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)e main purpose of this study aims to apply and compare the rationality of landslide susceptibility maps using support vector
machine (SVM) and particle swarm optimization coupled with support vector machine (PSO-SVM) models in Lueyang County,
China, enhance the connection with the natural terrain, and analyze the application of grid units and slope units. A total of 186
landslide locations were identified by earlier reports and field surveys. )e landslide inventory was randomly divided into two
parts: 70% for training dataset and 30% for validation dataset. Based on the multisource data and geological environment, 16
landslide conditioning factors were selected, including control factors and triggering factors (i.e., altitude, slope angle, slope
aspect, plan curvature, profile curvature, SPI, TPI, TRI, lithology, distance to faults, TWI, distance to rivers, NDVI, distance to
roads, land use, and rainfall). )e susceptibility between each conditioning factor and landslide was deduced using a certainty
factor model. Subsequently, combined with grid units and slope units, the landslide susceptibilitymodels were carried out by using
SVM and PSO-SVMmethods. )e precision capability of the landslide susceptibility mapping produced by different models and
units was verified through a receiver operating characteristic (ROC) curve.)e results showed that the PSO-SVMmodel based on
slope units had the best performance in landslide susceptibility mapping, and the area under the curve (AUC) values of training
and validation datasets are 0.945 and 0.9245, respectively. Hence, the machine learning algorithm coupled with slope units can be
considered a reliable and effective technique in landslide susceptibility mapping.

1. Introduction

Landslide is a damaging geological phenomenon all over the
world, which has characteristics of wide distribution, high
frequency, and strong destruction [1–4]. China is one of the
countries greatly affected by landslides in the world, which
causes great losses to national construction and people’s lives
and property because of the occurrence of landslides every
year [5, 6]. It is reported that a total of 6,186 geological
disasters occurred in 2019, resulting in 211 dead, 13 missing,
75 injured, and direct economic losses of 2.77 billion CNY
(https://www.cigem.cgs.gov.cn). )e occurrence of landslide
disasters has directly or indirectly affected economic de-
velopment and social stability. )erefore, the study on
quantitative assessment of landslide susceptibility provides
not only scientific basis for landslide prevention and land

resource utilization planning but also great significant to
predict landslide stability for medium and long terms [7].

In recent years, the development and application of “3S”
(global position system, remote sensing, and geographic in-
formation system) provides important theoretical and tech-
nical means for monitoring and preventing the landslides
[8–10]. A large number of methods are applied in landslide
prediction. According to the different theories, there have
been many GIS-based models for landslide susceptibility
analysis and mapping. All of the current models can be
summarized into two groups: knowledge-driven models and
data-driven models [11]. )e first model, also called heuristic
analysis, is based on geological expert experience and field
work situation, such as analytic hierarchy process [12, 13] and
fuzzy mathematics [14–16]. Disadvantages and limitations of
knowledge-driven model are strongly subjective and standard
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difference. )e second model is to establish the function
relationship or expression between the landslide and factors
by selecting an appropriate mathematical means, so as to
conduct landslide susceptibility mapping, for example, fre-
quency ratio [17–19], weights-of-evidence [20–23], certainty
factors [24–26], and logistic regression [27–29]. )e occur-
rence of landslides is complicated nonlinear and affected by
conditioning factors, including geomorphological, geological,
hydrological, surface cover index, geophysical, and meteo-
rological factors [30, 31].

However, the traditional simple mathematical statistical
model is difficult to solve the highly nonlinear characteristics of
landslide disasters. )e machine learning and data mining
algorithms are more and more popular used in this field
[32–35], such as artificial neural network [36–38], support
vector machine [39–41], random forest [42–45], näıve Bayes
[46–48], and decision tree [49, 50]. In terms of mapping units,
the suitable selection is very vital for computing and modeling,
which could be regular or irregular. Every mapping unit is used
to store the attribute values of landslide conditioning factor [51].

Although many models have been used in landslide
susceptibility mapping, a comparative study of SVM and
PSO-SVM models based on grid units and slope units has
been seldom considered so far. )erefore, this study aims to
construct the landslide susceptibility models through dif-
ferent units in Lueyang County, China. Also, the perfor-
mance of every model and unit was evaluated and compared.
)e results are a certain reference significance for other
areas.

2. Study Area and Data

Lueyang County is located in the southwest part of Hanzhong
City, Shaanxi Province, China, between the longitudes
105°42′E∼106°31′E and latitudes 33°07′N∼33°38′N, and covers
an area of 2831km2 (Figure 1).)e highest altitude of the study
area is 2399m; on the contrary, the lowest point is 559m, and
the altitude increases from the southwest to the northeast. )e
landform can be classified into mountain, hill, and plain. )e
study area is characterized by typical subtropical humid con-
tinental monsoon climate. According to years of meteorological
data, the average annual is 13.2°C, and the mean annual pre-
cipitation is 826.2mm. )e rivers of the Lueyang County are
densely distributed and belong to the Yangtze River Basinwhich
is divided into the Hanjiang River and Jialing River.

)e geology of the study area is very complicated. )e
lithological stratum varies from Proterozoic to Quaternary,
and the mainly outcropped lithologies including granite,
tuff, phyllite, sandstone, shale, and limestone are the main
outcropped lithology. )e geological structure system of
study area belongs to the Kunlun-Qinling-fold system.)ere
are several faults and make this area highly susceptible to
landslide stability. )ese faults are very developed and have
approximately SEE-NWW and NNE-SWW directions.

2.1. Landslide Inventory. )e most significant and critical
step in the landslide map is to identify the location and type
of the existing landslides. )e landslide dataset determines

the quality of the landslide susceptibility modeling.
According to the historical reports, aerial photo, image
interpretation, and field investigation in this study area, the
landslide inventory map was produced and 186 landslides
were ascertained. However, analysis of the landslide in-
ventory map shows that a large proportion of landslides
occurred in the study area are slides (178) and a very small
proportion is rock falls (8). )e smallest landslide was about
450m2, the largest was about 4.9×104m2, and the average
was about 1.8×104m2. Most of the landslides in the study
area are less than 10,000m2 and shallow seated (<6m).
)erefore, the centroid point was used to represent the
corresponding landslide location, by randomly dividing 186
landslide points into 70% (130 landslides) for training and
the remainder of 30% (56 landslides) for validation. )e
nonlandslide points were randomly selected from the
landslide-free areas and also randomly divided into the same
proportion (70/30) to build training and validation.

2.2. Landslide Conditioning Factors. According to an anal-
ysis of historical landslide data and a summary of previous
research study, the occurrence of landslide is affected by
various factors. )e selection principle is to consider the
mechanism and geoenvironmental characteristics of land-
slide occurrence in the study area. In the present study, the
landslide conditioning factors used to evaluate susceptibility
are classified into two categories, namely, control factors and
triggering factors, respectively. In this area, control factors
consist of altitude, slope angle, slope aspect, plan curvature,
profile curvature, stream power index (SPI), lithology, to-
pographic position index (TPI), topographic ruggedness
index (TRI), distance to faults, topographic wetness index
(TWI), distance to rivers, and triggering factors including
normalized difference vegetation index (NDVI), land use,
distance to roads, and rainfall. )e landslide conditioning
factors were obtained by a variety of data sources, such as
point, polygon, and raster data (Table 1). )ese were
extracted from available sources andmust transform into the
same format, resolution, and coordinate system.

Altitude affects the slope by sunshine, plant, tempera-
ture, and human activity. According to DEM data, the al-
titude ranges from 599m to 2399m and was classified into
five classes (Table 2 and Figure 2(a)).

Slope angle describes the degree of slope inclination at a
point and directly influences the slope stability through
stress and runoff nonuniformity. In this study, slope angle
was created by DEM data and divided into five classes
(Table 2, Figure 2(b)).

Slope aspect represents the orientation of the slope. It is a
very important parameter to assess landslide susceptibility
and also produced by DEM data.)e aspect values vary from
−1 to 360° and divided into nine classes with an equal in-
terval of 45° (Table 2, Figure 2(c)).

Plan curvature and profile curvature are the quantitative
index that describes degree of the terrain distortion.)e plan
curvature is the change rate of slope aspect at a point, as well
as reflect the inflect degree of the contour line. )e profile
curvature is the change rate of slope angle and also means
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the second derivative of the altitude change. In light of the
natural break method, the plan curvature and profile cur-
vature produced by DEM data were classified into three
categories (Table 2, Figures 2(d) and 2(e)).

SPI expresses the erosion power of water flow and also
was considered as an important hydrological factor. )e SPI
values were classified into five categories (Table 2,
Figure 2(f)). SPI is calculated by the following equation:

SPI � As × tan β. (1)

Here, AS is the specific catchment areas and β is the local
slope gradient in degree.

TPI describes position information of a point, and its
values were classified five classes (Table 2, Figure 2(g)). TPI is
defined as follows:

TPI � e − 
8

i�1

ei

8
. (2)

Here, e is the center point altitude and ei is the neigh-
borhood altitude.

TRI reflects the terrain fluctuation and the erosion de-
gree, which can generally express the ratio with the surface
area to its projected area. TRI was produced by DEM data,
and its values were grouped into five classes (Table 2,
Figure 2(h)). )e value is computed as follows:

TRI �


8
i�1 e − ei




8
. (3)

Lithology is the material basis of slope development; at
the same time, it can control the occurrence of slope. In
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Figure 1: Location of study area.
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Table 1: Data used of conditioning factors.

Factors Data source Scale/resolution
Altitude, slope angle, slope aspect, plan curvature, profile curvature, SPI, TPI,
TRI, TWI ASTER GDEM Raster,

30m× 30m

NDVI, land use Landsat 8 OLI Raster,
30m× 30m

Faults, rivers, roads, lithology Geological maps and topographic
maps Polygon, 1 : 50000

Rainfall Atmospheric rainfall data Point data
ASTER GDEM: Advanced Spaceborne )ermal Emission and Reflection Radiometer Global Digital Elevation Model data (http://www.gscloud.com); OLI:
Landsat 8 Operational Land Imager data (http://www.gscloud.com), 1 : 50000-scale geological maps and 1 : 50000-scale topographic maps; CMA: Atmo-
spheric rainfall data from the China Meteorological Administration (http://data.cma.cn).

Table 2: Landslide conditioning factors susceptibility by CF models.

Conditioning factors Classes Percentage of landslide Percentage of domain CF value

Altitude (m)

559–931 40.86 19.92 0.55
931–1152 35.48 31.51 0.12
1152–1389 20.43 27.44 ‒0.27
1389–1718 3.23 13.53 ‒0.77
1718–2399 0 7.60 ‒1.00

Slope angle (°)

0–12 18.28 13.13 0.30
12–20 27.42 23.59 0.15
20–28 22.04 29.34 ‒0.26
28–36 23.12 24.12 ‒0.04
36–74 9.14 9.82 ‒0.07

Slope aspect

Flat 0 0.23 ‒1.00
North 11.29 12.29 ‒0.09

Northeast 10.75 12.18 ‒0.12
East 14.52 12.01 0.18

Southeast 9.14 13.14 ‒0.32
South 18.28 13.00 0.33

Southwest 12.90 12.75 0.01
West 10.22 12.18 ‒0.17

Northwest 12.37 12.22 0.01

Plan curvature
‒6.29∼‒0.31 15.59 15.94 ‒0.02
‒0.31–0.18 59.68 55.44 0.08
0.18–6.47 24.73 28.63 ‒0.14

Profile curvature
‒12.29∼‒0.40 9.68 11.43 ‒0.16
‒0.40–0.13 50.54 53.26 ‒0.05
0.13–10.59 39.78 35.31 ‒0.12

SPI

<1000 0.54 2.57 ‒0.80
1000–2000 10.75 9.95 0.08
2000–3000 77.42 77.11 0.00
3000–4000 9.68 8.21 0.16
<4000 1.61 2.17 ‒0.27

TPI

‒73∼‒8.14 8.60 8.90 ‒0.04
‒8.14∼‒2.52 32.26 26.95 0.18
‒2.52–2.56 31.72 30.82 0.03
2.56–8.56 20.97 23.88 ‒0.13
8.56–66.27 6.45 9.45 ‒0.33

TRI

0–5.50 24.73 19.37 0.23
5.50–8.68 32.26 30.58 0.06
8.68–11.92 24.19 29.52 ‒0.19
11.92–16.47 15.59 16.69 ‒0.07
16.47–70.21 3.23 3.85 ‒0.17

Lithology
Hard 24.73 27.12 ‒0.09

Medium 48.39 50.42 ‒0.04
Soft 26.88 22.46 0.18

Distance to faults (m)

0–1021 67.74 44.23 0.37
1021–2357 18.28 24.21 ‒0.26
2357–3975 9.68 17.53 ‒0.46
3975–6207 3.23 10.13 ‒0.70
6207–11446 1.08 3.90 ‒0.74
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terms of the geological environment, the lithology can be
divided into three categories (Table 2, Figure 2(i)).

Faults can cut the rock and soil and make the broken and
eventually may influence slope stability. So, it is a very
important conditioning factor, which is selected as the
distance to the faults. )e distance was grouped into five
classes (Table 2, Figure 2(j)).

TWI represents the saturated state of soil moisture within
a certain watershed and simulates topography for a hydro-
logical process. According to the TWI, the value can be
classified five groups (Table 2, Figure 2(k)) and is calculated by

TWI � ln
α

tan β
. (4)

Here, α is the area drained per unit contour length at a
point and β is the slope.

Rivers erosion leads to reduction in the rock and soil
strength. In order to research the relationship between the
rivers and slopes, the distance to rivers is selected as the factor.
)e value can be classified five categories (Table 2, Figure 2(l)).

NDVI is a signal that reflects on the growth status and
quantity distribution of plants and vegetation. )e NDVI
value can be grouped into five categories (Table 2,
Figure 2(m)) and is computed as

NDVI �
NIR − R

NIR + R
. (5)

Here, NIR is the near-infrared band and R is the red
band.

)e distance to roads is closely related with human
engineering activity. )e activity changed the original to-
pographical structure and generally accelerates slope in-
stability. )e distance is divided into five groups (Table 2,
Figure 2(n)).

Land use was extracted by remote sensing imagery in this
study area. )e interpretation result is classified into five
groups (Table 2, Figure 2(o)).

Rainfall can trigger the occurrence of landslide to some
extent.)e average annual rainfall value is classified into five
categories (Table 2, Figure 2(p)).

3. Methodology

)e methodology of this study is shown as a flowchart
(Figure 3). Firstly, identify and determine the temporal and
spatial information of the landslides in study area. Next,
according to the multisource data, 16 factors were selected
and each conditioning factor’s susceptibility was determined
with landslide by using a certainty factor model. )en, apply
the SVM and PSO-SVM models and compare the grid units
and slope units for landslide susceptibility mapping. Finally,
use the receiver operating characteristic (ROC) curve to
select the best unit and model.

Table 2: Continued.

Conditioning factors Classes Percentage of landslide Percentage of domain CF value

TWI

1.12–6.19 17.20 14.51 0.17
6.19–7.99 22.58 23.06 ‒0.02
7.99–11.14 8.60 11.89 ‒0.29
11.14–13.92 36.02 22.59 0.40
13.92–14.69 15.59 27.95 ‒0.46

Distance to rivers (m)

0–429 61.83 35.79 0.45
429–904 23.66 30.09 ‒0.23
904–1456 11.29 21.81 ‒0.50
1456–2364 3.23 10.82 ‒0.72
2364–5148 0 1.50 ‒1.00

NDVI

<‒0.29 12.37 20.70 ‒0.42
‒0.29–0.08 12.37 17.47 ‒0.31
0.08–0.14 22.58 19.41 0.15
0.14–0.21 25.81 22.88 0.12
>0.21 26.88 19.54 0.29

Distance to roads (m)

0–812 72.04 40.11 0.47
812–1786 20.97 30.26 ‒0.32
1786–3013 5.38 18.54 ‒0.72
3013–5159 1.61 9.39 ‒0.84
5159–9999 0 1.69 ‒1.00

Land use

Water 1.08 0.87 0.21
Residential 13.98 4.78 0.70
Farmland 8.60 5.72 0.36
Forest 38.17 59.84 ‒0.38
Grass 38.17 28.69 0.27

Rainfall (mm)

<820 18.82 22.41 ‒0.17
820–890 19.89 21.16 ‒0.06
890–960 27.96 22.43 0.21
960–1030 25.27 26.51 0.05
>1030 8.06 7.50 0.08
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4. Landslide Susceptibility Modeling

4.1. Mapping Units. )e first step is the selection of mapping
units in the landslide susceptibility, so its rationality deter-
mines the accuracy and reliability of the assessment results.
Mapping unit is the smallest and indivisible space unit in
landslide susceptibility evaluation, which can be either regular
or irregular [52]. According to the current research results, all
units can be classified into five types: grid unit, terrain unit,
unique condition unit, slope unit, and topographic unit
[53, 54]. Grid units divide the territory into a regular square
with the same size, and it is easy to compute and sample [55].
Slope units divide the territory into independent slopes by
ridge and valley line, as well as it can reflect the natural to-
pography of the study area [56, 57]. Based on the above,
combined with the characteristics of the thematic data of the
landslide condition factors, grid unit and slope unit are se-
lected to calculate the landslide susceptibility in this study,
respectively.)e resolution of grid units is 30× 30m, a total of

3,141,646 grids. )e slope units are based on the 30× 30m
ASTER DEM data and were divided into 18,346 slopes in
total, including the minimum 900m2 and the maximum
1.86 km2. )e result is shown in Figure 4.

4.2. Certainty Factors. Certainty factors (CFs) were first
proposed by Shortliffe [58, 59] and improved by Heckerman
[60], which is a probability function. It is used for the
certainty degree of an event under specific conditions and
also can be used for the analysis of the landslide conditioning
factors susceptibility [61]. )e function expression is as
follows:

CF �

PPa − PPs
PPa(1 − PPs)

, ifPPa≥PPs,

PPa − PPs
PPs(1 − PPa)

, ifPPa<PPs,
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Figure 2: Landslide conditioning factors.
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where PPa is the conditional probability, which is expressed
as the ratio of landslide area to the total area in classification
a, and PPs is the prior probability, which is expressed as the
ratio of the total landslide area to the total area of the study
area.

)e values of CF range −1 to 1; the positive values
represent high certainty of landslide occurrence, which
indicate that the landslides are prone to occur, while the

negative values represent low certainty, which indicate that
the landslide susceptibility is decreasing.

4.3. Support Vector Machine. Support vector machine
(SVM) is a new machine learning algorithm that was first
proposed by Vapnik [62, 63]. SVM derives from statistical
learning method based on the principle of structural risk
minimization and the structural risk minimization principle.
It is especially suitable for processing of small sample
datasets and aims to construct classification hyperplane for
separating different data [64, 65]. )e core idea of SVM can
be summarized as follows: first, the input vector is mapped
to a high-dimensional feature space by some preselected
nonlinear mapping (kernel function), and then, the optimal
classification hyperplane is found in the feature space so that
the two types of data points can be correctly separated as
much as possible; the classification interval is maximized at
the same time (Figure 5(a)).

For example, given a training set of instance-label pairs
(xi, yi), i� 1, 2, ··, n, where x ∈Rn is an input vector that
includes landslide conditioning factors and yi{+1, ‒1} is the
output classes that represent landslide and nonlandslide and
is the number of training sample [66]. It can be expressed as
follows:

min
1
2
‖w‖

2
,

s.t.yi w × xi + b( ≥ 1, i � 1, 2, · · · n.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩
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Here, w is the coefficient vector that determines the
orientation of the hyperplane in the feature space and b is the
offset of the hyperplane from the origin. Introducing the
Lagrange multiplier λi, the cost function can be defined as
follows:

L(w, b, λ) �
1
2
‖w‖

2
− 

n

i�1
λi yi w × xi(  + b(  − 1), i � 1, 2, · · · , n.

(8)

For the application of nonseparable, introduce slack
variables ζi and penalty parameter C, in which the former
describes classification of interval errors and the latter ad-
justs the limit of a sample data misclassification. Hence, the
equation can be modified as

min
1
2
‖w‖

2
+ C 

n

i�1
ξi, s.t.yi w × xi + b( ≥ 1 − ξi. (9)

Besides, the commonly used kernel functions are linear
function (LN), polynomial function (PL), sigmoid function
(SIG), and radial basis function (RBF) at present. Among the
above four kinds of kernel functions, RBF has strong
nonlinear mapping ability and was widely used in landslide
susceptibility mapping. In this study, RBF is also used to
analyze the decision function of the optimal hyperplane.

4.4. Particle Swarm Optimization. Particle swarm optimi-
zation (PSO) is an intelligent evolutionary algorithm derived
from complex adaptive systems (CASs). It was first proposed
by Kennedy and Eberhart [67] and originated from the
foraging behavior of birds. In a PSO, each solution of the
optimization problem is regarded as a particle in the search
space. Each particle is adjusted according to the fitness
values of themselves and the swarm. And the iteration and
optimization are not terminated until all the particles
converge to optimal solution [68–71] (Figure 5(b)). Hence,
particles are optimized by constantly updating their speed
and position, in which process can be expressed as

V
n+1
i � w · V

n
i + c1 · r1 · p

n
i − x

n
i(  + c2 · r2 · p

n
g − x

n
i ,

x
n+1
i � x

n
i + V

n
i ,

⎧⎪⎨

⎪⎩

(10)

where i� 1, 2, ··, m, m is the total number of particles in the
current optimization problem, n is the number of iterations,
w is the inertia weight, c1 and c2 are learning factors, r1 and r2
are two random numbers between 0 and 1, and pin and pig
are the optimal position of the ith particle and the current
position of all particles at the n th iteration cycle, respec-
tively. Vn+1

i and xn+1
i are the updated velocity and position of

the ith particle at the (n+1)th iteration, respectively.
In the study of landslide susceptibility mapping, there is

a problem that it is necessary to find the optimal parameters
when RBF is used as the kernel function of SVMmodel. PSO
can be applied to seek the optimal parameters of SVM
model, which is the penalty factor C and the kernel pa-
rameter c.)erefore, in order to improve the performance of

the SVM model, the PSO is built coupled with SVM (PSO-
SVM) model in this study.

5. Results

)e results of this study consist of four parts, which are as
follows:

(1) Analysis of the susceptibility between conditioning
factors and landslide by CF method.

(2) Screening of landslide conditioning factors using the
correlation.

(3) Application of SVM and PSO-SVMmodels based on
grid and slope units.

(4) Validate and compare the performance of above
models using ROC curves.

5.1. Landslide Conditioning Factors Susceptibility. )e sus-
ceptibility between landslide and conditioning factor clas-
sification is calculated by using statistical method, certainty
factor (CF) model, and GIS technology. )e conditioning
factors may be either categorical or numerical. Categorical
variables were generally classified according to the heuristic
classification of the related thematic information. For the
numerical variables, the variables were classified by using the
equal intervals or natural breaks methods. Table 2 shows the
classes, percentage of landslide, percentage of domain, and
CF values of each conditioning factor. As for five classes of
altitude, the highest CF value is 559–931m because of dense
population. In slope angle, the largest CF value is 0–20°. For
slope aspect, the largest CF value is south and the smallest is
plan. Among the three categories of plan curvature and
profile curvature, the largest CF values are ‒0.31–0.18 and ‒
0.40–0.13, respectively. For SPI, the highest value class is
3000–4000. For TPI, the largest and smallest values are ‒
8.14∼‒2.52 and 8.56–66.27, respectively. In TRI, the highest
value is the classes of 0–5.50. About lithology, soft rocks have
a higher CF value. )ere is a negative correlation between
the distance to faults, rivers, roads, the number of landslides,
and CF values. As the distance increases, the landslides and
CF values gradually decrease. About TWI, the positive CF
values are the classes of 1.12–6.19 and 11.14–13.92. In terms
of NDVI, the highest CF value is greater than 0.21.
According to the land use classification result, it indicates the
landslides prone to residential area. )e relationship be-
tween landslide and rainfall in this area is positive, which
reflects that rainfall is a triggering factor.

5.2. Screening of Landslide Conditioning Factors. If there is a
strong correlation between some environmental factors, it
will lead to decrease the running speed of the model and
overfit the assessment result. Hence, it is very necessary to
examine landslide conditioning factors for selecting. In this
study, the Pearson correlation method is considered to use
and the result is shown in Table 3. From the results, it can be
seen that the correlation coefficient of between slope angle
and TRI, plan curvature and TPI, profile curvature and TPI,
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and SPI and TWI are 0.985, 0.799, −0.819, and −0.613,
respectively, showing high correlation. Consequently, the
conditioning factors of TPI, TRI, and TWI are removed and
use the other factors to build the model.

5.3. Landslide Susceptibility Mapping. )e equal number of
landslide and nonlandslide is randomly divided into training
dataset and validation dataset, accounting for 70% and 30%,
respectively. According to the above data, the SVM and
PSO-SVM models are built with RBF kernel function. In
addition, it is very decisive to seek the best kernel parameter
(C) and penalty parameter (c). SVM model obtained the
optimal parameters through a grid-search method. PSO-
SVM model obtains optimal parameters based on an in-
telligent optimization algorithm. )e initial values of PSO
algorithm are the total number of particles m� 50, the
number of iterations n� 200, and learning factors
c1 � c2 �1.5. Landslide susceptibility index (LSI) is computed
by the models, and it is positively correlated between LSI
values and probability of landslide occurrence. Finally,
landslide susceptibility mapping was produced by SVM and
PSO-SVM models based on grid and slope units.

)e landslide susceptibility index (LSI) for all models
ranges from 0 to 1. In research of regional landslide sus-
ceptibility map (LSM), the natural breaks classification is
usually used to classify. )is method makes intraclass var-
iance smallest and class-class variance largest. According to
this method, the four maps were classified into five cate-
gories, namely, very low, low, moderate, high, very high, and
respective (Figure 6). )e proportion of areas with very low,
low, moderate, high, and very high is 11.58%, 9.97%, 26.30%,

29.65%, and 22.50% for SVM based on grid units; 8.94%,
20.23%, 29.25%, 25.81%, and 15.76% for SVM based on slope
units; 24.29%, 25.32%, 20.32%, 16.91%, and 13.26% for PSO-
SVM based on grid units; and 22.53%, 23.77%, 19.79%,
18.82%, and 15.10% for PSO-SVM based on slope units,
respectively.

5.4. Validation andComparison. )e predictive capability of
landslide susceptibility assessment result directly and indi-
rectly affected the prevention and control of landslide di-
sasters in this study area. In order to evaluate the
performance of the landslide susceptibility model, a receiver
operation characteristic (ROC) curve was introduced to
analyze the accuracy. ROC curve defines sensitivity as Y-axis
and 1-specificity as X-axis. Area under curve (AUC) is a key
indicator to measure the accuracy of the ROC, and the value
range is between 0 and 1 [72, 73]. )e calculation formula is
as follows:

Y � sensitivity �
TP

TP + FN
,

X � 1 − specificity � 1 −
TN

TN + FP
,

AUC �
TP + TN

P + N
,

(11)

where P (positive) and N (negative) are the total number of
landslides and nonlandslides.

In this study area, respectively, TP (true positive) and FP
(false positive) denote the number of landslides and
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Figure 5: SVM and PSO method.
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nonlandslides that are correctly classified, respectively. TN
(true negative) and FN (false negative) represent the number
of landslides and nonlandslides that are incorrectly
classified.

Besides, three statistical indicators were computed
through actual and prediction category, namely, accuracy,
positive predictive value (PPV), and negative predictive
value (NPV). Accuracy can be used to measure the pre-
diction performance of the model. PPV indicates the pro-
portion of actual positives to all positives, and NPV indicates
the proportion of actual negatives to all negatives [74]. )e
calculation of indicators can be expressed as follows:

accuracy �
TP + TN

TP + TN + FP + FN
,

PPV �
TP

TP + FP
,

NPV �
TN

TN + FN
.

(12)

)erefore, the confusion matrix of training dataset is
shown in Table 4, and it was calculated to evaluate the
performance of landslide susceptibility models. According
to the results, the highest value and the lowest value of
accuracy are PSO-SVM model based on slope units
(95.00%) and SVM model based on grid units (84.23%).
)e highest values of PPV and NPV are also PSO-SVM
model based on slope units (96.15% and 93.85%). Similarly,
the confusion matrix of validation dataset is computed in
Table 5. )e results show that PSO-SVM model has the
highest values of accuracy, PPV, and NPV (93.75%, 96.43%,
and 91.07%). Overall, these indicators indicate that the
predictive performance of PSO-SVMmodel based on slope
units is better than other models in this landslide sus-
ceptibility mapping.

)e training data generated the success rate, and the
AUC values of the ROC curves are 0.8191 (SVM model
based on grid units), 0.8477 (SVM model based on slope
units), 0.9112 (PSO-SVM model based on grid units), and

0.945 (PSO-SVM model based on slope units), respec-
tively (Figure 7(a)). )e validation dataset generated the
prediction rate, and the AUC values of ROC curves are
0.8335 (SVM model based on grid units), 0.8849 (SVM
model based on slope units), 0.8418 (PSO-SVM model
based on grid units), and 0.9254 (PSO-SVM model based
on slope units), respectively (Figure 7(b)). )e results of
prediction capability indicated that PSO-SVM model and
slope units are higher than SVM model and grid units,
respectively.

6. Discussion

A large number of machine learning and data mining al-
gorithms have been applied to the regional-scale landslide
susceptibility modeling, which solves the nonlinear rela-
tionship between landslides and conditioning factors. )e
previous research studies have indicated that methods and
techniques improved; however, the prediction performance
is still challengeable. In this study, the landslide susceptibility
maps were produced through SVM and PSO-SVM models
coupled with grid units and slope units in mountainous
Lueyang County, China.

)e prediction accuracy of landslide susceptibility
assessment is influenced by methodological model,
mapping unit, and landslide conditioning factors. Machine
learning model SVM can transform nonlinear data to
high-dimensional space to seek the optimal classification
hyperplane. )e two key parameters of SVM can directly
determine the model fit and performance. SVM model
obtained the parameters by grid-search method, which
results in time and memory consuming. PSO, as an
evolutionary algorithm, can optimize the parameters and
improve robustness. )e accuracy of PSO-SVM model is
5% higher on average than SVMmodel. On the other hand,
it is easier to obtain, sample and calculate in GIS for grid
unit, while not closely related to topographic environment.
Slope units were independent watershed area generated by
DEM and Reverse DEM data. )e advantages and limi-
tations of grid units and slope units were presented during

Table 3: Landslide conditioning factors correlation.

Factors Alt Slo Asp Pla Pro SPI TPI TRI Lit Fau TWI Riv NDVI Roa Lan Rai
ALT 1
SLO 0.138 1
ASP ‒0.006 ‒0.098 1
PLA 0.007 ‒0.009 ‒0.028 1
PRO ‒0.184 ‒0.057 ‒0.008 ‒0.460 1
SPI 0.066 0.065 ‒0.116 ‒0.001 ‒0.045 1
TPI 0.169 0.078 ‒0.002 0.799 ‒0.819 0.073 1
TRI 0.117 0.985 ‒0.099 ‒0.004 ‒0.065 0.044 0.086 1
LIT 0.050 ‒0.071 0.044 ‒0.018 ‒0.058 0.013 0.010 ‒0.076 1
FAU 0.131 0.063 0.158 ‒0.013 ‒0.047 ‒0.121 0.080 0.068 ‒0.213 1
TWI 0.088 0.025 0.111 ‒0.003 0.019 ‒0.613 ‒0.019 0.035 ‒0.046 0.094 1
RIV 0.217 ‒0.040 0.002 0.102 ‒0.007 0.008 0.061 ‒0.040 0.021 ‒0.014 0.014 1
NDVI 0.006 0.343 -0.246 0.156 ‒0.149 0.140 0.210 0.332 ‒0.057 0.090 ‒0.091 0.018 1
ROA 0.270 0.029 0.079 0.037 0.062 ‒0.045 ‒0.035 0.021 ‒0.234 ‒0.411 0.062 0.432 0.030 1
LAN 0.277 0.328 0.016 0.171 ‒0.164 0.102 0.188 0.320 ‒0.066 0.020 0.009 0.026 0.417 0.069 1
RAI ‒0.163 ‒0.016 0.031 ‒0.075 0.128 ‒0.029 ‒0.105 ‒0.011 ‒0.119 ‒0.113 0.002 ‒0.031 ‒0.069 0.075 ‒0.110 1
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Figure 6: Landslide susceptibility maps.

Table 4: Confusion matrix of training dataset.

Prediction
Accuracy (%) PPV (%) NPV (%)

P N

SVM (grid) P 112 18 84.23 86.15 82.31N 23 107

SVM (slope) P 118 12 89.61 90.77 88.46N 15 115

PSO-SVM (grid) P 121 9 92.31 93.08 86.92N 17 113

PSO-SVM (slope) P 125 5 95.00 96.15 93.85N 8 122
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in training and validation. It indicated that slope units are
more consistent with the actual situation and had better
performance. In general, the comparison of four models
showed that PSO-SVM model based on slope units out-
performed SVM model based on grid units, SVM model
based on slope units, and PSO-SVM model based on grid
units.

Additionally, appropriate landslide conditioning fac-
tors for the study area can reduce the data redundant and
noise problem according to the geological environment
characteristic. )e conditioning factors through multi-
source were selected from spatial multisource data, in-
cluding geomorphological, geological, hydrological,
surface cover index, geophysical, and meteorological fac-
tors. )e CF method is applied to explore the susceptibility
between conditioning factors and landslides. )e results
clearly demonstrate that the residential areas, altitude,
distance to roads, rivers, and faults have positive effect on
landslide occurrence.

7. Conclusion

)e landslide susceptibility mapping is the preliminary
preparation for landslide forecasting and warning. )ere-
fore, it is very important for landslide prevention, prone area
management, and land use planning. In the present study,
the machine learning (SVM) model and intelligent evolu-
tionary optimization algorithm (PSO-SVM) model were
applied for landslide susceptibility mapping in Lueyang
County, Shaanxi Province, China. )e grid units and slope
units were considered as computing units for analysis and
comparison. A total of 16 landslide conditioning factors,
including altitude, slope angle, slope aspect, plan curvature,
profile curvature, SPI, TPI, TRI, lithology, distance to faults,
TWI, distance to rivers, NDVI, distance to roads, land use,
and rainfall, were selected to build the model. )e suscep-
tibility between landslides and conditioning factors was
calculated by CF method and removes the obvious relation
factors of TPI, TRI, and TWI. ROC curve was introduced to

Table 5: Confusion matrix of validation dataset.

Prediction
Accuracy (%) PPV (%) NPV (%)

P N

SVM (grid) P 48 8 83.04 85.71 80.36N 11 45

SVM (slope) P 49 7 90.17 87.50 92.86N 4 52

PSO-SVM (grid) P 50 6 86.61 89.29 83.93N 9 47

PSO-SVM (slope) P 54 2 93.75 96.43 91.07N 5 51

1.0

0.8

0.6

0.4

0.2

0.0

Se
ns

iti
vi

ty

0.0 0.2 0.4 0.6 0.8 1.0
1 - specificity

SVM (grid),
AUC = 0.8191
SVM (slope),
AUC = 0.8477

PSO-SVM (grid),
AUC = 0.9112
PSO-SVM (slope),
AUC = 0.945

(a)

1.0

0.8

0.6

0.4

0.2

0.0

Se
ns

iti
vi

ty

0.0 0.2 0.4 0.6 0.8 1.0
1 - specificity

SVM (grid),
AUC = 0.8335
SVM (slope),
AUC = 0.8849

PSO-SVM (grid),
AUC = 0.8418
PSO-SVM (slope),
AUC = 0.9254

(b)

Figure 7: ROC curves.
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evaluate the performance of two models and two mapping
units. )e results show that PSO-SVMmodel based on slope
units presented a higher accuracy in landslide susceptibility
mapping than the other three models (SVMmodel based on
grid units, SVM model based on slope units, and PSO-SVM
model based on grid units). )e usage of PSO in order to
seek the optimal parameters and slope units enhances the
relationship with natural terrain and geological environ-
ment. Nevertheless, the classification of landslide condi-
tioning factors was mainly based on the natural break
method andmight be not appropriate in this study. In future
studies, the effect of different classificationmethod should be
explored for landslide susceptibility assessment. Conclu-
sively, the PSO-SVM model based on slope units provides a
useful tool for landslide susceptibility mapping and can be
extended to other mountainous regions and mitigates
landslide hazard.
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