of PCR6 rules is as follows:

(V(A#9) e D°,

my (A= Y m(X)m,(X,),
X,,X,eD®
X, NX,=A

M
Mpcre (A) =m, (A + Z m; (A)

i=1 L YnwnA=o
nk:l

In (19), M represents the number of evidence sources;
m,, (A) represents the combined reliability of the DSmT
combination rule for A; Y € D® corresponds to the s™
evidence source; m,(Y,) represents its corresponding
reliability distribution function; o; represents that from 1
to M excludes i number, as shown in the following

equation:

Considering that the above PCR6 combination rule is
invoked to perform equal weight information fusion on
multiple pieces of evidence and does not reflect the dif-
ferences between different evidence sources, it can be
considered that some priori information is ignored. In this
case, direct fusion will lead to insufficient accuracy of
evaluation; therefore, in the evaluation of the component
layer and the equipment layer, the basic reliability dis-
tribution of each piece of evidence was adjusted by
combining the weights of the evaluation factors reconciled
by the variable weight coefficients. The specific process is
as shown in (21); furthermore, by bringing the adjusted
basic reliability distribution of each piece evidence into
(19), the difference between sources of evidence is re-
flected in the fusion process, and the normalised synthetic
reliability distribution is used as the final evaluated
hierarchy.

o;(s)=s, ifs<i,

(20)

o;(s)=s+1, ifs>i

m' (-) = wgm(-). (21)
In (21), w, represents the weight of the s™ evidence source
after being adjusted by the variable weight coefficient.
Following the aforementioned process, the membership
results of the main components and the transformer (as a
whole) for each status level can be obtained. To avoid the
problem of evaluation failure caused by the small difference
between the grade membership values, reliability criteria are
introduced to the final judgment of the overall health of
components and equipment. It was assumed that the

)
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(19)

M-1
s=1 m

H 0; (s)(Yai (s))

M-1
mi (A) + 25:1 m(f,- (j)(YU[ (j))

[ )

membership vector of the functional component or the
entire device with respect to each state level is h=[hy, ...,
h,), where h; represents the membership degree at the jth
state level. If it satisfies the condition given by equation (22),
the health of the component or item of equipment is
evaluated as being at the /™ state level and, among them, A
represents the confidence level. By referring to the common
confidence level range [0.5, 0.7], A is set to 0.55.

g ]

4. Case Study of a Transformer Multilevel
Health Model

J
Y hzd 1<j<4

i=1

(22)

Based on the above sections, a multilevel transformer health
assessment model is established. The specific assessment of
the model is as follows (Figure 3).

4.1. Case Study. Taking the 220kV main transformer
(SFPS9-150000/220) which has been in operation for 20
years in a certain substation as an example for verification,
we collected basic account information, online monitoring
indices, and experimental data pertaining to the evaluated
transformer. Some of the state information collection in
2010 is summarised in Table 4.

Through analysis of the indicators that are found to have
been degraded, the membership vector of each indicator
corresponding to each level of the cloud model is calculated
based on the Gaussian cloud model. Then, the objective
weight of each indicator corresponding to each defect type is
calculated based on association rules, and weight variation is
performed. The first-level evaluation result is determined
through weighted fusion, and the state of each defect type is
obtained based on the reliability criterion. The grade
membership degree of each defect type is listed in Table 5.

Based on the evaluation results of the first layer, it can be
concluded that the iron core multipoint grounding defect of
the body is in a serious state, which requires immediate
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FiGUrE 3: Multilevel health state evaluation model of a power transformer.

TABLE 4: Measured values of state indicators of transformer body.

State indicators

Measured value Initial value

H, content

CH, content

C,Hg content

C,H, content

C,H, content

Total hydrocarbon content

Absolute CO gas production rate
Absolute CO, gas production rate

Core grounding current

Core insulation resistance

Winding absorption ratio

Polarization index

Imbalance rate of winding DC resistance
Initial difference of short-circuit impedance
Winding dielectric loss

Initial difference of winding capacitance
Apparent discharge

Water content in oil

Loss factor of oil medium

Furfural content

Insulation paper degree of polymerisation

359 6.1
18.5 8.7
92 2.3
52 4.8
0 0
162.5 15.8
12 0
31 0
3.8 0.01
200 1 000
1.61 2
2.03 2.5
1.5 1
1.2
0.36 0.17
1.4
72 30
12.1 3.5
1.7 0.5
0.05 0
900 1 000

power cutoff to repair related problems. At the same time,
wetted insulation is in a state requiring attention which
requires operation and maintenance personnel to strengthen
the monitoring thereof.

Based on the degree of membership of each defect type
and the indicator membership degree of the cooler system,
OLTC, and nonelectric protective device, variable weight
processing is conducted on the basis of an equal weight,
and then improved DSmT fusion is used to obtain the
degree of membership of each component grade, as listed
in Table 6.

The grade membership of each transformer component
is treated with variable weights. The membership vector of
the overall condition of the transformer is derived by im-
proved DSmT fusion, as shown in Table 7.

Based on the calculated results, the transformer body is
in a serious state, and in terms of defect level, the evaluation
of the iron core multipoint grounding corresponds to the
“Severe” level, which differs from the evaluated status of
other defect types. Therefore, the maintenance recom-
mendation given is “need to arrange a power outage for
overhaul as soon as possible”. Operation and maintenance
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TaBLE 5: Grade membership of typical transformer defect.
Defect type Normal Attention Abnormal Serious Condition
Interturn short circuit of winding 0.5590 0.0000 0.1487 0.2923 Normal
Iron core multipoint grounding 0.1196 0.0011 0.0002 0.8791 Serious
Arc discharge 0.6328 0.0002 0.0817 0.2853 Normal
Current circuit overheating 0.6702 0.0012 0.1207 0.2079 Normal
Winding deformation 0.6045 0.2112 0.0910 0.0933 Normal
Partial discharge 0.7497 0.0017 0.0001 0.2485 Normal
Aging of oil paper insulation 0.5925 0.1402 0.2673 0.0000 Normal
Wetted insulation 0.2699 0.5039 0.0297 0.1965 Attention
TaBLE 6: Grade membership of transformer components in the example.

Part Normal Attention Abnormal Serious Condition
Body 0.3516 0.0465 0.0170 0.5849 Serious
TaBLE 7: The overall health of the transformer analysed.

Part Normal Attention Abnormal Serious Condition
Equipment 0.3516 0.0465 0.0170 0.5849 Serious

50.7% |

110kV and below
220kV
@z 330kV

15.89%

4.21%

25.47%

500kV
750kV and above

FIGURE 4: Statistical distribution of voltage levels.

personnel conducted a power outage inspection on the
equipment and found metal powder at the bottom of the
transformer oil tank. Under the action of electromagnetic
attraction, a bridge was formed to connect the lower iron
yoke to the feet or the bottom of the box, making the iron
core unstable, and multipoint grounding then causes the
iron core to overheat. The proposed method can be used to
assess the health of power transformers and their functional
components and provides detailed analytical results per-
taining to the degradation of key components and possible
defects.

4.2. Multiple Equipment Verification Analysis. In the “Case
study” section, the usability and accuracy of the proposed
method were verified based on a single device case. Here, 428
sets of measured data from multiple devices were used to
conduct further group verification analysis. In the verifi-
cation dataset, the voltage of the power transformer ranges

from 66kV to 1000kV, and the specific statistical distri-
bution thereof is shown in Figure 4; at the same time, the
defects mainly appear on the body and bushing. The specific
statistical distribution of these abnormalities is shown in
Figure 5.

By using the proposed method to evaluate the afore-
mentioned cases, the results of verification analysis on
component defects are as listed in Table 8 and the results of
verification analysis on the health status of components and
equipment are given in Table 9. Accordingly, at the defect
level, the overall accuracy of the proposed method as applied
to component defect types reached 96.21%; at the compo-
nent level, the accuracy of the resulting health status of the
body, bushing, tap changer, and cooling system exceeds 90%;
at the same time, at the equipment level, the accuracy of the
overall health status of the transformer reaches 95.09%.
However, at the defect level, the overall accuracy of the
traditional deterministic method as applied to component
defect types only reached 87.32%; at the component level,
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TaBLE 8: Verification of component defects.

Defect type Evaluation
accuracy

Interturn short circuit of winding 100
Iron core multipoint grounding 95.31
Arc discharge 97.87
Current circuit overheating 96.67
Winding deformation 98.48
Partial discharge 89.19
Aging of oil paper insulation 88.89
Wetted insulation 100
Thermal performance of the bushing

92.31
decreases
Insulation performance of the bushing

90.91
decreases
Overall 96.21

TABLE 9: Verification of the health condition of the transformer and
its components.

Components Evaluation accuracy (%)
Body 95.42
Bushing 91.30
OLTC 100
Cooler system failure 100
Overall 95.09

the accuracy of the resulting health status of the body,
bushing, tap changer, and cooling system exceeds 75%; at the
same time, at the equipment level, the accuracy of the overall
health status of the transformer only reaches 85.87%. This
shows that the multilevel health assessment method for
power transformers based on the comprehensive treatment
of information uncertainty can identify specific abnormal
conditions more precisely as they occur in such equipment
and provide targeted guidance for O&M personnel to for-
mulate maintenance decisions.

5. Conclusion

A multilevel health assessment system consisting of an
equipment layer, a component layer, a defect layer, and an

indicator layer was established. By combining the various
state indicators of the transformer from bottom to top, a
step-by-step evaluation was undertaken to obtain a hier-
archical evaluation, thus overcoming a previous problem
whereby the evaluation obtained using the traditional
method is insufficiently targeted.

A state indicator deterioration evaluation method based
on the Gaussian cloud model was proposed, and the am-
biguity measurement result pertaining to the degree of state
indicator deterioration was obtained by applying flexible
treatment to the grade criterion boundary.

Research into the combination of constant weights of state
indicators based on AHP and association rules to avoid the
limitations of subjective and objective weighting methods was
undertaken; the introduction of variable weighting coefficients
to reflect the influence of evaluation factor degradation on
weight distribution was considered: this better reflected the true
operating status of components and equipment.

Based on the improved DSmT theory, fusion analysis of
relevant assessment factors was performed by redistributing
the conflict information generated during the fusion process
according to the PCR6 rules, so as to address the problem
whereby traditional evidence theory cannot effectively in-
tegrate highly conflicting evidence. The final evaluation of
comprehensive multisource information was thus obtained.

In summary, the proposed power transformer health
assessment method can reveal the operating status of
equipment from multiple perspectives and provide refined
assessment conclusions, thereby helping O&M personnel
make more targeted maintenance-related decisions.
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