
Research Article
Mathematical Modelling of Lesser Date Moth Using Sex
Pheromone Traps and Natural Enemies

Moustafa El-Shahed 1,2 and Asmaa M. Al-Dubiban 1,2

1Department of Mathematics, Unaizah College of Sciences and Arts, Qassim University, P.O. Box 3771,
Unaizah 51911, Saudi Arabia
2Department of Mathematics, Buraydah College of Sciences and Arts, Qassim University, P.O. Box 1162,
Buraydah 51431, Saudi Arabia

Correspondence should be addressed to Moustafa El-Shahed; elshahedm@yahoo.com

Received 31 August 2020; Revised 25 December 2020; Accepted 2 January 2021; Published 18 January 2021

Academic Editor: Le Anh Tuan

Copyright © 2021 Moustafa El-Shahed and Asmaa M. Al-Dubiban. *is is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

In this paper, a mathematical model for lesser date moth is proposed and analyzed. *e interaction between the date palm tree,
lesser date moth, and natural enemy has been investigated. *e impact of sex pheromone traps on lesser date moth is dem-
onstrated. Some sufficient conditions are obtained to ensure the local and global stability of equilibrium points. *e occurrence of
local bifurcation near the equilibrium points is performed using Sotomayor’s theorem. *eoretical results are illustrated using
numerical simulations.

1. Introduction

Lesser date moth is one of the most dangerous insect pests
affecting date palm around the world. It was discovered in
the Gulf region in the mid-eighties in the United Arab
Emirates in 1986 and in Saudi Arabia in 1987. It is known
that one-third of the production of date crops is lost as a
result of the agricultural pests that infect the date palm,
especially the lesser date moth [1–5].

Control of the lesser date moth with insecticides is very
difficult because it causes tunnels inside the stem of the palm
in all directions and depths without any early signs of in-
fection. Several methods have been adopted, including
preventive and curative measures to control lesser date moth
in date palm plantations around the world, including
chemical and nonchemical control, as well as the use of
pheromone traps as an effective tool for monitoring and
attracting complete insects of lesser date moth. *e sex
pheromone trap is one of the most important methods used
to combat lesser date moth. *is method depends on col-
lecting complete insects, killing them to prevent them, from
completing their life cycle, and increasing their numbers

[5, 6]. One of the most promising strategies for controlling
lesser date moth is the use of a mating disruption using the
sex pheromone traps [7–9]. Larvae predators are among the
most important natural enemies that are used in many areas
to combat some agricultural pests. Understanding the role of
natural enemies in controlling lesser date moth is crucial to
the difficulty in using other methods to control it. *e lesser
date moth is attacked by its natural enemy such as Goniozus
swirskiana [10, 11]. *e main objective of this paper is to
propose and analyse a mathematical model of lesser date
moth with sex pheromone traps taking into consideration
the effect of the natural enemy on lesser date moth.*e focus
will be on the effect of sex pheromone traps parameter on
lesser date moth.*e paper is arranged as follows: in Section
2, the mathematical model is described and the boundedness
of the solutions of lesser date moth system is verified. *e
local and global stability of the lesser date moth system is
analyzed in Section 3. *e local bifurcation conditions are
derived in Section 4, and we find the existence of Hopf
bifurcation around the coexistence equilibrium point. Fi-
nally, some numerical simulations are presented to verify the
obtained theoretical results.
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2. Mathematical Model

In this section, we construct a mathematical model de-
scribing the dynamic of lesser date moth (LDM) population
based on its biological and ecological facts.

(i) Let P(t) represent the population density of date
palm tree. We assume that the date palm grows
with intrinsic growth rate r and carrying capacity k

in the absence of lesser date moth.
(ii) We split the life cycle of LDM into two main stages:

the larval stage and the adult stage. *e larval stage
is the most dangerous, as it feeds on the living tissue
inside the trunk of the palm tree, which leads to the
death of the date palm tree. Let L(t) represent the
population density of the lesser date moth larvae.
*e adult stage is split into two compartments: the
lesser date moth female F(t) and lesser date moth
male M(t).

(iii) Let W(t) represent the population density of
natural enemy at time t.

(iv) *e lesser date moth larvae emerge to female or
male at the rate of α. Among lesser date moth larvae
which emerge, we suppose that a proportion ϵ
becomes female, while complimentary part (1 − ε)
becomes male.

(v) We consider the lesser date moth response on date
palm as Holling type-II response function
((β1P)/(a + P)), which denotes the rate of con-
sumption of date palm per LDM. β1 is the predation
rate of a date palm tree by lesser date moth. *e
parameter a is the half-saturation point, i.e., the
value of P at which the predation rate is half the
maximum value. e1 is the conversion rate of date
palm biomass to LDM biomass, and we assume
0< e1 < 1 since the whole biomass of the date palm
is not transformed to the biomass of the lesser date
moth. It is also assumed that their natural enemy
attacks the lesser date moth larvae, i.e., Goniozus
swirskiana population, at a rate of β2, following
Holling type-II functional response and b is the
value of L at which the predation rate is half the
maximum value. e2 is the conversion rate of lesser
date moth biomass to natural enemy biomass and
0< e2 < 1.

(vi) In order to maintain a low level of lesser date moth,
we consider controlling the use of female phero-
mone traps to disrupt male mating behavior.
Firstly, mating between LDM males and LDM fe-
males is disturbed to reduce the chances of fertil-
ization, which in turn reduces the number of
offsprings. *is is done using traps that are re-
leasing a female pheromone lure to which males are
attracted. *is leads to a decrease in the number of
males available for mating near females and reduces
the chance of fertilization. Secondly, the LDM

males, attracted with traps, are killed because traps
contain pesticides that kill what is caught.

(vii) To take into account the effect of pheromone traps,
we consider the approach proposed by Barclay and
Van den Driessche [12], Barclay and Hendrichs
[13], and Anguelov et al. [14]. *at is, the strength
of the trap is represented by the amount of pher-
omones released by an equivalent number of wild
females. Following [14–17], we assume that the
effect of the pheromone trap corresponds to the
attraction of additional η females. In such a context,
the total number of LDM females attracting LDM
males is F + η. In particular, this means that males
have a probability of (η/(F + η)) to be attracted to
pheromone traps. *e parameter c represents the
mortality rate of males attracted to pheromones
traps.

*e model of lesser date moth with sex pheromone trap
is described by the following system:

dP

dt
� rP 1 −

P

k
  −

β1PL

a + P
− μ1P,

dL

dt
�

e1β1PL

a + P
− αL −

β2LW

b + L
− μ2L,

dF

dt
� εαL − μ3F,

dM

dt
� (1 − ε)αL −

cηM

F + η
− μ4M,

dW

dt
�

e2β2LW

b + L
− μ5W,

(1)

with initial values P(0) � P0 ≥ 0, L(0) � L0 ≥ 0, F

(0) � F0 ≥ 0, M(0) � M0 ≥ 0, W(0) � W0 ≥ 0. *e variables
and parameters of system (1) are presented in Table 1.

2.1. Nonnegativity and Boundedness. *e boundedness of
the solutions of model (1) is given in the following.

Proposition 1. 5e population density of date palm tree P is
always bounded from above by P1 � (k/r)(r − μ1).

Proof. According to the first equation of the lesser date
moth system (1), one has (dP/dt)≤ rP(1 − (P/k)), as a result
(dP/dt)≤ − (r/k)(P2 − (k/r)(r − μ1)P), then we have

dP

dt
+ r − μ1( P≤ −

r

k
P
2

−
2k

r
r − μ1( P ≤ −

k

r
r − μ1( 

2
.

(2)

Applying the comparison theorem, one obtains
P≤P1.
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Theorem 1. All the solutions of lesser date moth model (1)
starting in R5

+ are uniformly bounded.

Proof. Following [18–21], let (P(t), L(t), F(t), M(t), W(t))

to be any solution of the system (1) with nonnegative initial
conditions. Let H(t) � P(t) + L(t) + F(t) + M(t) + W(t),
then

dH

dt
≤ rP 1 −

P

k
  − μ1P − μ2L − μ3F − μ4M − μ5W −

cηM

F + η

≤ rP 1 −
P

k
  − ]H,

≤
− r

k
P
2

− kP  − ]H,

≤
− r

k
P −

k

2
 

2

+
rk

4
− ]H,

(3)

where ] � min μ1, μ2, μ3, μ4, μ5 . *us, (dH/dt) + ]M≤
((rk)/4). Applying the comparison theorem, one obtains
0≤H(t)≤ ((rk)/4]). Hence, all the solutions of lesser date
moth system (1) that start in R5

+ are uniformly bounded in
the region

Ω � (P, L, F, M, W) ∈ R5
+: H≤

rk

4]
+ ξ, for any ξ > 0 .

(4)

Using the next generation method [22], one can obtain
the basic offspring number

R0 �
e1β1P1

α + μ2(  a + P1( 
. (5)

3. Equilibria and Stability

*e lesser date moth model (1) has the following three
equilibrium points:

(1) E0 � (0, 0, 0, 0, 0), which always exists.
(2) *e free lesser date moth equilibrium point

E1 � (P1, 0, 0, 0, 0). E1 exists if r> μ1.
(3) *e free natural enemy equilibrium point

E2 � (P2, L2, F2, M2, 0), where

P2 �
a α + μ2( 

e1β1 − α + μ2( 
,

L2 �
a + P2

β1
r − μ1 −

P2

k
 ,

F2 �
εαL2

μ3
,

M2 �
(1 − ε)αL2 η + F2( 

cη + μ4 η + F2( 
.

(6)

*e free natural enemy equilibrium point exists
positively if R0 > 1.

(4) *e coexistence equilibrium point E3 � (P3,

L3, F3, M3, W3), where

L3 �
bμ5

e2β2 − μ5
,

F3 �
εbαμ5

μ3 e2β2 − μ5( 
,

M3 �
(1 − ε)α F3 + η( 

ηc + μ4 F3 + η( 
,

P3 �
− ar − kμ1 + kr +

�����������������������

r(a + k) − kμ1( 
2

− 4krβ1L3



2r
,

W3 �
b + L3(  e1β1P3 − α + μ2(  a + P3(  

β2 a + P3( 
.

(7)

*e coexistence equilibrium point E3 exists if e2β2 > μ5
and e1β1P3 > (α + μ2)(a + P3).

*e locally asymptotically stable equilibrium points of
lesser date moth system (1) are now investigated. Following
[23, 24], the Jacobian matrix is given as follows:

Table 1: Biological description of parameters used in system (1).

Parameters Description
r *e date palm tree intrinsic growth rate
k *e carrying capacity
α Transfer rate from larvae to adult lesser date moth
β1 Predation intensity between date palm and larvae

β2
Predation intensity between larvae and natural

enemy

e1
Conversion coefficient for predation term between P

and L

e2
Conversion coefficient for predation term between L

and W

μ1 Mortality rate of date palm tree
μ2 Mortality rate of lesser date moth larvae
μ3 Mortality rate of lesser date moth female
μ4 Mortality rate of lesser date moth male
μ5 Mortality rate of natural enemy
a, b Half-saturation constants
η Maximal death rate by sex pheromone trap
c *e capture rate for male by sex pheromone trap
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J �

r −
2rP

k
− μ1 −

aβ1L
(a + P)

2
− β1P
a + P

0 0 0

e1aβ1L
(a + P)

2
e1β1P
a + P

− α − μ2 −
bβ2W

(b + L)
2 0 0 −

β2L
b + L

0 εα − μ3 0 0

0 (1 − ε)α
cηM

(F + η)
2 −

cη
F + η

− μ4 0

0
e2bβ2W
(b + L)

2 0 0
e2β2L
b + L

− μ5

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (8)

*e stability of lesser date moth extinction equilibrium
point E0 � (0, 0, 0, 0, 0) is investigated as follows.

Theorem 2. If r< μ1, then E0 is locally asymptotically stable.

Proof. *e Jacobian matrix of LDM system (1) at E0 is

J E0(  �

r − μ1 0 0 0 0

0 − α + μ2(  0 0 0

0 εα − μ3 0 0

0 (1 − ε)α 0 − c + μ4(  0

0 0 0 0 − μ5

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (9)

*e eigenvalues of J(E0) are λ1 � r − μ1, λ2 � − (α + μ2),
λ3 � − μ3, λ4 � − (c + μ4), and λ5 � μ5. When r< μ1, all the
eigenvalues of the Jacobian matrix J(E0) near the equilib-
rium point E0 have negative real parts. *us, due to the
Routh–Hurwitz criterion, E0 is locally asymptotically stable
if r< μ1.

Theorem 3. If r< μ1, then E0 is globally asymptotically
stable.

Proof. Considering the following positive definite Lyapu-
nov function Ψ1(t) � P(t) + L(t) + F(t) + M(t) + W(t),
then the time derivative of Ψ1 along the solution of lesser
date moth system (1), one obtains

dΨ1
dt
≤ rP 1 −

P

k
  − μ1P − μ2L − μ3F

− μ4M − μ5W −
cηM

F + η
≤ r − μ1( P.

(10)

Choosing r< μ1, one obtains (dP/dt)≤ 0. *us, if r< μ1,
then E0 is globally asymptotically stable.

*e stability of free lesser date moth equilibrium point
E1 � (P1, 0, 0, 0, 0) is investigated as follows.

Theorem 4. If R0 < 1, then free lesser date moth equilibrium
point E1 is locally asymptotically stable.

Proof. *e Jacobian matrix of model (1) at E1 is

J E1(  �

r −
2rP1

k
− μ1

− β1P1

a + P1
0 0 0

0
e1βP1

a + P1
− α + μ2(  0 0 0

0 εα − μ3 0 0

0 (1 − ε)α 0 − c − μ4 0

0 0 0 0 − μ5

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(11)

*e eigenvalues of J(E1) are λ1 � − μ5, λ2 � − μ3,
λ3 � − (c + μ4), and λ4 � − (r + μ1). It can be observed that
λ5 < 0, when ((e1βP1)/(a + P1))< (α + μ2) which is equiv-
alent to R0 < 1. So, E1 is locally asymptotically stable if
R0 < 1.

Theorem 5. If e1β1P1 < aμ2, then equilibrium point E1 is
globally asymptotically stable.

Proof. *e following positive definite Lyapunov function is
considered:

Ψ2(t) � e1 P − P1 − P1 ln
P

P1
   +

1
2
L
2

+ L(t)

+ F(t) + M(t) +
1
e2

W(t).

(12)

By calculating the time derivative of Ψ2 along the so-
lution of system (1), one obtains
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dΨ2
dt
≤ e1 P − P1(  r 1 −

P

k
  − μ1 −

β1L
a + P

  + L
2 e1β1P

a + P
− α − μ2 −

β2W
b + L

  +
e1β1PL

a + P
− μ2L

≤
− e1r

k
P − P1( 

2
+

e1β1P1

a
− μ2 L + L

2 e1β1P1

a + P1
− α − μ2  −

β2WL
2

b + L

≤
− e1r

k
P − P1( 

2
+

e1β1P1

a
− μ2 L + α + μ2(  R0 − 1( L

2
.

(13)

Choosing e1β1P1 < aμ2, one obtains (dΨ2/dt)≤ 0, and
hence, the free lesser date moth equilibrium point E1 is
globally asymptotically stable.

*e stability of the free natural enemy equilibrium point
E2 � (P2, L2, F2, M2, 0) is investigated as follows.

Theorem 6. If ((β1L2)/(a + P2)
2)< (r/k) and ((e2β2L2)/

(b + L2))< μ5, then all the eigenvalues of the Jacobian matrix
J(E2) near the equilibrium point E2 have negative real parts.
5us, due to the Routh–Hurwitz criterion, the equilibrium
point E2 is locally asymptotically stable.

Proof. *e Jacobian matrix of LDM model (1) at E2 is

J E2(  �

β1L2P2

a + P2( 
2 −

rP2

k
−
β1P2

a + P2
0 0 0

ae1β1L2

a + P2( 
2 0 0 0 −

β2L2

b + L2

0 εα − μ3 0 0

0 (1 − ε)α
cηM2

η + F2( 
2 −

cη
η + F2

− μ4 0

0 0 0 0
e2β2L2

b + L2
− μ5
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. (14)

*e first three eigenvalues of J(E2) are λ1 � − μ3,
λ2 � − (((cη)/(F2 + η)) + μ4), and λ3 � ((e2β2L2)/
(b + L2)) − μ5. *e other roots are determined by

λ2 + P2
β1L2

a + P2( 
2 −

r

k
⎛⎝ ⎞⎠λ +

ae1β
2
1P2L2

a + P2( 
2 � 0. (15)

When ((β1L2)/(a + P2)
2)< (r/k) and ((e2β2L2)/

(b + L2))< μ5, then all the eigenvalues of the Jacobian matrix
J(E2) near the equilibrium point E2 have negative real parts.
*us, due to the Routh–Hurwitz criterion, the equilibrium
point E2 is locally asymptotically stable.
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*e local stability of the coexistence equilibrium point
E3 � (P3, L3, F3, M3, W3) is investigated as follows. *e
Jacobian matrix of model (1) at E3 is

J E3(  �

β1L3P3

a + P3( 
2 −

rP3

k
−
β1P3

a + P3
0 0 0

ae1β1L3

a + P3( 
2 0 0 0 −

L3β2
b + L3

0 εα1 − μ3 0 0

0 (1 − ε)α1
cηM3

η + F3( 
2 −

cη
η + F3

− μ4 0

0
be2β2W3

b + L3( 
2 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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. (16)

*e first two eigenvalues of J(E2) are λ1 � − μ3 and
λ2 � − ((cη)/(η + F2)) − μ4. *e other eigenvalues are de-
termined by

λ3 + c1λ
2

+ c2λ + c3 � 0, (17)

where

c1 �
β1L3P3

a + P3( 
2 −

β2L3W3

b + L3( 
2 −

rP3

k
,

c2 � L3
aβ21e1P3

a + P3( 
3 +

bβ22e2W3

b + L3( 
3 +

β2P3rW3

k b + L3( 
2 −

β1β2L3P3W3

a + P3( 
2

b + L3( 
2

⎛⎝ ⎞⎠,

c3 �
bβ22e2L3P3W3 β1kL3 − r a + P3( 

2
 

k a + P3( 
2

b + L3( 
3 ,

(18)
when c1 > 0, c3 > 0 and c1c2 > c3; then, all the eigenvalues of
the Jacobian matrix J3 near the coexistence equilibrium
point E3 have negative real parts. Hence, due to the
Routh–Hurwitz criterion, the coexistence equilibrium point

E3 is locally asymptotically stable. *e local stability of the
coexistence equilibrium point E3 is investigated in the
following theorem.

Theorem 7. If c1 > 0, c3 > 0 and c1c2 > c3, then the coexis-
tence equilibrium point E3 is locally asymptotically stable.

4. Bifurcation Analysis

In this section, the local bifurcations near the equilibrium
points of lesser date moth model (1) are investigated with the
help of Sotomayor’s theorem [25] and the Hopf bifurcation
theorem [26] to discuss the bifurcation analysis of the un-
derlying system. LDMmodel (1) can be rewritten in a vector
form (dX/dt) � G(X), where X � (P, L, F, M, W)T and G �

(f1, f2, f3, f4, f5)
T with fi, i � 1, 2, 3, 4, 5 are given in the

right hand side of LDM model (1). Following [27, 28],
according to Jacobian matrix of LDM system, one can verify
that for any nonzero vector U � (ζ1, ζ2, ζ3, ζ4, ζ5)

T and φ is
any bifurcation parameter, and one obtains the following:
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D
2
G(X,φ)(U, U) �

z
2
G

zP
2ζ

2
1 +

z
2
G

zL
2 ζ

2
2 +

z
2
G

zf
2ζ

2
3 +

z
2
G

zM
2ζ

2
4 +

z
2
G

zW
2ζ

2
5 +

z
2
G

zP zL
ζ1ζ2 +

z
2
G

zL zP
ζ2ζ1

+
z
2
G

zP zF
ζ1ζ3 +

z
2
G

zF zP
ζ3ζ1 +

z
2
G

zP zM
ζ1ζ4 +

z
2
G

zM zP
ζ4ζ1 +

z
2
G

zP zW
ζ1ζ5 +

z
2
G

zW zP
ζ5ζ1

+
z
2
G

zL zF
ζ2ζ3 +

z
2
G

zF zL
ζ3ζ2 +

z
2
G

zL zM
ζ2ζ4 +

z
2
G

zM zL
ζ4ζ2 +

z
2
G

zL zW
ζ2ζ5 +

z
2
G

zW zL
ζ5ζ2

+
z
2
G

zF zM
ζ3ζ4 +

z
2
G

zM zf
ζ4ζ3 +

z
2
G

zF zW
ζ3ζ5 +

z
2
G

zW zF
ζ5ζ3 +

z
2
G

zM zW
ζ4ζ5 +

z
2
G

zW zM
ζ5ζ4.

(19)

Consequently, we obtain that

D
2
G(X,φ)(U, U) �

2aβ1L
(a + P)

3 −
2r

k
 ζ21

−
2aLe1β1ζ

2
1

(a + P)
3 +

2ae1β1ζ2ζ1
(a + P)

2 +
2bWβ2ζ

2
2

(b + L)
3 −

2bβ2ζ2ζ5
(b + L)

2

0

2cηζ3ζ4
(F + η)

2 −
2cηMζ23
(F + η)

3

−
2be2β2Wζ22

(b + L)
3 +

2be2β2ζ5ζ2
(b + L)

2
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.

(20)

Theorem 8. LDM system (1) undergoes a transcritical bi-
furcation with respect to the bifurcation parameter r around
E0 if r � μ1.

Proof. Let V1 � (]1, ]2, ]3, ]4, ]5)
T be the eigenvector cor-

responding to eigenvalue λ � 0 of J(E0); hence, J(E0)V1 � 0
gives V1 � (]1, 0, 0, 0, 0, )T, where ]1 is any nonzero real
number. Similarly, suppose V2 � (τ1, τ2, τ3, τ4, τ5)

T be the
eigenvector corresponding to eigenvalue λ � 0 of J(E0)

T,
thus J(E0)

TV2 � 0 gives V2 � (τ1, 0, 0, 0, 0), where τ1 is any
nonzero real number. Consider (zG/zr) � Gr(X, r) �

(P(1 − (P/k)), 0, 0, 0, 0)T, thus VT
2 Gr (E0, r∗) � 0. *ere-

fore, according to Sotomayor’s theorem for local bifurcation,
LDM model (1) has no saddle-node bifurcation near E0 at
r∗ � μ1.

Now,

DGr E0, r
∗

(  �

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (21)

then VT
2 DGr(E0, r∗)V1 � ]1τ1 ≠ 0. Using (20), one obtains

V
T
2 D

2
G(X, r) V1, V1(  � −

β1ζ5ζ1
a

−
2rζ21

k
≠ 0. (22)

*us, according to Sotomayor’s theorem, LDM system
(1) has a transcritical bifurcation at r∗ � μ1 as the parameter
r passes through the value r∗, thus the proof is complete.

Theorem 9. LDM system (1) undergoes a transcritical bi-
furcation with respect to the bifurcation parameter β1 around
E1 � (P1, 0, 0, 0, 0) if R0 � 1.

Proof. *e Jacobian matrix of LDM system (1) at the free
lesser date moth equilibrium point E1 with β1 � β∗1 � ((a +

P1)(α + μ2)/(e1P1)) has zero eigenvalue taking the form

J E1, β
∗
1(  �

− r − μ1( 
− β1P1

a + P1
0 0 0

0 0 0 0 0

0 εα − μ3 0 0

0 (1 − ε)α 0 − c − μ4 0

0 0 0 0 − μ5
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.

(23)

*e eigenvector corresponding to J(E1)V3 � 0 is

V3 �

−
β1P1( ]2

a + P1(  r − μ1( 

]2

(εα)]2
μ3

((1 − ε)α)]2
c + μ4

0
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, (24)

where ]2 is any nonzero real number. Similarly, the ei-
genvector corresponding to J(E1)

TV4 � 0 is given by
V4 � (0, τ2, 0, 0, 0)T, where τ2 is any nonzero real number.
Consider (zG/zβ1) � Gβ1(X, β1) � (((− PL)/(a + P)),
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((e1PL)/ (a + P)), 0, 0, 0)T, thus VT
4 Gβ1(E1, β

∗
1 ) � 0. *ere-

fore, according to Sotomayor’s theorem for local bifurcation,
LDM model (1) has no saddle-node bifurcation near E1 at
β∗1 � (((a + P1)(α + μ2))/(e1P1)). Now,

DGβ1 E1, β
∗
1(  �

0
− β1P1

a + P1
0 0 0

0
e1β1P1

a + P1
0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0
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, (25)

then VT
4 DGβ1(E1, β

∗
1 )V3 � ((e1P1]1τ1)/(a + P1))≠ 0. Using

(20), one obtains

V
T
4 D

2
G X, β1(  V3, V3(  �

2aβ1e1
a + P1( 

2]1]2 −
2β2
b
]2]5 ≠ 0.

(26)

*us, according to Sotomayor’s theorem, LDM system
(1) has a transcritical bifurcation at β∗1 � (((a + P1)

(α + μ2))/(e1P1)), as the parameter β1 passes through the
value β∗1 , thus the proof is complete. It is interesting to note
that R0 � 1 is equivalent to r∗ � ((kμ1(α − β1
e1 + μ2))/((a + k)(α + μ2) − β1e1k)).

Theorem 10. LDM system (1) undergoes a transcritical bi-
furcation with respect to the bifurcation parameter β2 around
E2 � (P1, L1, F1, M1, 0) if β2 � ((μ5(b + L2))/(e2L2)).

Proof. *e Jacobian matrix of LDM system (1) at the free
lesser date moth equilibrium point E2 with β2 �

β∗2 � ((μ5(b + L2))/(e2L2)) has zero eigenvalue taking the
form

J E2, β
∗
2(  �

β1P2L2

a + P2( 
2 −

rP2

k
−
β1P2

a + P2
0 0 0

e1aβ1L2

a + P2( 
2 0 0 0 −

L2β2
b + L2

0 εα − μ3 0 0

0 (1 − ε)α
cηM2

η + F2( 
2 −

cη
η + F2

− μ4 0

0 0 0 0 0
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.

(27)

*e eigenvector corresponding to J(E1)V5 � 0 is

V5 �

]1

L2

a + P2
−

r a + P2( 

kβ1
 ]1

εα1 kL2β1 − r a + P2( 
2

  ]1
kβ1μ3 a + P2( 

α1 kL2β1 − r a + P2( 
2

  (1 − ε)μ3 η + F2( 
2

+ cεηM2  ]1
k η + F2(  a + P2( β1μ3 cη + η + F2( μ4( 

ae1β1 b + L2( ( ]1
β2 a + P2( 

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(28)

where ]1 is any nonzero real number. Similarly, the ei-
genvector corresponding to J(E2)

TV6 � 0 is given by
V6 � (0, 0, 0, 0, τ5)

T, where τ5 is any nonzero real number.
Consider (zG/zβ2) � Gβ2(X, β2) � ((0, ((− LW)/(b + L)),

0, 0, 0, ((e2LW)/(b + L))))T, thus VT
6 Gβ2(E2, β

∗
2 ) � 0.

*erefore, according to Sotomayor’s theorem for local bi-
furcation, LDM model (1) has no saddle-node bifurcation
near E2 at β∗2 � ((μ5(b + L2))/(e2L2)). Now,

DGβ2 E2, β
∗
2(  �

0 0 0 0 0

0 0 0 0
− L2

b + L2

0 0 0 0 0

0 0 0 0 0

0 0 0 0
e2L2

b + L2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (29)

then VT
6 DGβ2(E2, β

∗
2 )V5 � ((aβ1e1e2L2]1τ5)/ β2(a + P2)

2)≠
0. Using (20), one obtains

V
T
6 D

2
G X, β2(  V5, V5(  �

2bβ2e2]2]5τ5
b + L2( 

2 ≠ 0. (30)

*us, according to Sotomayor’s theorem, LDM system
(1) has a transcritical bifurcation at β∗2 � (((a + P1) (α +

μ2))/(e1P1)) as the parameter β2 passes through the value
β∗2 � ((μ5(b + L2))/(e2L2)), thus the proof is complete.

In this part, we shall show that as the coexistence
equilibrium E3 loses stability, periodic solutions can bi-
furcate from the positive equilibrium. We choose the pa-
rameter r as the bifurcation parameter as it plays a crucial
role in the growth of date palm tree. We shall apply Liu’s
criteria [26] to obtain the conditions for periodic solution
arising from Hopf bifurcation.

Theorem 11. For the coexistence equilibrium point E3 of
lesser date moth (1), the system around E3 enters into the Hopf
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bifurcation when r passes r∗ if the coefficients cj(r) (j �

1, 2, 3) at r � r∗ satisfy the following condition:

(1) Φ(r∗) � [c1(r∗)c2(r∗) − c3(r∗)] � 0
(2) (dΦ(r)/dφ)|r � r∗ ≠ 0

*e characteristic equation (15) of the coexistence
equilibrium point E3 has two purely imaginary roots if and
only if c1c2 − c3 � 0.*e value ofΦ(r) � c1c2 − c3 is given by

Φ(r) � L3 B11 −
β2L3W3

b + L3( 
2

⎛⎝ ⎞⎠
aβ21e1P3

a + P3( 
3

⎛⎝⎛⎝

+
β2W3 bβ2e2 − B11 b + L3( ( 

b + L3( 
3

⎞⎠ −
bβ22B11e2W3

b + L3( 
3

⎞⎠,

(31)

where B11 � P3((r/k) − ((β1L3P3)/(a + P3)
2)). For r � r∗,

the characteristic equation (15) turns into

λ + c1(  λ2 + c2  � 0. (32)

*e roots of equation (32) are λ1 � ic2, λ2 � − ic2, and
λ3 � c1. One can rewrite the roots as follows:
λ1 � m(r) + in(r), λ2 � m(r) − in(r), and λ3 � − c1. To apply
Liu’s Hopf bifurcation criterion [26], we need to verify the
transversality condition. Substituting λ � m(r) + in(r) into
(15) and separating the real and imaginary, we get

m
3

− 3mn
2

+ c1m
2

− c1n
2

+ c2m + c3 � 0, (33)

n
2

� 3m
2

+ 2c1m + c2. (34)

Substituting the value of n2 from (34) into (33), dif-
ferentiating with respect to r, and utilizing m(r∗) � 0 and
n(r∗)≠ 0, we have

dm

dr
|r � r

∗
�

(d/dr) c1c2 − c3( 

2 c21 + c2( 
 

r�r∗
�

(dΦ(r)/dr)

2 c21 + c2( 
 

r�r∗
≠ 0.

(35)

*us, it can be concluded that the coexistence equilib-
rium point E3 is locally asymptotically stable for r< r∗.
Furthermore, according to Liu’s criterion, a simple Hopf
bifurcation occurs at r � r∗, and for r> r∗, the interior
equilibrium point E3 approaches to a periodic solution.
According to *eorem 11, there exists a Hopf bifurcation in
lesser date moth model (1) where the Hopf bifurcation is
controlled by r.

5. Numerical Simulations

In this part, numerical simulations of lesser date moth
system (1) are conducted to illustrate the theoretical results
obtained before. *e interactions between date palm, lesser
date moth, and natural enemy will be simulated by the
following parameters:

r � 3,

k � 3,

μ1 � 0.01,

μ2 � 0.03,

μ3 � 0.01,

μ4 � 0.01,

μ5 � 0.01,

α � 0.5,

β1 � 2,

β2 � 0.5,

c � 0.5,

η � 0.2,

ε � 0.5,

a � 3,

b � 10.

(36)

From Figure 1, it can be seen that the sex pheromone
trap parameter η is important in that it affects the pop-
ulation density of the lesser date moth male. One can
observe from Figure 1 that the population density of lesser
date moth male decreases with increasing η. We conclude
that the dynamics of lesser date moth can be controlled by
sex pheromone trap parameters η. In order to show the
effect of the intrinsic growth rate of the date palm tree r, we
draw the bifurcation diagram with respect to r as a bi-
furcation parameter. If we increase the value of growth rate
r and keeping all other parameter value fixes, it can be seen
that a transcritical bifurcation occurs at r � 0.01, as shown
in Figure 2 and stated in*eorem 8. It can also be observed
that when 0.01< r< 0.0198148, the lesser date moth free
equilibrium point E1 � (P1, 0, 0, 0, 0) is locally asymptoti-
cally stable. It can be seen that a transcritical bifurcation
occurs at r � 0.0198148, as shown in Figure 2 and stated in
*eorem 9. To understand the change in the dynamical
behavior of the lesser date moth system model system (1)
due to variation of the predation intensity between date
palm and larvae β1, we increase the value of β1 and keep all
other parameter value fixes. It can be seen that a tran-
scritical bifurcation occurs at β1 � 1.32722, as shown in
Figure 3 and stated in *eorem 9. In order to show the
effect of predation intensity between larvae and natural
enemy β2, we draw the bifurcation diagram with respect to
β2 as a bifurcation parameter. If we increase the value of
predation rate β2 and keeping all other parameter value
fixes, it can be seen that a transcritical bifurcation occurs at
β2 � 0.132143, as shown in Figure 4 and stated in *eorem
10. *e bifurcation diagram with respect to r as a bifur-
cation parameter is indicated in Figure 5. According to
*eorem 11, it can be seen that the supercritical Hopf
bifurcation value for F and W is localized at r � 6.13149
and one can verify the results c1(6.13149) �

5.74251 > 0, c3(6.13149) � 0.0136073> 0, and Φ(6.13149)
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� 0. Furthermore, (dΦ(r)/dr) � − 0.105178, thus the
transversality condition for Hopf bifurcation is also sat-
isfied. Figure 6 shows stable steady distribution for r � 0.5.
Now, if we increase the values of r from 5 to 7, we observe
that the system becomes unstable, and the lesser date moth
model shows limit cycle oscillations. It is clear that if we
increase the increase date palm tree intrinsic growth rate,
the system enters into Hopf bifurcation. In order to show
the effect of carrying capacity around the coexistence

equilibrium points, we draw the bifurcation diagram with
respect to k as a bifurcation parameter. It can be seen that
the supercritical Hopf bifurcation value for F localized at
k � 4.68754, as shown in Figure 7. It can also be observed
that when k< 4.68754, the coexistence equilibrium point E3
is locally asymptotically stable, as shown in Figure 8(a). For
k> 4.68754, the system undergoes limit cycle behavior, as
shown in Figure 8(b).
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Figure 1: Time series of model (1) with.η � 0.05, 0.2, 0.5.
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Figure 2: Bifurcation diagram of lesser date moth model (1) with
respect to r, 0≤ r≤ 0.04

16

14

12

10

8

6

4

2

F

1 1.2 1.4 1.6 1.8 2
β1

Figure 3: Bifurcation diagram of lesser date moth model (1) with
respect to β1.
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Figure 4: Bifurcation diagram of lesser date moth model (1) with
respect to β2.
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Figure 5: Bifurcation diagram of lesser date moth model (1) with respect to r, 1≤ r≤ 10.
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Figure 6: Time series of model (1) with r � 5, 7.
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Figure 7: Bifurcation diagram of lesser date moth model (1) with respect to k.
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6. Discussion and Conclusion

In this paper, we consider a mathematical model for lesser date
moth using sex pheromone traps. We have investigated the sex
pheromone trap impact on the spread of lesser date moth in
date palm trees. *e interaction between date palm tree, lesser
date moth, and the natural enemy was investigated. We obtain
some sufficient conditions that ensure the local and global
stability of equilibriumpoints. It has been shown that forR0 < 1,
the equilibrium E1 is locally asymptotically stable. According to
*eorem 9, we may conclude that for R0 � 1, the LDM model
undergoes a transcritical bifurcation. According to*eorem 10,
there exists a Hopf bifurcation in the lesser date moth model
where the Hopf bifurcation is controlled by the date palm tree
intrinsic growth rate r. We conclude that sex pheromone trap
parameters can control the dynamics of lesser date moth. *e
occurrence of local bifurcation near the equilibrium point is
performed using Sotomayor’s theorem. Analytical studies can
never be completed without numerical illustrations of the
analytical results. So, all analytical findings are numerically
verified. *e numerical studies in this paper show the system’s
dynamical behavior at equilibrium points, which is in good
agreement with the analytical studies. We have noticed that the
sex pheromone trap parameter η plays a key role in controlling
the population density of the lesser date moth male. It is worth
noting that although we presented a realistic mathematical
model on the spread of the lesser date moth and its control
using pheromone traps and natural enemy, our study is only
limited to a comprehensive theoretical analysis of such sce-
narios. Our theoretical study can capture the main mechanisms
associated with lesser date moth control using pheromone traps
with no chemical pesticides or mechanical resistance to the
insect. A mathematical model representing the integrated lesser
date moth control using pheromone traps, insecticides, and
mechanical resistance would benefit significantly. As part of
future work to improve the model of this paper, the model
studied here could be refined to describe and explain the role of
pesticides in LDM control in the presence of pheromone traps.
Additional experimental or field investigations in this direction
may be useful to verify whether or not the processes defined by
the model are actually operating similarly in the real world. We
assumed the environmental effect and temperature, and all
other situations are homogeneous in the present work, but it is
inhomogeneous in reality. One may consider a heterogeneous
lesser date moth system for future work.
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