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-is paper investigates an output feedback sliding mode control scheme for a two-wheeled self-balancing robot under terrain
inclination and disturbances. First of all, an adaptive high-gain observer is designed for the robot to estimate, simultaneously, the
unmeasured states and the unknown terrain inclination angle which appears nonlinearly in the dynamics of the wheeled robot,
using the only measured linear and angular positions.-en, the estimated states and the reconstructed unknown inclination angle
are used by an appropriate continuously implemented sliding mode controller whose the design is based on the boundary layer
approximation approach to reduce the chattering phenomenon. -e objective of the proposed robust controller is to ensure the
tracking control of the two-wheeled robot despite the unknown terrain inclination and the presence of friction disturbances. -e
stability of the adaptive observer-based output feedback system is established through a Lyapunov analysis, and it is inspired from
sliding modes theory. Numerical simulations results highlight the effectiveness of the proposed tracking control scheme applied
on two-wheeled self-balancing robot subject to terrain inclination even in the presence of unavailable disturbances.

1. Introduction

-e two-wheeled self-balancing robot is an exceptional type of
wheeledmobile robots which has been broadly applied inmany
areas such as hostile terrain, agriculture, and industry.-e hard
nonlinearity and the underactuation of these systems make the
trajectory tracking control a challenging research problem
[1, 2]. Some classical control strategies such as backstepping
[3, 4] and adaptive controllers [5] are treated by several re-
searchers to control the movement of the wheeled inverted
pendulum. In [6, 7], the backstepping technique is combined
with an adaptive controller to ensure the stabilization and the
convergence of the tracking error. -e authors in [8] repre-
sented a combination between H∞ and backstepping tech-
niques to stabilize tracking errors under bounded disturbances.
In [9], a Kalman filter-based optimal (H-infinity) controller
was proposed for the linearized model of the wheeled pen-
dulum. Moreover, Fuzzy systems had attested their

effectiveness as a rigorous method in robotics and control
applications. In [10], a fuzzy control schemewas proposed for a
two-wheeled inverted pendulum. Also, in [11], a nonsingleton
general type-2 fuzzy logic controller was designed for an
underactuated mobile two-wheeled self-balancing robot. In
[12, 13], an adaptive fuzzy control design was performed for
dynamic balance and stable tracking of desired trajectories for
wheeled inverted pendulum in the presence of uncertainties.

In addition, a PD-PI controller based on Kalman filter
algorithm was designed in [14] to stabilize a two-wheeled
self-balancing robot while avoiding acute and dynamic
obstacles in the sensed environment. Furthermore, common
networked control strategies have been implemented in [15]
for stabilizing a two-wheeled inverted pendulum robot over
a wireless channel despite time-varying delays and paket
loss. Also, a new feedback reinforcement learning method
was proposed in [16] to solve the LQR control problem for
the two-wheeled self-balancing robot.-e suggested method

Hindawi
Mathematical Problems in Engineering
Volume 2021, Article ID 8853441, 15 pages
https://doi.org/10.1155/2021/8853441

mailto:dimassihabib2013@gmail.com
https://orcid.org/0000-0001-5919-9710
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/8853441


scheme was completely online and did not require any
knowledge of the system parameters.

In any formulation of a control problem, the mathematical
model developed to establish the control law does not reflect
the actual process exactly. -ese differences may be due to, for
example, the direct approximation of complex process be-
haviors and the variations of system parameters or unmodeled
dynamics, especially for systems which are characterized by an
inherent instability, nonlinearity, and underactuation like the
two-wheeled self-balancing robots. Nevertheless, it must be
ensured that, despite all these uncertainties, the resulting
control should reach the predefined objectives. For this reason,
it is necessary to synthesize a robust controller able to overcome
this problem. Slidingmode control is an efficient robust control
method which has the advantage to be insensitive to distur-
bances and characterized by the finite-time convergence
property and the simplicity of its implementation [17]. In this
context, a sliding mode controller was developed, in [18, 19],
for the control of underactuated systems. In [20], the authors
discussed the control problem and gave design technology of
the sliding mode controller for the two-wheeled mobile robot
with lower center of gravity. -e validity of the proposed
controller was analyzed through numerical simulations.
Likewise, the authors in [21, 22] developed a sliding mode
controller for nonholonomic mobile robot in order to realize a
tracking trajectory in the presence of model uncertainties,
frictional disturbances, and measurement noise. Moreover, a
novel LMI-based sliding mode controller has been proposed in
[23] for the control of a class of underactuated systems which
are featured as in cascade form with external disturbances. In
[24], an optimization-based nonlinear controller was designed
for trajectory tracking for nonholonomic wheeled mobile
robots. In the same context, a fast terminal sliding mode
strategy has been designed in [25] for finite-time tracking
control of nonholonomic systems. -e efficiency of this
method was illustrated to apply on a wheeled mobile robot as a
benchmark of a nonholonomic system. Besides, two sliding
mode controllers were designed in [26] to control the balancing
and the steering movement of a two-wheeled inverted pen-
dulum robot with friction compensation. In addition a sliding
mode control was designed in [27] to track the smooth curved
welding path. In [28], a sliding mode velocity control was
proposed for mobile wheeled inverted pendulum systems.
More recently, in [29], the authors proposed a sliding mode
controller (SMC) associated to a high-order disturbance ob-
server (HODO) for mobile wheeled inverted pendulum
(MWIP) systems. -e stability of the closed loop system and
the convergence of the estimation errors have been provedwith
a Lyapunov analysis, and theoretical results have been also
validated experimentally. Motivated by the incontestable ad-
vantages of the latter robust controlmethod, we propose, in this
paper, a continuously implemented sliding mode controller for
the two-wheeled self-balancing robot where the boundary layer
approximationmethod is adopted in the designed controller to
reduce the well-known chattering phenomenon often linked to
the use of discontinuous controllers.

For outdoor applications, mobile robots have to face more
challenges such as uneven, sloped, or rough terrain surface.-is
invites researchers to design controllers in order to control the

stability of the two-wheeled self-balancing robot moving on an
inclined terrain [30–33]. In [34], the authors had shown the
effect of terrain inclination on the performance and stability
region of two-wheeled mobile robots. Moreover, they estab-
lished and analyzed the dynamic model on slope of the treated
robot. -e linear quadratic regulation (LQR) method was used
to design a linear controller whose efficiency was presented
through simulation results. In [35], a disturbance observer was
used to estimate the handling force and the slope angle when
getting on and off a human-riding wheeled inverted
pendulum vehicle. A slidingmode control was used in [33] for a
two-wheeled inverted pendulum mobile robot driving on
uniform slopes. Also, to eliminate the influence of the inclined
plane considered as external disturbances, the authors had
developed, in [36], an active disturbance rejection control
scheme for two-wheeled self-balancing robots which achieved
control aims even in the presence of a slope. However, most of
mentionedworks had resorted to linearization in order to design
controller. To deal with problems related to rough terrain,
wheeled robots should consistently recognize the current situ-
ation of the surface in order to preserve wheel traction and
battery energy. -e solution that we adopt is to develop an
adaptive observer to estimate unmeasured states and the un-
known terrain inclination angle.

In fact, specific attention has been booked to the design of
adaptive observers in order to ensure, under specific condi-
tion, a joint estimation of unmeasured states and system
parameters with exponential convergence. Various works had
focused to design an observer for a linear system as it was
improved in [37]. Others were interested in nonlinear systems
with linear parameterization as in [38, 39] and nonlinear
parameterization as in [40], where the authors had developed
an adaptive observer for the nonlinearly parameterized class
of nonlinear systems. -e exponential convergence is
achieved under certain persistent condition by the adjustment
of the gain observer. Simulation results highlighted the ef-
fectiveness of the developed observer. More recently, the
robustness of the latter adaptive observer has been improved
in [41] by adding a sliding mode term.-e proposed adaptive
observer in [41] was also combined with an auxiliary high gain
observer to satisfy the so-called observer matching condition
and applied for the inverted pendulum system to solve the
problem of simultaneous estimation of states, unknown pa-
rameter (mass variation parameter), and friction disturbances
with experimental validation.

In this context, since the inclination parameter appears
nonlinearly in the dynamics of the self-balancing robot, we
adopt the adaptive estimation approach developed in [40] to
deal with terrain inclination.

-en, the estimated states and parameters are combined
with the continuously implemented sliding mode control
law in order to provide a robust adaptive observer-based
sliding mode controller. -e convergence of the estimated
tracking error is established through the Lyapunov analysis.

In summary, the two-wheeled self-balancing robot is a
benchmark of underactuated system. -e hard nonlinearity
of this system makes its control an interesting issue.

For outdoor application, the two-wheeled self-balancing
robot is always faced to several phenomenons such as
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sloping and skidding that can cause a loss of system stability.
Hence, motivated by the advantages of the sliding mode
control as a robust controller and to deal with the variation
of terrain inclination, we suggest, in this paper, an adaptive
observer-based sliding mode controller for a two-wheeled
self-balancing robot subject to terrain inclination. From a
theoretical viewpoint, the demonstration of the convergence
of the adaptive observer with nonlinear parameterization
and in the presence of bounded disturbance will be firstly
established based on a Lyapunov analysis; then, the analysis
of the stability of the output feedback tracking control
system composed of the adaptive observer and the con-
tinuously implemented sliding mode controller will be
carried out based on sliding modes theory. In summary, the
main contributions of this paper from both theoretical and
application viewpoints are given as follows:

(i) Adaptive estimation of the unmeasured states
and the unknown terrain inclination parameter
which appears nonlinearly in the dynamics of the
two-wheeled self-balancing robot in the presence
of disturbances

(ii) Design of the robust adaptive output feedback
controller (adaptive observer + sliding mode con-
troller) for the tracking control of the two-wheeled
robot despite the unknown terrain inclination and
friction disturbances

(iii) Proof of the convergence of the designed adaptive
observer and stability analysis of the closed-loop
system based on the Lyapunov analysis

-e remainder of the paper is organized as follows. -e
next section presents the problem statement and prelimi-
naries. A robust adaptive observer-based sliding mode
control, as well as the convergence of the tracking control
scheme, is analyzed in Section 3. Simulation results through
Matlab/Simulink assert the performance of the proposed
method in Section 4. Finally, we conclude the paper with
conclusive remarks in Section 5.

1.1.Notations. | · | represents the euclidean norm for vectors
and induced norm for matrices. In is an identity matrix with

n × n dimension. 0n×m is a null matrix with n rows and m

columns. λmax(M) and λmin(M) denote, respectively, the
maximum and the minimum eigenvalue of M.
diag(M1, . . . , Mn) represents the block-diagonal

matrix�

M1 0 · · · 0
0 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋮
0 · · · 0 Mn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, where M1, . . ., Mn are square

matrices. R+ ∈ Rn×m denotes the pseudoinverse (generalized
inverse) of a matrix R ∈ Rm×n. -at is, R+ is a matrix such
that RR+R � R and R+RR+ � R+.

2. Context and Problem Statement

2.1. Model of a Two-Wheeled Self-Balancing Robot. -e
two-wheeled self-balancing robot is an underactuated sys-
tem, and it has fewer actuators (2 actuators) than degrees of
freedom (3 degree of freedom).-e dynamics of this robot is
similar to that of a pendulum cart. In fact, the two-wheeled
torques CL and CR are transformed, using a decoupling unit,
into two torques Cδ and Cψ. -e torque Cψ supervises both
the robot position and the pitch angle. It ensures the
translation along the x-axis while preserving the upright
position, whereas the torque Cδ controls the right and left
rotation of the robot which ensures the desired yaw
trajectory.

Referring to [42–44], the model of the two-wheeled
self-balancing robot is as follows:

_x1 � x2,

_x2 � F(x, ρ) + G(x, ρ)u + d(t),
(1)

where x1 � [x,ψ, δ]T, x2 � [x
.
, t _ψn, q _δ]

T
, and x � [x1, x2]

T.
u � [Cψ , Cδ]

T is the control input vector. x, ψ, and δ rep-
resent, respectively, the linear displacement of the chassis,
the pitch angle, and the yaw angle. d(t) � [d1(t),

d2(t), d3(t)]T represents the disturbance vector. d(t) is
assumed to be bounded and differentiable with respect to
time. For each t≥ 0, |d(t)|≤ ζ, where ζ is a positive number.

G(x, ρ) � [g11(x, ρ), 0; g21(x, ρ), 0; 0, g32(x, ρ)] and
F(x, ρ) � [f1(x, ρ), f2(x, ρ), 0]T, where

f1(x, ρ) �
1
B

M
2
pL

2
R
2
g sin(ψ)cos(ψ + α) + MpL

2
+ Jp  Mp + 2Mr gR

2 sin(α) − MpL
2

+ Jp MpLR
2 _ψ2 sin(ψ + α) f2(x, ρ)

�
1
B

M
2
pL

2
R
2 _ψ2 sin(ψ + α)cos(ψ + α) − 2MrR

2
+ MpR

2
+ 2Jr MpgL sin(ψ) + Mp Mp + 2Mr LR

2
g sin(α)cos(ψ + α) ,

g11(x, ρ) �
− 2
B

MpL
2

+ Jp R + MpLR
2 cos(ψ + α) ,

g21(x, ρ) �
− 2
RB

MpLR cos(ψ + α) + 2MrR
2

+ MpR
2

+ 2Jr  ,

g32(x, ρ) �
2D

MrR + Jr/R( ( D
2

+ 2JδR 
withB � M

2
pL

2
R
2cos2(ψ + α) − 2MrR

2
+ MpR

2
+ 2Jr  MpL

2
+ Jp .

(2)
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Jp is the moment of inertia of the chassis with respect to
the z-axis, Jδ is the moment of inertia of the chassis with
respect to the y-axis, and Jr is the moment of inertia of the
wheel. Mp is the total mass of the robot. D is the lateral
distance between the contact patches of the wheels, R is the
radius of the wheels, and Mr is its mass.

ρ � α is the angle of terrain inclination, which is assumed
unknown and which will be estimated later through an
adaptive observer.

2.2. Problem formulation. -e two-wheeled self-balancing
robot is a nonlinear MIMO underactuated system; thus, it is
very challenging to keep balance when it climbs or descends
on a slope and, especially, in the presence of nonmeasurable
disturbances. In this work, the considered problem consists
in designing an output feedback sliding mode controller for
the self-balanced robot model subject to unknown distur-
bances, to generate a robust command for going up and
down the slope. In case of going up the slope, the controller
generates an acceleration of the gear-motor driving the
wheels, whereas in the going down case, a deceleration is
performed for the safety of the vehicle. Such behavior is
required for ensuring the global engine stability. Despite the
importance of the studied issue, according to our knowledge,
theoretical developments dealing with the terrain inclination
and the disturbances simultaneously for the nonlinear model
of the two-wheeled self-balancing robot are infrequent.

In addition, it is well known that the dynamics of
underactuated systems such as the two-wheeled self-bal-
ancing robot may contain hard nonlinearities and non-
holonomic constraints which make the control of these
systems an open and interesting issue. -ese features should
be considered during control design in order to establish a
robust controller which guarantees the system performance
even under different operating conditions. Sliding mode
control is an efficient robust controller, thanks to its ef-
fectiveness for dealing with uncertain and disturbed systems.
Persuaded by its advantages, we adopt this popular tech-
nique to ensure the tracking objectives.

Furthermore, when a mobile robot moves on a trajec-
tory, several phenomenons such as sloping and skidding can
cause a loss of wheel traction and battery energy, as well as
system stability.-us, having an instantaneous knowledge of
the terrain inclination angle could be lucrative to keep the
performance of the adopted control law.

-e solution to deal with this problem is to design an
adaptive observer to estimate conjointly unmeasured states
( _x, _ψ, _δ) and the angle of terrain inclination which represents
the unknown parameter ρ � α. -at is,

lim
t⟶∞

|x(t) − x(t)| � 0,

lim
t⟶∞

|ρ(t) − ρ(t)| � 0.
(3)

-en, the estimated states x(t) and the reconstructed
unknown parameter ρ(t) generated by the adaptive observer
are to be injected into the sliding mode control law in order
to perform the following trajectory tracking aims:

lim
t⟶∞

x(t) − xr(t)


 � 0, (4)

where xr(t) is the reference trajectory.

3. Adaptive Observer-Based Sliding Mode
Control for the Two-Wheeled Self-
Balancing Robot

In this section, we present first the adaptive observer design
method for the wheeled robot, and then, we combine it with
the sliding mode controller whose objective is to ensure
tracking control despite the presence of unknown terrain
inclination and disturbances. Before describing the adaptive
observer-based sliding mode control system, the following
assumption must be taken into account.

Assumption 1. For any bounded control input u, the state x

is assumed bounded. Moreover, the unknown parameter ρ is
also assumed to be bounded and slowly varying, that is,
_ρ(t) � 0, almost everywhere.

It is to be noticed that some physical autonomous
systems such as chaotic systems verify the boundedness
assumption of the trajectories naturally (Assumption 1). In
the case of controlled systems (nonautonomous systems)
which include the two-wheeled self-balancing robot con-
sidered in this paper, the boundedness of the states may be
guaranteed by synthesizing an appropriate bounded control
input. We notice also that assuming the unknown angle
inclination parameter ρ(t) � α(t) is usually satisfied in
practice in the self-balancing robot system under terrain
inclination, which is trivially reasoning from a physical
viewpoint.

By considering Assumption 1, let (u, x, ρ) ∈ (U, X,Θ),
where U ⊂ R2, X ⊂ R6, and Θ ⊂ R are three compact sets.

For the two-wheeled self-balancing robot system, the
nonlinearities F(x, ρ) and G(x, ρ) are just once continuously
differentiable but not globally Lipschitz. In such a case, we
use, under Assumption 1, the Lipschitz prolongation ap-
proach in order to build prolongations F and G of the
nonlinearities F and G using saturation functions [40, 45],
where F and G are globally Lipschitz and defined as
F(x, ρ) � F(σ(x), σρ(ρ)) and G(x, ρ) � G(σ(x), σρ(ρ)),
where σ: Rn⟶ X, x↦σ(x) and σρ: R⟶Θ, ρ↦σρ(ρ)

are smooth bounded saturation functions such that σ(x) � x

and σρ(ρ) � ρ for all x ∈ X and ρ ∈ Θ.
In this way, the trajectories of the wheeled robot system

(46) coincide with those of the following system:

_x1 � x2,

_x2 � F(x, ρ) + G(x, ρ)u + d(t),
(5)

where G(x, ρ) � [g11(x, ρ), 0; g21(x, ρ), 0; 0, g32(x, ρ)] and
F(x, ρ) � [f1(x, ρ), f2(x, ρ), 0]T are the Lipschitz extension
functions of G(x, ρ) and F(x, ρ), respectively.

In the rest of the paper, we will rather focus on system (5)
for the design of our proposed adaptive observer-based
tracking control approach for the considered two-wheeled
self-balancing robot.
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3.1. Adaptive Observer for States and Terrain Inclination
Angle Estimation. Adaptive observer design represents a
popular method for states and unknown parameter esti-
mation. Since the unknown terrain inclination angle appears
nonlinearly in the dynamic of the two-wheeled self-bal-
ancing robot and given the triangular structure of our
system, we adopt the adaptive observer treated in [40] and
we recall, in this section, the main features of this estimation
approach.

Actually, the two-wheeled self-balancing robot system
(5) is included in the class of systems considered in [40] and
may be written in the following form:

_x � Ax + f(x, ρ) + g(x, ρ)u + B d(t),

y � Cx � x1,

⎧⎨

⎩ (6)

where A �
03 I3
03 03

 , B �
03
I3

 , and C � I3, 03 .

g(x, ρ) �
03×2

G(x, ρ)
 , f(x, ρ) �

03×1
F(x, ρ)

 , and x �
x1
x2

 .

Conforming to [40], the adaptive observer developed for
system (6) is given by

_x � Ax + g(x, ρ)u + f(x, ρ) − θΔ− 1
θ S

− 1
+ Y(t)P(t)Y

T
(t) C

T
K(Cx),

_ρ(t) � − θP(t)Y
T
(t)C

T
K(Cx),

_Y(t) � θ A − S
− 1

C
T
C Y(t) + Δθ

zf

zρ
(x, ρ) + Δθ

zg

zρ
(x, ρ)u, withY(0) � 0,

_P(t) � − θP(t)Y
T
(t)C

T
CY(t)P(t) + θP(t), withP(0) � P

T
(0)> 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

where x �
x1
x2

 ; Δθ � diag[I3, 1/θI3], where θ> 0 is a real

number, x � x − x, and S is the unique solution of the
following algebraic Lyapunov equation:

S + A
T
S + SA − C

T
C � 0, (8)

where S is the symmetric positive definite (SPD) and the
matrix (A − S

− 1
CTC) is Hurwitz. K is a design matrix of

appropriate dimensions to be determined later.
For the convergence of the unknown parameters esti-

mation errors, the following assumption is required.

Assumption 2. For any trajectory (x, tρ) ∈ X ×Ω, the ma-
trix CΥ(t) must satisfy the condition of persistent excitation,
and it means: ∃δ1, δ2 > 0; ∃T> 0;∀t≥ 0: δ1Im ≤ 

t+T

t
YT(t)CTCY(τ)dτ ≤ δ2Im.

-e persistency of excitation is a classical condition usually
adopted in the literature of adaptive estimation. It is behind the
asymptotic stability and parametric convergence, and it sig-
nifies that the studied system is sufficiently rich in frequencies.

Proposition 1. Consider the system (6) subject to the un-
known parameter ρ(t) and the disturbance d(t), together
with the adaptive observer (7), under Assumptions 1 and 2.
Cen, the state estimation error x � x − x and the adaption
error ρ � ρ − ρ converge to a small compact set whose radius
may be reduced by choosing sufficiently high values of the
design parameter θ.

Proof. -e proof of Proposition 1 is mainly based on the
proof of -eorem 3.1 in [40] while taking into account the

presence of the disturbance d(t). We consider the Lyapunov
function

W(t) � Ω(t)
T
SΩ(t) + ρT

(t)P
− 1

ρ(t), (9)

where

Ω(t) � x(t) − Y(t)ρ(t),

x(t) � Δθ(x − x).
 (10)

Proceeding as in -eorem 3.1 in [40] and taking into
account the presence of the perturbation term d(t), one may
obtain

_W≤ − 2μW − 2ΩT
SΔθB d(t)

≤ − 2μW + 2|B|ζ
�������

λmax(S)



θ− 1 ������
W(Ω)



≤ − μW − μ
������
W(Ω)

 ������
W(Ω)


− 2|B|ζμ− 1

�������

λmax(S)



θ− 1
 ,

(11)

where we recall that ζ is a positive constant such that, for all
t≥ 0, |d(t)|≤ ζ and

μ �
1
2

θ − c1(  1 −
c2

2
��������
θ θ − c1( 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠, (12)

where c1 and c2 are positive constants which depend on the
upper bounds of the different bounded signals and on the
minimal and maximal eigenvalues of the matrices S and P

(see the proof of -eorem 3.1 in [40]).
Next, from the last inequality (11), we deduce that as long

as
�����
W(t)


≥ 2|B|ζμ− 1

�������

λmax(S)



θ− 1, one has
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_W(t)≤ − μW(t). (13)

If
�����
W(0)


≥ 2|B|ζμ− 1

�������

λmax(S)



θ− 1, Ω(t) and ρ(t) will
decrease exponentially such that

W(t)≤W(0)e
− μt

. (14)

Consequently, there exists a finite time Ta such that for
all t≥Ta,

�����
W(t)


≤ 2|B|ζμ− 1

�������

λmax(S)



θ− 1
. (15)

We have
1
�
2

√
������

λmin(S)



|Ω(t)| +
1
�
2

√
���������

λmin P
− 1

 



|ρ(t)|≤
�����
W(t)


.

(16)

Next, combining inequalities (15) and (16) and using
(10), it may be deduced that the estimation error x(t) and
the adaptation error ρ(t) converge to a compact set whose
radius may be reduced by choosing a sufficiently large value
of the design parameter θ.

Once the unmeasured states and the unknown param-
eter are reconstructed by the adaptive observer (6), the
estimated signals are employed, in the next section, by the
sliding mode control law in order to build an adaptive
sliding mode controller. □

3.2. Adaptive Observer-Based Sliding Mode Control for the
Two-Wheeled Self-Balancing Robot. In this section, we apply
the sliding mode control on the two-wheeled self-balancing
robot and we replace the unknown parameter ρ � α and the
speed states ( _x, _ϕ, _δ), which are not accessible to mea-
surement by their estimates obtained from the proposed
adaptive observer as it is denoted in Figure 1.

-e problem of trajectory tracking consists to determine
the control law u which insures the convergence of the state
vector x1 � x ψ δ 

T to the reference vector xr �

xr ψr δr 
T with a tracking error on the first component of

the state vector:

e � xr − x1. (17)

Affected by the influence of terrain inclination α, the pitch
angle ψr will not be identical to zero when the two-wheeled
self-balancing robot becomes stable on the slope. In fact, ψr

will become a constant ψeq which depends on α, and it is
defined as [31]

ψeq � arccos
− MrR sin(α)

Mp

  − arccos
R sin(α)

������������

R
2sin2(α) + L

2
⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠.

(18)

We select the sliding variables vector as follows:

S � λ xr − x1(  + _xr − x2( 

� λ xr − x1(  + _xr − x2(  + x2 − x2

� λ xr − x1(  + _xr − x2(  + x2,

(19)

where λ is a positive constant.
Inspired from sliding modes theory, we propose the

following sliding mode controller incorporating the esti-
mated states generated by the adaptive observer (7):

u � [G(x, tρ)]
+

€xr − F(x, tρ) + λ _xr − x2(  − k
S

|S|
  ,

(20)

where k is a positive constant.
However, the presence of the discontinuous function, in

the sliding mode control, gives rise to the well-known
chattering phenomenon which represents the main disad-
vantage of sliding modes controllers. To overcome this
problem, it is lucrative to transform the discontinuous
function by a continuous one using the boundary layer
approximation approach to eliminate the chattering phe-
nomenon [46]. -en, we rather consider the following
“continuously implemented sliding mode controller” in-
stead of (20):

u � [G(x, tρ)]
+

€xr − F(x, tρ) + λ _xr − x2(  +
kS

|S| + ε
+ βS ,

(21)

where [G(x, tρ)]+ represents the pseudoinverse matrix of
G(x, tρ). β and ε are positive constants.

Before proving the convergence of the tracking error of
the closed loop system, we show first, in the proof of the
following theorem, that S(t) converges to a compact set
whose radius may be made as small as possible by adjusting
the design parameters ε and β.

Theorem 1. We consider the system (6) under the continu-
ously implemented sliding mode control input (21) and in-
corporate the adaptive observer (7) such that Assumptions 1
and 2 are satisfied. Cen, S(t) is uniformly bounded with an
upper bound which may be made arbitrarily small by reducing
the design parameter ε and increasing the design parameter β.

Proof. Let us start with an appropriate Lyapunov function:

V �
1
2

S
T
S. (22)

Differentiating this function and referring to (19), one
obtains

_V � S _S � S λ _xr − x2(  + €xr − _x2(  + _x2 

� S λ _xr − x2(  + €xr − F(x, ρ) − G(x, ρ)u − d(t)(  + _x2 

� S[λ _xr − x2(  + €xr − F(x, tρ) − G(x, tρ)u − d(t)(  + _x2

− F(x, ρ) − G(x, ρ)u + F(x, ρ) + G(x, ρ)u].

(23)

Let

η(x, x, ρ, ρ) � − F(x, ρ) − G(x, ρ)u + F(x, ρ) + G(x, ρ)u.

(24)
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Now, replacing the control input vector u by its ex-
pression described in (21), one has

_V � S η(x, x, ρ, ρ) − d(t) + _x2 − λx2 −
kS

|S| + ε
+ βS 

� − βS
2

−
k|S|

2

|S| + ε
+ _x2 − λx2 + η(x, x, ρ, ρ) − d(t) .

(25)

At this stage, it is needful to prove the boundedness of
η(x, x, ρ, ρ) and _x2 in order to admit the convergence S(t).

Let us first prove the boundedness of η(x, x, ρ, ρ). We
have

η(x, x, ρ, ρ) � − F(x, ρ) − G(x, ρ)u + F(x, ρ) + G(x, ρ)u.

(26)

-is can be written as

η(x, x, ρ, ρ) � − F(x, ρ) + F(x, ρ) − F(x, ρ) − G(x, ρ)u

+ G(x, ρ)u − G(x, ρ)u + F(x, ρ) + G(x, ρ)u

� − (F(x, ρ) − F(x, ρ)) − (G(x, ρ) − G(x, ρ))u

− (F(x, ρ) − F(x, ρ)) − (G(x, ρ) − G(x, ρ))u.

(27)

Tacking into account that F(x, ρ) and G(x, ρ) are Lip-
schitz with respect to x uniformly in ρ and F(x, tρ) and
G(x, tρ) are Lipschitz with respect to ρ uniformly in x, we
can write that

|η(x, x, ρ, ρ)|≤ kF|x − x| + kG|u||x − x|

+ kρ1|ρ − ρ| + kρ2|u||ρ − ρ|

≤ kF + kukG( |x| + kρ1 + kρ2ku |ρ|,

(28)

where kF, kG, ku, kρ1, and kρ2 are a positive constants.

From the convergence of the adaptive observer [40], it
follows that there exists a positive constant kη > 0 such that

|η(x, x, ρ, ρ)|≤ kη. (29)
Next, we need to show the boundedness of _x2. To that

end, conforming to [40], taking into account the presence of
the disturbance term d(t) and using (7), we have

_x � Ax + f(x, ρ) + g(x, ρ)u − (f(x, ρ) + g(x, ρ)u)

− θΔ− 1
θ S

− 1
C

T
K(Cx) + Δ− 1

θ Y _ρ − Bd(t).
(30)

We set xc � Δcx and Δc �
θI3 03
03 I3

 . Referring to (30)

and tacking into account thatΔcAΔ− 1
c � θA andCΔc � C, we

get

_xc � θ A − θKoS
− 1

C
T
C xc + θY _ρ + Δc(

f(x, ρ) + g(x, ρ)u

− (f(x, ρ) + g(x, ρ)u) − B d(t)).

(31)

Hence,
_xc � θAxc + W(u, x, ρ), (32)

where W(u, x, ρ) � f(x, ρ) + g(x, ρ)u − (f(x, ρ) + g(x, ρ)

u) − B d(t) + θY _ρ and A � A − θKoS− 1CTC. A is Hurwitz,
and _W is bounded. In fact, we recall that x(t), u(t), d(t), and
ρ(t) are assumed to be bounded. Furthermore, zg/zx and
zf/zx are bounded because f and g are assumed contin-
uously differentiable.

-erefore, according to -eorem 1 of [47], we can
conclude that limθ⟶+∞

_xc � 0. As a result, limθ⟶+∞
_x1 � 0

and limθ⟶+∞
_x2 � 0.

Now, let k2 > 0 and k2 > 0 such that |x2(t)|≤ k2 and
| _x2(t)|≤ k2.

Returning to (25) and using (29), we deduce that

_V≤ − βS
2

−
k|S|

2

|S| + ε
+ k2 + λk2 + kη + ζ |S|. (33)

Two-wheeled
self-balancing robot Adaptive observerSliding mode control

Ueq = [G(x,p] + [xτ – F(x,p) – D(t) +
λ(xτ – x)]

   

··


··

U = Ueq – [g(x,p)] + [kS/|S| + ε + βS] 
y = Cx =x1

x = Ax + f(x,p) + g(x,p)U + B D(t)· x = Ax + f(x,p) + g(x,p)U
–θΔθ

–1(–s–1 + γ(t)P(t)γT (t))
CT K(Cx)

     



·



·
p = –θP(t)γT (t)CT K(Cx)

x

p

Figure 1: Synoptic diagram of the proposed control method.
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Supposing ks � k2 + λk2 + kη + ζ, one obtains

_V≤ − βS
2

−
k|S|

2

|S| + ε
+

ks(|S| + ε)|S|

|S| + ε

≤ − βS
2

−
k|S|

2

|S| + ε
+

ks|S|
2

|S| + ε
+

ksε|S|

|S| + ε

≤ − βS
2

− k − ks( 
|S|

2

|S| + ε
+ ksε, since

|S|

|S| + ε
< 1.

(34)

Choosing k sufficiently large such that k> ks, we have

_V(S(t))≤ − βS
2
(t) + ksε

≤ − βV(S(t)) − βV(S(t)) − ksε( .
(35)

As long as βV(S(t))≥ ksε, i.e, V(S(t))≥ ksε/β, we have
_V(S(t))≤ − βV(S(t)). -en, if V(S(t))≥ ksε/β, S(t) will be
exponentially decreasing, and there exists a finite time Ts

such that, for all t≥Ts, (V(S(t)) ≤ )ksε/β, which means that,
for all t≥Ts, we have

|S(t)|≤
2ksε
β

 

1/2

, (36)

which means that S(t) is uniformly bounded and its upper
bound (2ksε/β)1/2 may be made small by reducing the design
parameter ε and increasing the design parameter β.

Now, it remains to show the convergence of the tracking
error of the closed-loop system. □

Corollary 1. We consider the system (6) with control input
(21) and incorporate the adaptive observer (7) such that
Assumptions 1 and 2 are satisfied. Cen, the tracking errors of
the closed-loop system converge to a compact set whose radius
may be reduced by choosing small values of the design pa-
rameter ε and by increasing the design parameter β.

Proof. Referring to (17), the derivative of the tracking error
becomes

_e � S − λe − x2. (37)

Let us consider the Lyapunov function V1 � eTP1e; its
derivative is given by

_V1 � 2e
T
P1 _e . (38)

Using (37), this allows to obtain

Table 1: Two-wheeled self-balancing robot parameters.

Symbol Name Value (unit)
Mp Body weight including the loads 20.82 (kg)
Mr Mass of the wheel 0.420 (kg)
D Distance between the contact patches of the wheels 0.438 (m)
L Distance between the chassis and the center 0.4 (m)
R Radius of the wheel 0.106 (m)
g Gravity constant 9.8 (ms− 2)
Jp -e moment of inertia of the chassis with respect to the z-axis 0.28 (kg·m2)
Jδ -e moment of inertia of the chassis with respect to the y-axis 1.12 (kg·m2)
Jr Moment of inertia of the wheel 0.1 (kg·m2)
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_V1 � 2e
T
P1 S − λe − x2( 

� − 2λe
T
P1e + 2e

T
P1S − 2e

T
P1x2.

(39)

Reminding that |x2(t)|≤ k2 and using (36), one obtains

_V1 ≤ − 2λV1 + 2|e|λmax P1( 
2ksε
β

 

1/2

+ k2
⎛⎝ ⎞⎠

≤ − 2λV1 + c3
���
V1


,

(40)

where

c3 � 2
��������

λmin P1( 



λmax P1( ( 
2ksε
β

 

1/2

+ k2
⎛⎝ ⎞⎠, (41)

and (40) can be written as

_V1 ≤ −
���
V1


λ

���
V1


− c3(  − λV1. (42)

Hence, as long as λ
���
V1


− c3 ≥ 0, i.e, V1 ≥ (c3/λ)2, we

have _V1(e(t))≤ − λV1(e(t)), which means that V1(e(t))

will be decreasing exponentially fast until V1(e(t))< (c3/λ)2

after a finite time Tf2.
Since λmin(P1)|e(t)|2 ≤V1(e(t)), we have

|e(t)| ≤
λc3��������

λmin P1( 

 , ∀t≥Tf2. (43)

By considering the expression (41) of the constant c3, we
deduce, from inequality (43), that the tracking errors of the
closed-loop system converge to a compact set whose radius
may be made as small as possible by reducing the design
parameter ε and increasing the design parameter β. □

Remark 1. Based on the different abovementioned dem-
onstrations and using the different assumptions considered
in this paper, we summarize the following algorithm to
describe how the different design parameters are selected
and the steps of the implementation process:

Step 1: we compute the matrix S and the solution of the
algebraic Lyapunov equation (8). -e latter equation
(8) is solvable for S as long as the pair (A, C) is ob-
servable, which is the case for the two-wheeled self-
balancing robot considered in this paper. For the choice
of S, we solve the equation S + ATS + SA − CTC � 0
using the pole placement method and the Matlab
function place.
Step 2: the choice of θ should ensure a compromise
between fast convergence of the state estimation and
the satisfactory dealing with noise rejection (with θ> 1).
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Step 3: we choose a large value of the design parameter
β and a small value of the parameter ε such that

β≫ 1

0< ε≪ 1.
(44)

Step 4: we select a positive parameter λ according to the
reference tracking priority that we should to give to the
state x1 or x2.
Step 5: we choose a sufficiently large parameter k such
that k> ks with ks � k2 + λk2 + kη + ζ, where ζ, k2, and
k2 are, respectively, the upper bounds of the distur-
bance d(t), the state x2(t), and its derivative _x2(t); kη is
the upper-bound of the signal η(x, x, ρ, ρ) given by
equation (29).

Step 6: we compute the pseudoinverse [G(x, ρ)]+ of the
matrix function G(x, ρ) (see the definition of the
pseudoinverse of a matrix at the end of Section 1).

Remark 2. Terminal sliding mode control is an efficient
robust control approach that has proved interesting advan-
tages compared to conventional sliding mode control: we
report, for instance, its fast convergence rate and its high
tracking accuracy [25]. In this context, an adaptive non-
singular integral terminal sliding mode control approach has
been proposed in [17]. -e convergence rate of the latter
control approach was recently improved in [17] with appli-
cation to the trajectory tracking control of autonomous
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underwater vehicles. Terminal sliding mode control may be
investigated in future works for the two-wheeled self-bal-
ancing robot to design a more efficient tracking control
scheme with improved convergence properties.

4. Numerical Simulations

In this section, the numerical simulations carried out using
Matlab/Simulink software, applied on the two-wheeled
self-balancing robot, are performed to highlight the
effectiveness of the proposed adaptive sliding mode
controller.

-e robot parameters are summarized in Table 1.
-e initial conditions for the position states are fixed as

x � 0m; ψ � 0.5 rad; and δ � 0 rad, and all the speed states
are fixed to zero ( _x � 0m/s, _ψ � 0 rad/s, and _δ � 0 rad/s).

-e disturbance vector d(t) is chosen such that
d1(t) � − 0.3 sin(3πt)Nm, d2(t) � − 0.02 sin(2πt + π)Nm,
and d3(t) � − 0.2 sin(5πt)Nm.

Firstly, we apply the adaptive observer (7) to estimate
unmeasured states and the terrain inclination with the
following initial condition: x(0) � 0.1m, ψ(0) � 0.24 rad,
δ(0) � 0.5 rad, _x(0) � 0.5m/s, _ψ(0) � 0.5 rad/s, _δ(0) �

0 rad/s, and α(0) � 0 rad.
-e design parameters of the adaptive observer are se-

lected as θ � 10, P(0) � 1 and Y(0) � [0 0 0 0 0 0]T.
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-e design matrix S
− 1

CT is chosen such that

S
− 1

CT �

2 0 0
0 2 0
0 0 2
1 0 0
0 1 0
0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Once the terrain inclination and the unmeasured states
are available, we apply the continuously implemented
sliding mode controller given by (21) to the two-wheeled
self-balancing robot, where S(t) is defined by equation (19)
such that pseudoinverse [G(x, tρ)]+ is computed as follows:

[G(x, tρ)]
+

�

1
2g11(x, ρ)

1
2g21(x, ρ)

0

0 0
1

g32(x, ρ)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (45)

where xr(t), ψeq(t), and δr(t) are the desired reference
trajectories suitably planned as depicted in Figures 2–4.

-e design parameters are chosen as follows: ε � 0.1,
k � 16, λ � 10, and β � 10.

-e simulation results are illustrated through
Figures 2–9.

-e tracking problem studied in this paper consists to
maintain the pitch angle equilibrium even in the presence of
a slope and disturbances and to impose the linear dis-
placement to track a reference trajectory. Figures 2–4 attest
that the tracking objective of displacement is achieved.

Indeed, the two-wheeled self-balancing robot tracks well
the desired trajectories (Figures 2 and 4) although keeping
the equilibrium of the pitch angle despite the presence of a
slope (Figure 3).

Figure 5 shows that the linear speed traces a trapezoidal
profile. Figures 6 and 7 reveal a right harmony between
angular velocities and their estimates.

-e performance of the proposed adaptive observer to
estimate the angle of terrain inclination is outstanding from
Figure 8. -e control input vector u is on view in Figure 9
where small oscillations are recorded. It may be observed in
Figure 9 that the couple Cδ is increasing after the instant 20 s
which corresponds to the beginning of terrain inclination.
-us, the wheeled robot continues to follow its reference
trajectory despite the presence of the terrain inclination.

In a more sophisticated and realistic scenario, we have
added a variation of the yaw angle as it is represented in
Figure 10. We have also added a white noise ω(t) of power
equal to 10− 9. In addition, we have modified the external
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disturbances as d1(t) � − 0.2 sin(3t)Nm, d2(t) � − 0.2 cos
(2t)Nm, and d3(t) � − 0.3 sin(5t)Nm.

-e simulation results are illustrated through
Figures 11–18.

Figures 10–12 attest that the tracking objective of dis-
placement is obtained. Indeed, the two-wheeled self-bal-
ancing robot tracks well the desired trajectories (Figures 10
and 11) although keeping the equilibrium of the pitch angle
despite the presence of a slope (Figure 12). Figure 13 shows
that the linear speed traces a trapezoidal profile. Figures 14
and 15 reveal a right harmony between angular velocities
and their estimates.

-e performance of the proposed adaptive observer to
estimate the angle of terrain inclination is shown from
Figure 16. Figure 17 represents the torque Cψ26 which en-
sures the translation along the x-axis while preserving the
upright position. It seems clear from Figure 18 that the
couple Cδ26 increases at the instant 45 s which corresponds
to the beginning of the yaw angle variation. -us, the
wheeled robot continues to follow its reference trajectory
despite the presence of the terrain inclination and the
presence of disturbances and measurement noise.

5. Conclusions

In this paper, a robust adaptive observer-based sliding
mode control has been proposed for the two-wheeled self-
balancing robot subject to terrain inclination and distur-
bances. -e application of the adaptive observer guarantees
the simultaneous estimation of unmeasured states and the
terrain inclination angle which is assumed unknown. -e
convergence of the proposed controller was illustrated
through a Lyapunov analysis and inspired from sliding
modes theory. Numerical simulations emphasize the per-
formance of the designed control method applied to the
two-wheeled self-balancing robot. In future work, we will
enhance our control algorithm by using the terminal

sliding mode in order to improve the convergence prop-
erties of the controller. Also, we will focus on the problem
of observer based-fault tolerant control for the considered
system.
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