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An essential step in the implementation of predictive maintenance involves the health state analysis of productive equipment in
order to provide companymanagers with performance and degradation indicators which help to predict component condition. In
this paper, a supervised approach for health indicator calculation is provided combining the Grey Wolf Optimisation method,
Swarm Intelligence algorithm, and Fuzzy Cognitive Maps. )e k-neighbors algorithms is used to predict the Remaining Useful
Life of an item, since, in addition to its simplicity, they produce good results in a large number of domains. )e approach aims to
solve the problem that frequently occurs in interpolation procedures: the approximation of functions belonging to a chosen class
of functions of which we have no knowledge. )e proposed algorithm allows maintenance managers to distinguish different
degradation profiles in depth with a consequently more precise estimate of the Remaining Useful Life of an item and, in addition,
an in-depth understanding of the degradation process. Specifically, in order to show its suitability for predictive maintenance, a
dataset on NASA aircraft engines has been used and results have been compared to those obtained with a neural network
approach. Results highlight how all of the degradation profiles, obtained using the proposed approach, are modelled in a more
detailed manner, allowing one to significantly distinguish different situations. Moreover, the physical core speed and the corrected
fan speed have been identified as the main critical factors to the engine degradation.

1. Introduction

Although predictive maintenance practices have existed for
many years, only recently, thanks to the emerging Industry
4.0 technologies with increasingly reliable and affordable
smart systems, it has become widely accessible [1]. It has
several advantages, including machine life increase by 3–5%,
reduced maintenance costs by up to 40%, and returns on
investment up to 10 times [2].

One of the most relevant steps in the prediction process
is the choice of the best approach for the item behaviour
assessment, such as data-driven or model-driven approach
[3]. In particular, according to the platform developed by
Patel et al. [4] for the application of Industry 4.0 principles to
the industrial reality, the data-analytic layer is crucial to
understand a plant functioning. Moreover, if properly
designed, it allows users to identify the presence of invisible

relations among data provided by the application layer [5]. It
is also true that, according to the “no free lunch” theorems, a
standard procedure for predictive maintenance does not
exist. Still, it must be chosen among those that best suit the
reality under analysis [6]. In any case, regardless of the
adopted process, for a more accurate and optimal prediction,
it is necessary to gather and analyse appropriately large
amounts of data within a time frame [7, 8] with consequent
problems deriving from the identification of the most ac-
curate health indicators. )e health of a system can be
defined as the deviation or degradation of an item behaviour
from its regular operating performance [9].

)e calculation of a suitable health indicator (HI) is
fundamental to establish a link between the deviation or
degradation of an item and its Remaining Useful Life (RUL).
)us, an accurate HI is a key for a more precise prediction
tool, guaranteeing its reproducibility [10, 11]. )is
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observation is the reason why many researchers focus their
activity on this issue ranging from supervised and unsu-
pervised algorithms [12, 13] to physical [14] and virtual [15]
HIs.

)e HI assessment needs the monitored parameters
provided by the physical data from sensors to be trans-
formed into information represented as indicators. )e
potential benefits include not only the reduction of the
quantity of data examined but also the maximisation of the
useful information content [16].

In this context, the proposed paper lays its foundations.
An approach for HI definition and calculation is provided
combining the Grey Wolf Optimisation (GWO) approach,
belonging to the set of Swarm Intelligence algorithms, and
Fuzzy Cognitive Maps (FCMs). Subsequently, the
k-neighbors algorithms are used to predict the item RULs.

)e proposed approach, in comparison to previous
studies presented in the literature, does not require
knowledge about the gradients of the cost function and
constrained functions, guaranteeing both reliable and robust
performance and easy implementation. Moreover, it ensures
extreme flexibility and adaptability to a given domain. It
allows an in-depth understanding of a specific issue; thanks
to the possibility of symbolically representing the rela-
tionships among all the involved variables.

To present the methodology and analyse its perfor-
mance, the rest of the paper is organised as follows. Section 2
briefly describes the analysed literature on Swarm Intelli-
gence algorithms and FCMs application to predictive
maintenance. Section 3, divided into three sections, focuses
on the explanation of the FCMs theory and GWO algorithm
functioning. It then explains the proposed algorithm steps,
underlining its benefits. Section 4 shows the results obtained
using a dataset provided by NASA regarding the RUL
prediction for aircraft engines and compares the results with
an Artificial Neural Network approach. Conclusions have
been drawn in Section 5.

2. Literature Review

As mentioned, research on predictive maintenance has
grown in recent years due to the development of Industry 4.0
technology. Hence, to gather the most relevant contributions
dealing with maintenance in general and FCMs and Swarm
Intelligence applications in particular, a systematical ap-
proach has been adopted. )e Scopus scientific database has
been selected, considering that all the papers have an
available full text written in English. All articles have been
read to assess their relevance and pertinence to the theme
developed in this study. In Table 1, the combination of the
keywords selected, the number of papers retrieved by
Scopus, and the ones chosen for this literature review are
reported.

In recent literature, several contributions deal with the
development of HIs aiming at predicting the need for
maintenance interventions. For example, some authors
propose the implementation of dashboards for the
monitoring of the equipment health status in the semi-
conductor manufacturing industry [17, 18], while others

focus on structural vibrations analysis [19] and RUL
prediction [20, 21]. Various techniques and methodolo-
gies can be found in the literary contributions: for in-
stance, Baraldi et al. [22] develop a differential evolution-
based multiobjective model aiming at defining the health
status of the system and adopting maintenance strategies;
other authors, instead, apply artificial neural networks
[23] or genetic algorithms [24] to model the health status
of the system.

To the best of the authors’ knowledge, there is no
evidence of scientific papers dealing with predictive
maintenance through the application of FCMs and Swarm
Intelligence (SI) approaches. At the same time, a con-
tribution can be found only through the application of SI
methods. Li et al. [25], indeed, applied a multiclass rel-
evant vector machine—optimised through the application
of the SI dragonfly algorithm—to predict the failures of a
diesel engine. Other SI applications to the maintenance
field can be found in existing literature, for example,
Zheng et al. [26] use the particle swarm optimisation to
predict the performance degradation of aeroengines,
considering aspects such as fuel consumption, rotor vi-
bration, and thrust loss. A similar perspective is adopted
by Hu et al. [27], in diagnosing the failures of a gearbox,
through the particle swarm optimisation and the kernel
extreme learning machine, and by Zhao and Liu [28] who
solved the same class of problems through the rough set
theory. Several further SI applications to the maintenance
field instead focus on the definition of the maintenance
scheduling [29–32]; R. [33].

Going into detail regarding the GWO algorithm, some
applications in the maintenance field can be found in the
literature: the majority of them focus on the cost efficiency
of the maintenance processes. For example, it is applied to
optimise the design and maintenance of photovoltaic
power plants [34] or to minimise maintenance costs of
heat and power systems [35–38]. Kumar et al. [39] focus
on both the reliability and the costs of a Space Shuttle,
through the implementation of a multiobjective GWO.
Dalla Vedova et al. [40], instead, compare different al-
gorithms, among which the GWO is for the RUL esti-
mation of an aircraft actuator, while Abdelghafar et al.
[41] optimise a support vector machine through the GWO
to improve the detection of satellite sensor failures. Some
works focus on the scheduling through the imple-
mentation of the GWO Algorithm: it can be applied to
solve job shop and maintenance scheduling problems [42]
as well as to block flow shop scheduling, considering fuzzy
processing times and dynamic maintenance strategies
[43, 44].

FCMs have proved to be useful tools in supporting the
decision-making processes in the maintenance field. For
instance, they can be applied to verify the impact of
maintenance activities on a building’s energy efficiency [37]
or to identify the factors affecting human reliability during
the maintenance operations [45]. According to Gupta and
Gandhi [46], data coming from maintenance work orders
can be used to detect possible improvement areas in terms of
component design. Dynamic risk modelling is also
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performed through the FMCs: in Lopez and Salmeron study
[47], an FCM is built to assess the risk during the enterprise
resource planning of maintenance processes, while in
Jamshidi et al. [48], it is used to study the critical factors
related to the maintenance outsourcing. Damage detection
can also be performed through the FMCs. For instance,
Senniappan et al. [49] propose an application for the early
detection of damages in civil structures’ elements of support
based on an FCM, modelling both the knowledge obtained
from the domain experts and the existing literature. Instead,
Lee et al. [50] use rule-based FCMs based on the experts’
knowledge and experience to identify the factors acceler-
ating the deterioration of rubber components in order to
predict the maintenance timing and structure a diagnostic
process. In the work of Azadeh et al. [51], the FCM is used to
assess which factors among cognitive and temporal ones
have a more relevant impact on the execution of the
maintenance interventions. Similarly, maintenance errors
can be analysed through FCMs in order to highlight which
are the most critical and repetitive ones and recommend
modifications in the maintenance process or training [52].
Zhang et al. [53], instead, develop a robot dedicated to live
maintenance whose behaviour is predicted through an FCM.

According to the existing contributions, there is no
evidence of the joint implementation of FCMs and GWO,
even though both the methodologies have been successfully
applied to the maintenance field. Among the benefits har-
boured by the GWO, its ability to work in a dynamic en-
vironment is one of the most useful in this application field.
In parallel, the FCMs are useful for the qualitative simulation
of a modelled system. To sum up, the benefits harboured by
the joint implementation of the two techniques proposed in
this research approach are the flexibility and adaptability, as
well as the reliability and robustness of the performance.

3. The Research Approach

)e general scheme of a predictive maintenance procedure
proposed in this work is shown in Figure 1 and described
below.

(i) Preprocessing Data. Preprocessing means the
preparation of the dataset for analysis; it incorpo-
rates all the steps for dataset preparation. In this part
of the process, it is essential to get as much infor-
mation and indications as possible from the dataset.

(ii) Features’ Extraction. It is the step in which variables
are selected and/or the amount of data to be pro-
cessed is reduced, ensuring an accurate and com-
plete description of the original dataset.

(iii) Splitting Data. )is is an analytical step to under-
stand how to train the machine learning system in
the best way. As a matter of fact, within machine
learning systems, there are two parts: the first is the
training that, as the name may indicate, trains the
course and teaches it how to act. After this step, the
system is ready to perform what it has learned and
to test if the training completed in the previous step
was successful. )is is done through the score or
test. Given the significance that these two steps
assume, it is of fundamental importance to un-
derstand the best way to divide the available data
package in the right proportions.

(iv) Health Indicator Modelling. )e sensor readings,
reworked in the previous steps, are combined into a
single parameter called health indicator to be used
in the prediction of the adverse event.

(v) RUL Prediction. )e RUL equipment is carried out
in this work through the K-nearest neighbors
classifier [54] and Weibull fitting [55].

)e core activities of this work are the HI definition and
RUL Prediction. )e innovative proposed methodology to
develop these activities will be described in depth in Section 3.1.

Table 1: Summary of the selected literary contributions.

Keywords # of papers # of relevant papers
“Predictive maintenance” and “health indicator” 25 21
“Predictive maintenance” and “Fuzzy Cognitive Map(s)” and “Swarm Intelligence” — —
“Predictive maintenance” and “Fuzzy Cognitive Map(s)” — —
“Maintenance” and “Fuzzy Cognitive Map(s)” 42 10
“Predictive maintenance” and “Swarm Intelligence” 2 1
“Maintenance” and “Swarm Intelligence” 135 9
“Predictive maintenance” and “Grey Wolf” 1 —
“Maintenance” and “Grey Wolf” 33 10

Data
acquisition 

Preprocessing
data 

Features’
extraction 

Splitting
dataset 

Health indicator
modelling 

RUL prediction

Figure 1: General scheme for a predictive maintenance procedure.
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3.1. +e HI Modelling. )e proposed approach for the HI
modelling is performed by the combined use of FCM and a
Swarm Intelligence algorithm such as the GWO. Before
describing the proposed approach, the FCM and GWO
theories are briefly described in the following two sections.

3.1.1. +e FCMs’ Modelling. A cognitive map (CM) can be
thought of as a concept map reflecting mental processing,
comprised of collected information and several cognitive
abstractions, individually filtered, about regarding physical
phenomena and experiences [56]. Cognitive maps are visual
representations of an individual’s mental model constructs,
analogous to concept maps for representing human rea-
soning and knowledge or beliefs [7].)us, a generic problem
is considered, and an expert panel of experts is formed for its
in-depth analysis, since different individuals may face the
same question differently. According to their area of ex-
pertise through fuzzy logic, they model collective FCM
identifying concepts and relationships about regarding the
considered problem. In particular, concepts, in number of N,
are the FCM key elements that stand for the main char-
acteristics of the abstract mental model for whichever
complex system [57]. Once concepts are identified, experts
are asked to assign a numerical value wij (the weight of the
relation between concept ith and jth) for the W matrix,
which represents the influence of concept Ci on concept Cj.
According to equation (1), wij ranges in [–1, 1]. Specifically,
wij� 0 indicates no causality between concepts, wij> 0 in-
dicates causal Cj increases as Ci increases (or Cj decreases as
Ci decreases), and wij< 0 shows causal decrease or negative
causality (Cj decreases as Ci increases or Cj increases as Ci
decreases):

FCM �

w1,1 . . . w1,N

⋮ ⋱ ⋮

wN,1 . . . wN,N

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (1)

Although many studies exist concerning the dynam-
ical representation of an FCM, generally, the experts’
opinion aggregation of expert opinions for the collective
weight matrix modelling is performed using the SUM
method [58]. )en, overall linguistic weight is evaluated
using the centre of gravity (COG) defuzzification method
[59]. Some examples are presented by Bevilacqua et al.
[7, 60, 61] and Stylios et al. [62] where a unique credibility
value is assigned to each expert and a threshold function is
used in the aggregation. On the contrary, a modification of
the approach mentioned above has been provided by
Stylios and Groumpos [63] and Stylios and Groumpos
[64], introducing a corrective factor for the experts’
credibility evaluation. However, this approach does not
take into consideration the fact that, in a complex mul-
tidisciplinary problem, most experts have in-depth
knowledge of only parts of the problem and not the entire
issue [65].

Once the total weights’ matrix, W, has been designed, it
is possible to analyse the system behaviour through simu-
lations.)us, if Ai defines the instantaneous value of concept

Ci, its evolution over time can be evaluated computing the
influence of the related concepts Cj on the specific concept
Ci according to

A
k+1
i � f A

k
i + 

n

j≠ i

j�1

A
k
jwi,j

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2)

where Aik+ 1 is the value of concept Ci at simulation step
k+ 1 and Ajk is the value of concept Cj at simulation step k.
Also, wij is the weight of the interconnection from concept
Cj to concept Ci and f is an appropriate threshold function
used to force the concept value to be monotonically mapped
into a normalised range [66]. Other equations can be used in
place of equation (2) as suggested by Mazzuto et al. [67] and
Osoba and Kosko [68].

An important topic in the FCM analysis is the indirect and
total causal effect evaluation (Axelrod, 1976), whose knowledge
allows an in-depth map analysis. )e indirect effect Ik of Ci
concept on Cj concept can be defined as shown in

Ik Ci, Cj  � min w Cp, Cp+1  . (3)

Ik is defined as the minimum numerical of the wij weight
along a single path between concepts ith to jth. At the same
time, the total causal effect T(Ci, Cj) (equation (4)) is the
maximum of the indirect effect of concept Ci on concept Cj:

T Ci, Cj  � max Ik Cp, Cp+1  . (4)

According to Bevilacqua et al. [7], equation (3) can be
described using the “weak ring in the chain” metaphor.
Indeed, it is necessary for the identification of ATO identify
concept concatenation as a chain where the weight wij is the
hardiness of each chain ring. In the presence of a weak ring
into the chain, it is not possible to consider it as a “resistant
chain,” and its total hardiness is quantified with the har-
diness of the weak ring. )erefore, once derived the value of
hardiness is derived from by equation (3), and equation (4)
allows defining the more resistant chain to be defined. Fi-
nally, the chain hardiness highlights the relevance of the first
concept in the concatenations affecting the top event.

In the proposed approach, the concepts of the FCM
represent the working conditions of the component to be
analysed, the sensor signals installed on the components,
and the HI of the component. )e FCM takes the advantage
of the situation to identify the relationships among all the
involved concepts in amatrix form to be used to calculate the
health indicator for the RUL prediction.

3.1.2. +e GWO Algorithm. Mirjalili et al. [69] introduced
the GWO, which mimics the hierarchy of leadership and the
mechanism for hunting grey wolf packs in the wild. )e
algorithm divides the agents (grey wolves) into four different
hierarchical categories called alpha (α), beta (ß), delta (δ),
and omega (ω), in the descending order.
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Each hierarchy has different roles to find solutions,
which in this case correspond to the prey. )e leaders of
the packs are the wolves called alphas. )e alpha is pri-
marily responsible for decisions about hunting, where to
sleep, and so on. )e alpha wolf is the dominant one, and
the pack must follow his orders. )e beta wolves identify
the second level in the hierarchy. )ey are subordinate
wolves that help the alpha in decision-making or other
pack activities. Moreover, a beta wolf must not only re-
spect the alpha but also command other lower level
wolves.

)e lower level grey wolf is the omega. )e ω plays the
role of scapegoat, and it helps to satisfy the entire pack
and maintain the dominant structure. Omega wolves
must always submit themselves to all other dominant
wolves. It may seem that the omega is not an essential
individual in the pack, but it is also true that the entire
pack faces internal struggles and problems if the omega is
lost. If a wolf is not an alpha, beta, or omega, it is called a
subordinate (or delta in some references). Delta wolves
must submit themselves to alphas and betas, but domi-
nate omegas. Scouts and hunters, for example, belong to
this category. )ey are responsible for guarding the
boundaries of the territory and warning the pack in case
of danger. Hunters help the alphas and betas to hunt prey
and provide food.

To mathematically model the social hierarchy of wolves
in the GWO design, α is therefore considered the most
suitable (optimal) solution. Consequently, the second- and
third-best solutions are named β and δ, respectively. )e
remaining candidate solutions are the ω ones.

In the GWO algorithm, α, β, and δ wolves impose the
rules of hunting and the ω ones follow them. In particular,
the hunt is composed of three main phases such as (i)
searching and chasing prey, (ii) surrounding and harassing
the victim until it stops moving, and, finally, (iii) attacking
the prey.

After spotting the possible prey, the wolves begin to
surround it and then move on to the attack. Equations (5)
and (6) model mathematically encirclement behaviour:

D � C · xp(t) − x(t)


, (5)

x(t + 1) � xp(t) − A · D, (6)

where D represents the difference between the position of
the prey and the predator, t denotes the current iteration, xp
specifies the location of the victim, and x indicates the wolf
location. Equations (7) and (8) allow one to calculate the A
and C values:

A � 2 · a · r1 − a , (7)

C � 2 · r2, (8)

where the components of a linearly decrease from 2 to 0
during each iteration and r1 and r2 are random arrays with
ranging in [0 1], and they allow wolves to reach any position
between the points, as illustrated in Figure 2.

As shown in Figure 2(a), a wolf in position (X, Y) can
update its location according to the prey’s position (X∗, Y∗),
and the same consideration is possible in 3D space
(Figure 2(b)), or in n dimension space.

It is assumed that alpha (best candidate solution), beta,
and delta have a better knowledge of the potential position of
the prey to simulate the hunting behaviour of wolves
mathematically. )erefore, the first three best solutions are
considered, and the other search agents (omega wolves) are
obliged to update their positions according to the location of
the best search agent [70].

As mentioned above, wolves end the hunt by attacking
their prey when it stops moving. If |A|< 1, the wolves begin
the attack phase by moving towards the victim. Wolves look
for prey mainly based on alpha, beta, and delta positions. In
this phase of research (exploration), the wolves move away
from each other to identify the different places of the prey
(solutions). )e vector A assumes values higher than one or
less than −1 and forces the research agent to diverge from the
victim.)is emphasises the exploration and allows the GWO
algorithm to search globally to find better prey.)us, once α,
β, and δ wolves are identified, all of the members’ pack
positions are updated according to

Dα � C1 · xα(t) − x(t)


, Dβ � C2 · xβ(t) − x(t)


,

Dδ � C3 · xδ(t) − x(t)


,

(9)

x1(t + 1) � xα(t) − A1 · Dα, x2(t + 1) � xβ(t) − A2

· Dβ, x3(t + 1) � xδ(t) − A3 · Dδ,

(10)

x(t + 1) �
x1(t + 1) + x2(t + 1) + x2(t + 1)

3
. (11)

Figure 3 describes the step to implement the GWO
according to the mentioned equations.

)e GWOhas the advantage of having few parameters to
initialise and be a flexible algorithm, so it can adapt to
various practical engineering problems. Indeed, only the
number of wolves in the pack (nPop) and the maximum
number of iteration (MaxIt) must be initialised. In Figure 3,
Iter is the current iteration. Moreover, the GWO can be
easily implemented, and thanks to its hierarchical structure,
which guarantees high accuracy in the solution.

Although recently introduced, the GWO has been used
in various fields of application. Das et al. [71] have tested the
GWO to optimise the parameters of a PID controller used
for speed control of a DC motor system. Komaki and
Kayvanfar [72] proposed the application of GWO to pro-
gram the optimal machining and assembly sequence to
minimise the completion time.)e results obtained with this
algorithm were then compared with other methods. )is
comparison revealed that the GWO provided better per-
formance. Nguyen et al. [73] used a multiobjective GWO to
solve the problem of node location in a wireless sensor
network. Various constraints were considered in the
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localisation model, including the limitation of spatial dis-
tance between nodes and the restriction of topology. )e
results of the simulations show significant improvements in
terms of localisation accuracy and rate of convergence to the
optimal solution, compared to those obtained with other
methods. Song et al. [74] used GWO to estimate the pa-
rameters of Rayleigh Waves (a type of elastic surface wave).

However, the research and development activities for
this algorithm are still at an early stage [75]. As previ-
ously stated, the GWO has a strong exploration capacity,
which can avoid convergence in excellent premises. )is
feature may lead the algorithm to slow convergence and
indeed led us to try GWO to define the wij values of the
FCM.

3.1.3. +e K-Nearest Neighbors Algorithm. An in-depth
analysis of the k-nearest neighbors (KNN) algorithm al-
lows underlining as it is simple and easy-to-implement
supervised machine learning algorithm used to solve both
classification and regression problems. Its functioning is
based on the similarity of the characteristics: the closer an
instance is to a data point, the more KNN will consider
them similar [76].

Once the HIs have been defined for each training unit, they
can be used as models representing the degradation profile,
from normal functioning to disruption. At this point, a set of
models Mi (with i� 1 to the number of items composing the
training dataset) is available and usable to predict the RUL.
)erefore, to find the most similar element, it is necessary to
measure the distance between the model Mi and Y� y1, y2, ...,
yr, which represents the HI of the test unit obtained through
consecutive observations. )e distance is calculated by the
Euclidean distance (depending on the problem under exam-
ination) or by the mean value of the absolute residual (used in
the proposed approach), as described by equations (11) and
(12). )us, the smaller the distance, the greater the similarity
between the data point and the instance to be predicted:

(a) (b)

Figure 2: )e pack hunting scheme [69].

Start

Wolf position
initialisation

Initialisation
grey wolf

parameters 

Fitness function
calculation 

α, β, and δ wolf
identification 

Iter < MaxIt

α wolf identification

End

Update wolf
position using 7-9 

Update grey
wolf

parameters 

Fitness function
calculation 

α, β, and δ wolf
identification Iter = Iter + 1

Figure 3: )e Grey Wolf flowchart.
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d xi, xl(  �

������������������������������������

xi1 − xl1( 
2

+ xi2 − xl2( 
2

+ . . . + xip − xlp 
2



,

(12)

d xi, xl(  � mean yi − yl


 , (13)

where yi is ith training model and yl is the l th testing one,
and each of them is composed of xi and xl components.

)en, the calculated distances are used as the argument
to evaluate the similarity weight, swi,l, between the testing HI
and all of the training ones considering

swi,l � exp −d xi, xl( 
2

 . (14)

Once obtaining the similarity weights among the testing
unit and training ones, it is possible to rank them in
descending order and identify the number of similar unit SU
as described in

SU � min(k, N), (15)

where N is the number of training units and k is an initial
fixed value. In particular, when k is small, it is limiting the
prediction region, forcing the classifier to be “more blind”
than the general distribution. On the contrary, a large k
reduces the impact of the variance caused by a random error
but runs the risk of ignoring small details that might be
relevant. For the proposed approach, initially, k is fixed equal
to 50. )us, having similar units, it is possible, considering
the relative end dates updated to the number of test samples,
to fit a Weibull distribution to find the RUL.

3.1.4. +e Procedure for HI Assessment. Figure 4 shows the
framework used to esteem the aircraft engine HIs and,
subsequently, to predict the RUL of the engine. )e pro-
posed algorithm can be classified within the condition
monitoring techniques. It consists of a general framework
and can be applied to any equipment. )e dataset, both
training and testing, are composed of the sensor readings of
the considered items.

In the “Time Indicator Modelling” phase, a lifetime in-
dicator (LTI) is defined. )e sample number of each piece of
equipment (that corresponds to the number of rows of the
dataset) represents its life duration.

)e main idea of LTI is to model a degradation profile
considering that, at the beginning of sampling, an item has
the maximum reliability value (equal to 1), and when the
disruption occurs, the item reliability has a minimum
amount (equal to 0). )e first value of LTI is equal to 1, and
the last one is equal to zero, according to

TIm
′ � DU Rm − 1 DU Rm − 2 . . . 0 , (16)

TIm(t)’′ �
TIm(t)

’

DU Rm

, (17)

LTIm(t) � TIm(t)′
 ′ + 1 − TIm(t � 1)′

 ′( , (18)

where DURm is the dataset length for the mth equipment.
Each element of TIm indicates the remaining cycle times to
the relative disruption at time t (then normalised in TIm”).
Hence, each value of LTIm decreases from 1 to 0. LTIm
represents the parameter to be esteemed and used in the
algorithm for the HI estimation. Table 2 shows an example of
LTI calculation.

)e “FCM Modelling” phase is the core of the proposed
approach to identify the HI. Figure 5 describes the iterative
phase for the HI calculation reviewing the general GWO
algorithm shown in Figure 3. In particular, the GWO al-
gorithm is used for defining the weight of the relation be-
tween concept ith and jth (wij values) of the FCM matrix.
)e concepts of the FCM represent the working conditions
of the equipment to be analysed, the sensor signals installed
on the equipment, and the last concept which is the HI. In
particular, since the purpose of the approach is the HI es-
timation using the FCM theory, the number of concepts
(NC) to be used is equal to the number of reduced dataset
variables’ number plus the HI (the algorithm output). )is
means that if the reduced dataset variables number is n,
NC� n+ 1.

)e iterative phase, shown in Figure 5, is executed for
each equipment belonging to the training dataset. In each
iteration, the final α wolf position is assumed as the tem-
porary FCMj and used as initial FCM for the next one. When
the terminal equipment has been analysed, the relative FCM
is considered as the optimal solution.

)e GWO algorithm is used to define the wij values of
FCM. )ese values randomly in the range [−1 1] or [0 1], as
required by the FCM theory, for each pack member. )en,
equation (1) calculates the relative cost. By analysing Fig-
ure 5, it is possible to highlight how the lifetime indicator
and the reduced dataset are used as input for the fitness
function calculation.

Assuming to have a reduced training dataset related toM
equipment, with nmain variables, it is divided inM reduced
subdataset, each one related to a specific equipment. )us, a
reduced subdataset RDm (the sensors’ readings of equipment
m withm� 1, 2, . . ., M) is available with the relative LTIm, in
the form expressed in

RDm �

Var
m
1,1 . . . Var

m
n,1

⋮ ⋱ ⋮

Var
m
1,f . . . Var

m
n,f

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, LTIm � lti1 . . . ltif .

(19)

)e term f identifies the instant in which the fault oc-
curred; n represents the progressive number of the main
reduced variables, and m is the number of considered
equipment.

)e pack members’ position, obtained through the
GWO application for a specific device, is given in the form of

FCMiter
p,m �

w1,1 . . . w1,NC

⋮ ⋱ ⋮

wNC,1 . . . wNC,NC

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (20)
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where p is the pth member of the pack (p� 1, 2, . . .nPop), iter
is the current iteration with iter≤MaxIt, and NC is the
concepts number for the FCM algorithm defined before.
)us, FCMiter

p,m is the relative position of the pth packmember
at the current iteration for the mth equipment.

By analysing Figure 5, it is possible to highlight the
presence of two main “for loop.” )e first one (external) is
referred to the number of available equipment (M) and the
second one (internal) to the maximum iteration number for
GWO (MaxIt).

At each iteration of the external loop (the iteration is
equal to the equipment number in the dataset), the LTI
related to a specific item is used as the benchmark for the
positional cost calculation (if the iteration is equal to one,
the LTI1 is examined). )is means that the external loop
has the objective of identifying the best FCMm for themth
equipment. In the internal loop, for the GWO applica-
tion, all the pack members take a position within the
domain space, updating it at each inner iteration. At the
end of the inner loop, the best position for the considered

item is identified (FCMm). )e obtained FCMm is used as
the initial position for the FCMm+1 identification (as long
as m <M) to improve its accuracy.

In the algorithm initialisation, FCM0
1 can be defined

randomly if there is no knowledge of the involved
equipment or a panel of experts cannot be established to
model it, as described for the classical FCM design ap-
proach, according to the experience of each professional
involved.

As mentioned before, equation (1) evaluates the fitness cost
value for each FCMiter

p,m.)is step is themost critical in thewhole
algorithm, as highlighted by Mazzuto and Stylios [77]. Indeed,
to calculate the cost connected to FCMiter

p,m
r, it is necessary to

consider all of the samples whichmake upRDm and LTIm.More
accurately, if RDm has f samples (as described above) as well as
LTIm, equation (1) has to be applied f times. Besides, since the
number of iteration (k) in equation (1) depends on the function
convergence or the fixed amount of repetition (FCMiter), the
fitness cost evaluation requires an iteration number equal to
(f · FCMiter). Considering nPop wolves and a maximum

Time indicator
modelling 

FCM modelling

Training health
indicator

definition 

Testing health
indicator

definition 

Prediction RUL

Training dataset

Testing dataset

Trained
FCM

Trained
FCM

Trained
HI

Tested
HI

Figure 4: )e proposed framework approach.

Table 2: An example of equations (16)–(18) application.

Steps description Equation application
Suppose machine 1 breaks after 10 sampling cycles; it follows that DU R1 � 10,
according to equation (16) TI1′ � 9 8 7 6 5 4 3 2 1 0 

According to equation (17), the relative normalised value TI’
′
1 � 0.9 0.8 0. 7 0.6 0.5 0.4 0. 3 0.2 0.1 0 

According to equation (18), the lifetime indicator LTI1 � 1 0.9 0.8 0.7 0.6 0.5 0.4 0. 3 0.2 0.1 

8 Mathematical Problems in Engineering



iteration number for the GWO (MaxIt), the total number of
iterations for the identification of the optimal FCM is equal to
(f · FCMiter) · nPop · MaxIt.

Considering the pth pack member, once its position is
defined (FCMiter

p,m), its positional cost has to be calculated
according to equation (1) for the best position
identification.

)e main idea is to consider each sample in the reduced
dataset for a specific item (RDm) as the initial array A0 at the
specified iteration according to

A
0,j
m � Varm

1,j . . . Varm
n,j 0  , 4j � 1, 2 . . . f, m � 1, 2 . . . M.

(21)

)e null value is because the output is considered within
the set of FCM concepts, but it is the variable that needs to be
taken into consideration.

When the application of equation (1) reaches the con-
vergent, A

∗ ,j
m will be described by

A
∗ ,j
m � Varm

1,j . . . Varm
n,j HI

∗ ,j
m

  ,

j � 1, 2 . . . f, m � 1, 2 . . . M,

(22)

where Varm
1,j is the convergent value for the variable Varm

1,j

and HI
∗ ,j
m is the esteemed output for the sample at time j for

the mth engine.
Once all of the samples in RDm have been processed, a

final output array HI∗p,m for the pth pack member, equation
(23), will be available:

H
∗
p,m � HI

∗ ,1
m HI

∗ ,2
m . . . HI

∗ ,f
m

  , f, m � 1, 2 . . . M.

(23)

)us, the esteemed output HI∗p,m and the connected
LTIm can be used to calculate the fitness cost value (Citer

p,m),
for the pth pack member and themth item and at iteration
iter, using the root mean squared error formula, as
shown in

Start

Initialisation
wolf position 

Initialisation
grey wolf

parameters 

Fitness function
calculation 

α, β, and δ wolf
identification 

Reduced
Dataset (RDm) 

LifeTime
Indicator (LTIm)

m < M

Iter < MaxIt

α wolf identification

End

Update wolf
position using 7-9 

Update grey wolf
parameters 

Fitness function
calculation

using 2 

α, β, and δ wolf
identification Iter = Iter + 1

Reduced
Dataset (RDm)

LifeTime
Indicator (LTIm)

m = m + 1

Figure 5: Framework of the proposed methodology.
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C
iter
p,m �

������������������


f
j�1 LTI

j
m − H

∗,j
p,m 

2

f




. (24)

)e root mean square error has been chosen because it
describes efficiently how concentrated the data is around the
line of best fit [78].

Finally, once the optimal FCM to be used for the HI
identification phases is identified, it is used to calculate the
HIs in the “Training Health Indicator definitions” and
“Testing Health Indicator definitions,” respectively.

4. Research Approach Application

To explain the proposed approach and to test its accuracy for HI
modelling, the Turbofan Engine Degradation Simulation
Dataset has been used. It is available online on the NASA
repository website (https://ti.arc.nasa.gov/tech/dash/groups/
pcoe/prognostic-data-repository/, last access July 21, 2020).

)e aircraft gas turbine engine has an integrated
control system, which consists of a fan-speed controller
and a set of controllers and limiters. In particular, it
includes three high-limit regulators aimed at preventing
the engine from exceeding its designed parameters [79].

Several categories of signals could be used, including
temperature, pressure, speed, and air ratio to monitor the
condition of the aircraft gas turbine engine. )e dataset is
composed of 21 sensors installed in the aircraft engine’s
different components, allowing the health conditions of the
aircraft engine to be monitored (see Figure 6). An excerpt of
the used dataset is shown in Table 3. To have a complete view
of the dataset, it is possible to refer to Saxena et al. [79] and
Xu et al. [80].

)e training dataset is made up of readings from 249
engines (for a total of 61249 rows and 26 columns), while the
testing dataset is made up of data from 248 engines (for a
total of 41214 rows and 26 columns). )e approach evalu-
ation has been carried out using Matlab 2019© installed on a
Intel® Core™ i7-6700HQ CPU @ 2.60GHz.

)e results of the proposed approaches have been compared
to those obtained using an artificial neural network, due to the
similarity between the Artificial Neural Network (ANN) and
FCM, in order to evaluate the performance of these approaches.
In light of this, to have comparable results, the initial dataset has
been standardised according to the working conditions and
then reduced through the trendability analysis [21] to guarantee
the impartiality of the data suitability obtained with the two
approaches. )e reduced dataset has been used as input for the
proposed approach and the ANN. More specifically, according
to Figure 6, the number of reduced sensors is equal to 8, such as
2, 3, 4, 8, 9, 11, 13, and 17 (see Table 4).

)ese sensors will be the concepts for the realised FCM
and the input for the ANN. Table 5 shows the nomenclature
used for each sensors, the concepts in FCM, and the input of
the ANN.

4.1. +e Proposed Approach Results. Once the training
dataset has been reduced, for each engine, according to

equations (16)–(18), the relative LTI array has been calcu-
lated (see Figure 7) to be used as output in the proposed
approach regarding the positional cost definition.

As far as the proposed approach is concerned, asmentioned
in Section 3.1.3, it can be initialised either using an FCM design
referring to the experience of an expert panel or with a random
matrix to be iteratively corrected. Due to the lack of availability
of the experts concerning the aircraft engine knowhow, for the
examined case study, a random initial FCM has been adopted.

Since the training dataset is composed of 249 engines, the
entire process has been carried out for 249 iterations during
which the FCM obtained in the previous iteration is corrected.
Figure 8 shows the convergence curves during the algorithm
iterations and highlights the final value of the last curve that
shows the minimum root mean square error equal to 1.6117.
Moreover, concerning the application of equation (2), the
hyperbolic tangent function has been chosen as the threshold
function f() with slope factor equal to 1.)emaximumnumber
of iterations for the positional cost calculus has been fixed equal
to 50 and an additional threshold value, equal to 10–3, has been
defined to potentially arrest the algorithm. )e required
training time to identify the final FCMhas been calculated to be
equal to 15 minutes due to the large numbers of samples
composing the dataset.

Table 6 shows the final wij values among the concepts of
the optimal FCM and the output of the proposed algorithm.
)e last row shows all null values being the last concept C9,
the HI, an output concept.

Analysing Table 6, it is possible to highlight the presence of
some low values (less than 0.1). It would be possible to filter the
final FCM so that these values could be considered null to
facilitate the HI calculus. However, the additional filtering
phase adds to the entire process a delay factor since the user

Index Symbol Description Units
1 T2

T24
T30
T50
P2

P15
P30

Total temperature at fan inlet
Total temperature at LPC outlet
Total temperature at HPC outlet
Total temperature at LPT outlet

Pressure at fan inlet
Total pressure in bypass-duct
Total pressure at HPC outlet

2
3
4

6
7

5

8 Nf Physical fan speed
Physical core speed9 Nc

10

HPT coolant bleed
LPT coolant bleed

Static pressure at HPC outlet
Ratio of fuel flow to Ps30

Corrected fan speed

Engine pressure ratio

Bypass ratio
Burner fuel-air ratio

Bleed enthalpy
Demanded fan speed

Demanded corrected fan speed

Corrected core speed

Epr
11
12
13
14
15
16
17
18
19
20
21

Ps30
Phi
NRf
NRc
BPR
farB

htBleed
Nf_dmd

PCNfR_dmd
W31
W32

°R
°R
°R
°R

Psia
Psia
Psia

Psia

rpm
rpm

rpm
rpm

rpm
rpm

—

—
—
—

pps/psi

lbm/s
lbm/s

°R
Psia
rpm

lbm/s

The Rankine temperature scale
Pounds per square inch absolute

Pounds per square inch

Revolutions per minute
Pulse per second

Pound mass per second

pps
psi

Figure 6: Sensors implemented in the aircraft engine [80].
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Table 3: An excerpt of the training dataset referring to Engine 1.

Id engine Cycle
Working
conditions Sensors

1 2 3 1 2 3 4 5 6 7 8 9 . . . 19 20 21
1 1 42.0 0.8 100.0 445.0 549.7 1343.4 1112.9 3.9 5.7 137.4 2211.9 8311.3 . . . 100.0 10.6 6.4
1 2 20.0 0.7 100.0 491.2 606.1 1477.6 1237.5 9.4 13.6 332.1 2323.7 8713.6 . . . 100.0 24.4 14.7
1 3 42.0 0.8 100.0 445.0 549.0 1343.1 1117.1 3.9 5.7 138.2 2211.9 8306.7 . . . 100.0 10.5 6.4
1 4 42.0 0.8 100.0 445.0 548.7 1341.2 1118.0 3.9 5.7 138.0 2211.9 8312.4 . . . 100.0 10.5 6.4
1 5 25.0 0.6 60.0 462.5 536.1 1255.2 1033.6 7.1 9.0 174.8 1915.2 7994.9 . . . 84.9 14.0 8.7
1 6 35.0 0.8 100.0 449.4 554.8 1352.9 1117.0 5.5 8.0 193.8 2222.8 8340.0 . . . 100.0 14.9 8.9
1 7 0.0 0.0 100.0 518.7 641.8 1583.5 1393.9 14.6 21.6 552.5 2387.9 9050.5 . . . 100.0 38.9 23.5
1 8 42.0 0.8 100.0 445.0 549.1 1344.2 1110.8 3.9 5.7 137.1 2211.9 8307.3 . . . 100.0 10.6 6.3
1 9 42.0 0.8 100.0 445.0 549.6 1342.9 1101.7 3.9 5.7 138.0 2211.9 8307.8 . . . 100.0 10.6 6.3
1 10 25.0 0.6 60.0 462.5 536.4 1251.9 1041.4 7.1 9.0 174.7 1915.2 8005.8 . . . 84.9 14.3 8.6
1 11 20.0 0.7 100.0 491.2 606.9 1478.0 1233.1 9.4 13.6 333.2 2323.7 8709.6 . . . 100.0 24.6 14.7
1 12 35.0 0.8 100.0 449.4 554.5 1366.0 1122.7 5.5 8.0 193.7 2222.8 8337.5 . . . 100.0 14.7 8.9
1 13 25.0 0.6 60.0 462.5 536.3 1257.8 1040.9 7.1 9.0 174.5 1915.3 8000.1 . . . 84.9 14.4 8.6
1 14 20.0 0.7 100.0 491.2 607.3 1470.3 1242.4 9.4 13.6 333.7 2323.7 8714.4 . . . 100.0 24.3 14.7
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 4: An excerpt of the reduced and normalised training dataset referred to Engine 1.

Id engine Cycle
Sensors

2 3 4 8 9 11 13 17
1 1 0.435 −1.385 −1.282 −0.608 −0.877 −1.207 −0.386 −0.327
1 2 −2.472 −0.888 −1.357 −1.660 −0.878 −1.416 −1.907 −2.277
1 3 −1.137 −1.432 −0.825 −0.357 −1.126 −1.311 −0.464 −0.929
1 4 −1.675 −1.717 −0.716 −0.524 −0.821 −1.242 −0.270 −1.531
1 5 −1.655 −0.935 −1.763 −0.911 −1.441 −0.861 −1.032 −1.272
1 6 −1.637 −1.837 −1.298 −1.059 −0.894 −1.579 −0.976 −2.293
1 7 −1.296 −0.753 −1.167 −1.106 −0.674 −1.691 −1.305 −0.970
1 8 −0.922 −1.274 −1.521 −0.357 −1.095 −1.520 −0.464 −0.929
1 9 0.155 −1.472 −2.530 −0.440 −1.066 −2.076 −0.347 −1.531
1 10 −1.007 −1.506 −0.723 −0.863 −0.621 −1.856 −0.808 −1.272
1 11 −0.879 −0.826 −1.855 −1.466 −1.102 −1.698 −1.433 −1.087
1 12 −2.132 0.199 −0.637 −1.020 −1.037 −1.543 −1.012 −1.063
1 13 −1.085 −0.487 −0.789 −0.626 −1.055 −1.110 −0.763 −1.272
1 14 −0.013 −1.985 −0.805 −1.368 −0.836 −1.487 −1.338 −0.492
1 15 −1.603 −0.284 −1.235 −0.863 −0.688 −1.069 −0.897 −1.969
1 16 −2.315 −1.459 −0.353 −1.514 −0.689 −1.769 −1.291 −2.277
1 17 −1.741 −2.353 −1.497 −1.383 −1.152 −1.489 −1.470 −0.721
1 18 −0.125 −1.193 −1.179 −0.273 −1.001 −1.172 −0.425 −0.929
1 19 −1.331 −1.684 −1.330 −1.612 −1.076 −1.275 −1.575 −1.087
1 20 −1.705 −0.936 −1.622 −1.612 −0.877 −1.275 −1.670 −1.087
1 21 −1.627 −1.728 −0.751 −5.281 −1.553 −1.015 −5.341 −1.550
1 22 −0.348 −1.623 −1.684 −1.514 −1.505 −1.557 −1.670 −1.087
1 23 −1.160 −1.553 −1.431 −1.039 −1.070 −1.319 −1.036 −1.550
1 24 −1.707 −1.503 −1.862 −0.721 −1.158 −1.027 −0.763 −2.666
1 25 −0.771 −1.574 −1.050 −0.566 −1.165 −1.172 −0.502 −0.929
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 5: Sensors nomenclature for FCM and ANN approaches.

Sensor 2 Sensor 3 Sensor 4 Sensor 8 Sensor 9 Sensor 11 Sensor 13 Sensor 17
FCM id C1 C2 C3 C4 C5 C6 C7 C8
ANN id I1 I2 I3 I4 I5 I6 I7 I8
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should define the filter threshold value properly through
specific algorithms, increasing the iteration time. Since the size
of the FCM concepts set, for the examined case study, is not so
big, the additional filter phase has been neglected.

)e final FCM can be graphically represented to evaluate
all the concatenations among concepts, as shown in Figure 9.

Once the final FCM has been obtained, the strength of
the concepts involved can be analysed so as to identify the
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Figure 7: LTI curves for the reduced training dataset.
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Figure 8: Convergence curves at each training iterations.

Table 6: )e identified FCM.

Concepts
C1 C2 C3 C4 C5 C6 C7 C8 C9

C1 — 0.090 0.016 −0.084 0.015 0.604 0.089 0.159 0.266
C2 0.106 — 0.405 0.509 −0.260 0.163 −0.255 0.069 −0.056
C3 0.091 0.045 — 0.173 0.029 0.420 0.322 0.749 0.022
C4 0.193 0.595 0.016 — 0.230 0.098 0.047 0.218 −0.042
C5 0.040 0.454 0.164 0.198 — 0.322 0.773 0.648 −0.998
C6 0.022 0.309 0.133 0.346 0.391 — 0.077 −0.892 −0.276
C7 0.320 0.293 0.166 0.770 1.000 0.555 — 0.790 −0.200
C8 0.171 0.122 −0.069 −0.156 0.239 0.153 0.329 — −0.062
C9 — — — — — — — — —
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main relevant ones and, through the critical path analysis,
identify those concepts that can be considered the leading
causes of the degradation profile for each engine.

Specifically, according to equation (3), Table 7 shows
the Total Effects’ matrix where the (i, j) values of this
matrix represent how much the concept indicated in the
rows affects the concept indicated in the columns.

)e most significant influence is related to the rela-
tionship between concept C7 (sensor number 13) and C1
(sensor number 2) with the strength value equal to 1. )is
relation means that C7, the Corrected fan speed, is the main
cause of the increase to C1 that is the Total temperature at the
LPC outlet.

Focusing on the degradation profile, the HI concept C9,
it is possible to highlight that concept C7, jointly with
concept C5 (sensor number 9, Physical core speed) have the
most significant weight since the strength value is equal to
-0.998. )is mean that the fan speed increasing is the rel-
evant cause of aircraft engine degradation.

Analysing in depth all the critical paths (Table 8) starting
from each concept of the FCM and ending in the conceptC9,
it is evident how the strength of the relationship between C7
and C9 is not a direct influence.)is is because C7 indirectly
affects C9 through the influence on C5. )us, C5 can be

considered the most relevant cause of aircraft engine deg-
radation. )is could be an important consideration for a
proper maintenance plan design.

Once the FCM has been analysed, it can be used to
calculate the HIs for each engine in the training dataset (the
first 50 HIs are shown in Figure 10) and also for the testing
dataset. In practical terms, the HI shape provides mainte-
nance managers with the real RUL value.

4.2. +e Comparison between the Proposed Approach with
ANN. Results of the proposed approach have been com-
pared to those obtained using an Artificial Neural Network.

C1

C2
C3

C6

C8

C4

C5

C9

C7

Figure 9: )e final FCM in the symbolic form.

Table 7: TEs matrix among all of the involved concepts.

Concepts
C1 C2 C3 C4 C5 C6 C7 C8 C9

C1 — 0.309 0.133 0.346 0.391 0.604 0.159 0.604 0.391
C2 −0.255 — 0.405 0.509 −0.260 0.405 0.322 0.405 −0.276
C3 0.320 0.309 — 0.346 0.391 0.420 0.329 0.749 0.391
C4 0.193 0.595 0.405 — −0.260 0.230 −0.255 0.230 −0.260
C5 0.320 0.454 0.405 0.770 — 0.555 0.773 0.773 −0.998
C6 0.193 0.391 0.309 0.346 0.391 — 0.391 −0.892 0.391
C7 0.320 0.595 0.293 0.770 1.000 0.555 — 0.790 −0.998
C8 0.320 0.293 0.166 0.329 0.329 0.329 0.329 — 0.329
C9 — — — — — — — — —

Table 8: Main paths affecting HI concept (C9).

Initial node End node TE
C1 C6 C5 C9 0.391
C2 C3 C6 C9 −0.276
C3 C6 C5 C9 0.391
C4 C2 C5 C9 −0.260
C5 C9 −0.998
C6 C5 C9 0.391
C7 C5 C9 −0.998
C8 C7 C5 C9 0.329
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)e ANNs were chosen for the comparison as this meth-
odology is one of the most used in literature for the eval-
uation of the HI and also due to the similarity with the FCM
method. As far as the ANN is concerned, the best results
have been obtained considering a two-level network com-
posed of ten neurons, respectively. Referring to the Lev-
enberg–Marquardt method [81] and using the mean squared
error as a performance indicator, Figure 11 shows how the
lower MSE is obtained at 60th epoch with a value ranging
between [10−2 10−1].

)e LTI shown in Figure 7 have been used to train the
ANN in order to obtain the HI estimation, as reported in
Figure 12.

)e HIs defined for the engines in the testing dataset
have been used for the RUL prediction using k-neighbors

algorithm. Table 9 shows an excerpt of the results. Specif-
ically, engines are reported in the ascending order in terms
of the FCM percentage error (%err FCM). )e second
column is the real RUL value for each machine (values
provided by NASA).

)e estimated RUL values by FCM and ANN (columns 3
and 4, respectively) underline how the proposed approach
performances are better than those obtained using ANN.

Figures 13 and 14 compare the Weibull distributions
derived from the similarity approach based on FCM and
ANN for HIs. )ese figures show, as an example, the case of
Engine 1. For all other engines, similar results have been
obtained.

)e RUL obtained by the ANN approach is affected by
an overestimation with respect to the FCM one. )us, few
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Figure 10: HIs’ curves for the first 50 engines of the training dataset through the proposed approach.
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involved curves allow the reduction of the variability range
for a likely prediction. )is is a typical problem of ANN that
has been overcome through the proposed method.

)e HIs defined using the proposed approach are more
accurate and, in addition, the algorithm provides significant
discrimination of all the considered aircraft engines (see
Figure 15). )us, small variations in the sensor readings
define quite distinct degradation profiles.

5. Discussion

)e proposed approach has the ability to operate in a dy-
namic environment with no significant difference in the

operation of the algorithm in steady state or dynamic mode,
guaranteeing a reliable and robust performance together
with an easy implementation.

At the same time, it requires particular attention by
users in defining all the involved parameters such as the
size of the dataset, the number of agents to be used to find
the final FCM, and the threshold values. Indeed, as
discussed, the total number of iterations and therefore the
total computational time to calculate HIs depends on
them. However, the analysed case study has highlighted
how this limitation can be overcome by applying, before
the algorithm initialisation, a dataset reduction to min-
imise the involved variables number.
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Figure 12: HIs’ curves for the first 50 engines of the training dataset through the ANN approach.

Table 9: An excerpt of estimated RUL for the testing dataset.

Id engine TrueRUL EsFCM EsANN %Err FCM %Err ANN
2 83 82.1 94.73 1.09% 14.13%
9 176 178.11 170.69 1.20% 3.02%
3 89 87.89 124.81 1.25% 40.24%
11 176 178.84 219.61 1.61% 24.78%
4 53 51.84 50.54 2.19% 4.64%
18 171 167.05 180.09 2.31% 5.32%
5 64 62.46 76.85 2.41% 20.08%
1 33 33.82 44.6 2.48% 35.15%
7 70 71.93 100.15 2.76% 43.07%
22 163 167.84 160.83 2.97% 1.33%
13 110 113.36 157.72 3.05% 43.38%
16 109 112.73 155.48 3.42% 42.64%
21 113 117.74 131.87 4.20% 16.70%
25 111 105.84 148.76 4.64% 34.02%
8 41 43.03 40.10 4.95% 2.20%
6 33 34.86 37.35 5.64% 13.18%
24 75 69.87 105.27 6.84% 40.36%
27 76 70.37 101.51 7.41% 33.57%
26 71 76.31 101.37 7.48% 42.77%
17 46 49.76 57.99 8.17% 26.07%
15 37 40.48 34.03 9.40% 8.03%
12 26 22.9 35.54 11.90% 36.69%
23 39 43.95 55.13 12.68% 41.36%
. . . . . . . . . . . . . . . . . .
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Figure 13: Engine 1, Probability Density Function, True RUL, and Estimated RUL with proposed approach (trueRUL� 33 and
estRUL� 33.82).
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Probably the most significant advantage of the swarm’s
intelligence is its ability to operate in a dynamic environ-
ment. )e swarm can continuously follow the path even for
rapidly evolving optimisation. In principle, there is no
significant difference in the operation of the algorithm in
steady state or dynamic mode [82]. Moreover, these algo-
rithms do not require knowledge, for example, about the
gradients of the cost function and constrained functions.
)ey guarantee reliable and robust performance together
with an easy implementation [83]. Specifically, as far as the
GWO is concerned, the most important one refers to the
small number of parameters needed for its implementation
and adjustment [84, 85].

At the same time, regarding the utilisation of FCMs, among
several advantages, the most important is their extreme flexi-
bility and adaptability to a given domain, allowing qualitative
simulation of a system once constructed. Furthermore, FCMs
symbolically represent knowledge, converting the relations
between the elements of a mental landscape to assess the impact
of these elements [86, 87].)e use of FCMs demonstrates other
additional benefits, including the use of fuzzy logic. Indeed, the
fuzzy set theory allows the incorporation of uncertainty due to
sparse and imprecise information [88]. A fuzzy value is a fuzzy
representation of a specific property when it is not precisely
known [89].)e fuzzy set theory and numbers are mainly used
to quantify the grade to which a property can be connected with
an object. It must not be confused with the concept of prob-
ability. Indeed, the causality among concepts is considered as a
certainty, since the concept of causality is not used to try to
identify or find relationships between factors such as structural
equation model and/or Bayesian nets [90].

6. Conclusion

In this paper, an innovative supervised approach that
combines a Swarm Intelligence algorithm, the GWO, and
FCMs is proposed for HI analysis and calculation. )is
approach allows maintenance managers to predict the RUL
of items through the use of k-neighbors algorithms as well as
to have an in-depth understanding of the degradation
process; thanks to the analysis of the main paths of concepts
that affect the HI. In order to enhance the operating reli-
ability and reduce maintenance costs, an integrated fault
diagnosis and prognosis framework that analyse the ma-
chinery degradation process is necessary.

In the proposed approach, the working conditions of the
engines and the sensor signals installed on engines become
the concepts of the FCM, while the GWO, a Swarm Intel-
ligence algorithm, has been used for defining the connection
weight among these concepts and the HI concepts.

A dataset provided by NASA that concerns the data of
aircraft engines has been used to test the proposed approach.
)e case used underlines a crucial aspect. Comparing the
results with those obtained through neural networks, the
proposed algorithm models, and all of the degradation
profiles in a more detailed manner allows one to significantly
distinguish different situations without imposing any
specified mathematical functions. )is consideration is re-
flected in fewer profiles that can be considered similar to the
case in question and, consequently, give a more precise
estimate of the RUL. Moreover, analysing the final FCM, the
physical core speed and the corrected fan speed have been
identified as the main critical factors to the engine
degradation.

Furthermore, the use of the FCM approach allows the
user to be able to analyse in an intuitive way the relationships
between the variables involved and thus have a greater
understanding of the degradation process, which is im-
possible for an ANN. Indeed, in an ANN, the variables
involved are the inputs for the system and the neurons
concatenation has no meaning to understand the process.
On the contrary, in an FCM, the variables are simultaneous
inputs and “neurons,” so their concatenation gives more
information about the process.

)e performance of the proposed approach has been
demonstrated using a NASA dataset, but it can also be
applicable to the other fault diagnosis and prognosis
equipment. A wide range of experiments will be per-
formed to investigate the robustness of the proposed
method in our next step research. At the same time, it is
evident how the proposed approach can be based not only
on a feature reduction but also on the determination of the
most useful items for the training phase. Indeed, con-
sidering all the variables involved for the algorithm ap-
plication (number of wolves, maximum iteration number
for the GWO, thresholds etc.), the total number of iter-
ations for the identification of the optimal FCM can be
very huge and time-consuming. For this reason, as further
development is crucial to design a preliminary step to be
used after feature extraction step.
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Figure 15: HIs’ comparison using FCM and ANN for Engine 1.
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Data Availability

To explain the proposed approach and to test its accuracy for
Health Indicator modelling, the Turbofan Engine Degrada-
tion Simulation Data Set has been used. It is available online
on the NASA repository website (https://ti.arc.nasa.gov/tech/
dash/groups/pcoe/prognostic-data-repository/, last access
July 21, 2020).
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