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In this paper, H∞ control for the uncertain switched nonlinear cascade systems with passive and nonpassive subsystems is
investigated. Based on the average dwell timemethod, for any given passivity rate, average dwell time, and disturbance attenuation
level, the feedback controllers of the subsystems by predetermined constants are designed to solve the exponential stability and
L2-gain problems of H∞ control for switched nonlinear cascade systems. Two examples are provided to demonstrate the ef-
fectiveness of the proposed design method.

1. Introduction

With the development of scientific computing technology,
the research on H∞ control problems of nonlinear systems
has been greatly promoted, and the results of nonlinear
control problems continue to emerge [1, 2]. However, these
methods usually bring a difficulty that needs to solve the
Hamilton–Jacobi equation.

*e passivity, from the electrical network, becomes an
extremely useful property in switched systems, and many
results about the passivity of switched systems have been
published [3–11]. Storage functions that characterize pas-
sivity can be used as Lyapunov functions to analyze stabi-
lization problems [3]. And the passivity is closely related to
the robust stability of systems under certain negative
feedback disturbances [6]. Recently, the storage function
method has been found to ensure a top limit of the mini-
mum dwell time to keep the passivity of linear systems [5].
For switched nonlinear systems, stability was inferred from
the passivity described by using multiple storage functions
[10]. *e necessary and sufficient conditions were obtained
for the local passivity of discrete-time switched nonlinear
systems which consisted of passive and nonpassive modes,
and the passivity of the affine system was studied [9]. Using
multiple barrier storage functions, sufficient conditions were

derived for guaranteeing the regional passivity of the
switched systems [8]. And literature [7] considered the
stability of switched nonlinear systems with feedback in-
crementally passive subsystems via the average dwell time
method.

With the systems becoming more complex in actual
problems, the robustness caused by external disturbance
becomes a source of trouble, and there are a few achieve-
ments on passivity of H∞ control problem of switched
systems [12–15]. *e stability of two types of passive H∞
control for discrete-time linear switched systems was con-
sidered by multiple storage functions [12, 13]. And com-
bining the piecewise Lyapunov function and the average
dwell time method, the literature [15] investigated the
disturbance of time-controlled switched systems consisting
of several linear time-invariant subsystems. *e H∞ control
of uncertain switched nonlinear systems with passivity was
researched, and this research avoided solving the Hamil-
ton–Jacobi inequality problem [14].

Complex nonlinear systems can be transformed into
cascaded systems through certain conditions, and the sta-
bility of the cascaded system is studied by the stability and
cascade properties of the subsystems [16]. *is not only
reduces the complexity of the controller but also reduces the
difficulty of stability analysis [17–20]. A natural question is
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how to study the stability of switching nonlinear cascade
robust H∞ control systems through passivity, and in this
paper, we will work to solve these problems.

In this paper, based on the method of average dwell time,
the robust H∞ control problem for a class of passive un-
certain cascade switched systems with passiveness is con-
sidered. For passive subsystems and nonpassive subsystems,
we design controllers and apply the multiple storage
functions method to solve the stability and L2-gain of the
nonlinear uncertain cascade switched system under the
given conditions. Finally, two numerical simulations are
illustrated to support our analytical results. Compared with
the method of existing nonlinear cascade switched systems’
H∞ control problem, the advantages are that we adopt the
parametric equationmethod to avoid the Lyapunov function
construction and the Hamilton–Jacobi equation solution,
which reduces the computational difficulty.

Notions:Rn is the n-dimensional real Euclidean space; T

denotes the matrix transposition; λmin Q1, Q2􏼈 􏼉 means the
smallest eigenvalue of the matrices Q1 and Q2, and
λmax Q1, Q2􏼈 􏼉 is the largest; ‖ · ‖ is the Euclidean norm of
vector; LfV(x) stands for LfV(x) � (zV(x)/zxT)f(x),
where f(x), V(x) ∈ C1[Rn,R]; and g(t) ∈ L2[0, +∞)

means 􏽒
∞
0 |g(t)|2dt<∞.

2. Problem Statement and Preliminaries

Consider the uncertain switched nonlinear cascade system
with the form

_z � pσ(t)(z,x) + qσ(t)(z,x)ω,

_x � fσ(t)(z,x) +Δfσ(t)(z,x) + gσ(t)(z,x)uσ(t) + cσ(t)(z,x)ω,

y � hσ(t)(z,x) + dσ(t)(z,x)ω,

(1)

where z ∈ Rn− m, x ∈ Rm, and X � (zT, xT), ω ∈ R is the
disturbance input and ω ∈ L2[0, +∞), uσ ∈ Rm is the control
input, and y ∈ Rp is the output, defining the right con-
tinuous function σ(t): R+⟶ l � 1, 2, . . . , l{ } is the
switching law. For ∀i ∈ l, pi(·, ·), fi(·, ·), gi(·, ·), and hi(·, ·)

are smooth functions of appropriate dimensions, qi(·, ·),
ci(·, ·), and di(·, ·) are bounded and smooth functions of
appropriate dimensions, and Δfi(·, ·) is uncertain nonlinear
functions of appropriate dimensions. Especially,
pi(0, 0) � 0, fi(0, 0) � 0, and hi(0, 0) � 0. In the ideal state,
the subsystem switching signal σ(t) is defined on the fol-
lowing switching sequence:

􏽘 � z
T
0 , x

T
0􏼐 􏼑

T
; t0, σ t0( 􏼁( 􏼁, t1, σ t1( 􏼁( 􏼁, t2, σ t2( 􏼁( 􏼁, . . . ,􏼚

tk, σ tk( 􏼁( 􏼁, k ∈ l 􏼛,

(2)

where t0 and (zT
0 , xT

0 )T are initial time and initial state,
respectively, (tk, σ(tk)) means that the ikth subsystem is
activated at t ∈ [tk, tk+1). Without loss of generality, we
assume t0 � 0. In order to better understand the switching
between subsystems, the block diagram of the switched
system (1) is shown in Figure 1.

Assumption 1 (see [21]). For z ∈ Rn− m, x ∈ Rm, the con-
stants a1, a2, a3 > 0, and μ≥ 1, there exist positive definite
functions Wi(z, x) ∈ C1, i ∈ I, such that the conditions

a1(‖z(t)‖ +‖x(t)‖)
2 ≤Wi(z, x)≤ a2(‖z(t)‖ +‖x(t)‖)

2
,

(3)

zWi(z, x)

zx

�������

�������
≤ a3‖x‖,

zWi(z, x)

zz

�������

�������
≤ a3‖z‖,

(4)

Wi(z, x)≤ μWj(z, x), μ> 0, i, j � 1, . . . , N, (5)

hold.
For the subsystems of the switched system (1), we classify

them into two groups: i ∈ Ip ⊂ l represents that the ith
closed-loop subsystem is passive; i ∈ In ⊂ l − Ip represents
nonpassive. *en, Ip and In satisfy Assumption 2.

Assumption 2. For i ∈ Ip,

Lfi
Vi(x)≤ 0,

Lpi
Ui(z)≤ 0,

Lgi
Vi(x) �

zVi(x)

zx
gi � h

T
i (z, x).

(6)

For i ∈ In, there exists a constant λ> 0 satisfying

Lfi
Vi(x) + Lpi

Ui(z)≤ λWi(z, x), (7)

where Uσ and Vσ are smooth functions of appropriate
dimensions.

Assumption 3 (see [6]). For uncertain function Δfi(z, x), it
satisfies the bound ‖Δfi(z, x)‖≤ ζ(t)(‖z‖ + ‖x‖), ∀i ∈ I,
where ζ(t) is a nonnegative function and satisfies
􏽒

t

t0
ζ(τ)dτ ≤ κ(t − t0) + η for nonnegative constants κ and η.

Definition 1 (see [22]). Let Nσ(τ, t) represent the number of
switchings of σ(t) in the interval (τ, t) for any switching
signal σ(t) and 0< τ < t. If

Nσ(τ, t)≤N0 +
t − τ
τa

(8)

Multiple way switch

Subsystem 1

Subsystem 2

Subsystem l

Control input

Switching signal

…

Figure 1: *e block diagram of the switched system.

2 Mathematical Problems in Engineering



holds for N0, τa > 0. *e constant τa is called average dwell
time, andN0 is the chatter bound.Without loss of generality,
we choose N0 � 0.

*e notion of average dwell time is often used for
identifying switching signals which have certain desirable
properties.

Definition 2 (see [23]). For any 0≤T1 <T2, let Tp[T1 ,T2]

denote the total time when the passive subsystems are active
on [T1, T2]. *en, the passivity rate of the switched system is
recorded as rp[T1 ,T2] � (Tp[T1 ,T2]/T2 − T1). Clearly,
0< rp[T1 ,T2]≤ 1.

In this paper, we will study the following robust H∞
control problem for system (1). For any constant c> 0,
define the control laws of each subsystems ui � ui(z, x) and
ui(0, 0) � 0, i � 1, . . . , l. Under the switching signal σ(t),
system (1) has the following properties [6, 19]:

(i) *e closed-loop system (1) with w(t) ≡ 0 is globally
robustly exponentially stable for all admissible
uncertainties.

(ii) *e closed-loop system (1) has a weighted L2-gain
level c for some real-valued function with β(z, x)

and β(0, 0) � 0, that is, there exist a constant λ> 0
and ω(t) ∈ L2[0,∞), such that

􏽚
∞

0
e

− λs
y

T
(s)y(s)ds≤ c

2
􏽚
∞

0
ωT

(s)ω(s)ds + β z0, x0( 􏼁,

(9)

holds.

Definition 3. In the nonlinear system,

_z � pσ(t)(z, x),

_x � fσ(t)(z, x),

y � hσ(t)(z, x),

(10)

for degree λ, it is exponentially small-time norm-observable
if there exist positive constants δ > 0 and c> 0, such that
when ‖y(t + s)‖≤ δ holds for t≥ t0 and 0< s≤ τ, τ > 0, ‖z(t +

τ)‖ + ‖x(t + τ)‖≤ ce− λτ(‖z(t)‖ + ‖x(t)‖) is established.

Remark 1. *e small-time norm-observability has been
proposed for ensuring the asymptotical stability of switched
systems [24]. In this paper, the exponential small-time norm-
observability with degree λ is exponential form, and it is used
to research global robust exponential stability of system (1).

Remark 2. A method is given to verify that system (10) is
exponentially small-time norm-observable. Assume that there
exist positive constants δ and λ and positive definite matrices Q1
and Q2, such that the following condition is satisfied:

2z
T
Q1p(z, x) + 2x

T
Q2f(z, x) +(δ + 2λ − ‖y(z, x)‖)

· z
T
Q1z + x

T
Q2x􏼐 􏼑≤ 0.

(11)

Let

W(t) � z
T

(t)Q1z(t) + x
T
(t)Q2x(t),

l1 � λmin Q1, Q2􏼈 􏼉,

l2 � λmax Q1, Q2􏼈 􏼉.

(12)

We can get

l1(‖z‖ +‖x‖)
2 ≤ z

T
Q1z + x

T
Q2x≤ l2(‖z‖ +‖x‖)

2
. (13)

From (11), the time derivative of W(t) along the tra-
jectory of system (10) is

dW(t)

dt
� 2z

T
Q1p(z, x) + 2x

T
Q2f(z, x)

≤ (‖y(z, x)‖ − δ − 2λ)W(t).

(14)

When ‖y(z, x)‖≤ δ holds for t ∈ [t∗, t∗ + τ) with length
τ, we obtain

dW(t)

dt
≤ − 2λW(t), t ∈ t

∗
, t
∗

+ τ􏼂 􏼃. (15)

By (13) and (15), using the differential inequality theory,
we obtain

W(t)≤ e
− 2λ t− t∗( )

W t
∗

( 􏼁. (16)

Hence,

l1(‖z(t)‖ +‖x(t)‖)
2 ≤ l2e

− 2λ t− t∗( )
z t
∗

( 􏼁
����

���� + x t
∗

( 􏼁
����

����􏼐 􏼑
2
,

t ∈ t
∗
, t
∗

+ τ􏼂 􏼃,

(17)

which means

‖z(t)‖ +‖x(t)‖ ≤ ce
− λ t− t∗( )

z t
∗

( 􏼁
����

���� + x t
∗

( 􏼁
����

����􏼐 􏼑,

c �

��
l2

l1

􏽳

, t ∈ t
∗
, t
∗

+ τ􏼂 􏼃.

(18)

According to Definition 3, system (10) is exponentially
small-time norm-observable.

Lemma 1. If system (10) is exponentially small-time norm-
observable with degree λ, for any k≥ 0, it has

(‖z(t + τ)‖ +‖x(t + τ)‖)
2 ≤ c1e

− 2(λ− k)τ
(‖z(t)‖ +‖x(t)‖)

2

− 􏽚
t+τ

t
e

− 2(λ− k)(t+τ− θ)

· ‖y(z(θ), x(θ))‖
2dθ,

(19)

where c1 � k0 + c2, t≥ t0, and τ > 0.

Proof. If system (10) is exponentially small-time norm-
observable with degree λ, there exists a constant k0 > 0, such
that
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‖y(z(s), x(s))‖
2 ≤

k0

τ
e

− 2λτ
(‖z(t)‖ +‖x(t)‖)

2
,

∀s ∈ [t, t + τ],

(20)

holds. By (20), we have

‖y(z(s), x(s))‖
2 ≤

k0

τ
e

− 2(λ− k)(s− t)
(‖z(t)‖ +‖x(t)‖)

2
,

∀s ∈ [t, t + τ],

(21)

namely,

τe
2s(λ− k))

(‖y(z(s), x(s))‖)
2 ≤ k0e

2t(λ− k)
(‖z(t)‖+‖x(t)‖)

2
,

∀s ∈ [t, t + τ].

(22)

Apply the integral mean value theorem to the above
formula, and there exists a constant s0, and t≤ s0 ≤ t + τ,
such as

􏽚
t+τ

t
e
2(λ− k)θ

‖y(z(θ),x(θ))‖
2dθ � τe

2(λ− k)s0 y z s0( 􏼁,x s0( 􏼁( 􏼁
����

����
2

≤k0e
2t(λ− k)

(‖z(t)‖ +‖x(t)‖)
2
.

(23)

*en,

− k0e
− 2τ(λ− k)

(‖z(t)‖ +‖x(t)‖)
2

≤ − 􏽚
t+τ

t
e

− 2(λ− k)(t+τ− θ)
‖y(z(θ), x(θ))‖

2dθ.
(24)

Because system (10) is exponentially small-time norm-
observable, if ‖y(t + s)‖≤ δ can be given with
t0 ≤ t, 0< τ, and 0< s≤ τ, we obtain

‖z(t)‖ +‖x(t)‖≤ ce
− λτ

z t
∗

( 􏼁
����

���� + x t
∗

( 􏼁
����

����􏼐 􏼑,

t ∈ t
∗
, t
∗

+ τ􏼂 􏼃,

c �

��
l2

l1

􏽳

,

(25)

which means

‖z(t + τ)‖ +‖x(t + τ)‖≤ ce
− λτ

(‖z(t)‖ +‖x(t)‖). (26)

*en,

(‖z(t + τ)‖ +‖x(t + τ)‖)
2≤c2e− 2λτ

(‖z(t)‖ +‖x(t)‖)
2
. (27)

*en, the sum of (24) and (27) is

(‖z(t + τ)‖ +‖x(t + τ)‖)
2 ≤ c1e

− 2(λ− k)τ
(‖z(t)‖ +‖x(t)‖)

2

− 􏽚
t+τ

t
e

− 2(λ− k)(t+τ− θ)

· ‖y(z(θ), x(θ))‖
2dθ,

(28)
where c1 � k0 + c2. □

3. Main Results

In this section, we will discuss system (1) in two parts. Part I:
when ω ≡ 0, we will analyze the globally robustly expo-
nentially stable of system (1) for all admissible uncertainties.
Part II: when ω≠ 0, the weighted L2-gain level will be
researched.

3.1. Part I: :e Stability Analysis of ω ≡ 0

Theorem 1. Under the conditions of Assumptions 1 and 2, let
the positive constants τa and r be any given average dwell time
and passivity rate, respectively. For all admissible uncer-
tainties, system (1) with ui � 0 is assumed to be exponentially
small-time norm-observable with the positive constants λ, c,
and δ satisfying λ≥ (1/2)(λ∗ − (a3κ/a1)), ξ � e(a3η/a1), and
c≤

�������
(a1/a2)ξ

􏽰
, where

λ∗ �
λ1
r

+
λ
r

+
ln μξ
rτa

+
a3κ
ra1

− λ, (29)

for a constant λ> 0. Design the controllers

ui(x) �
− ki Wi(z, x), τa, r( 􏼁 Lgi

Vi(x)􏼐 􏼑
T
, i ∈ Ip,

0, i ∈ In,

⎧⎨

⎩

(30)

where

ki Wi(z, x), τa, r( 􏼁

�
λ∗ Lgi

Vi(x)
�����

�����
2

􏼒 􏼓
− 1

Wi(z, x), Lgi
Vi(x)

�����

�����> δ,

0, Lgi
Vi(x)

�����

�����≤ δ.

⎧⎪⎪⎨

⎪⎪⎩

(31)

*en, the switched system (1) with w ≡ 0 is globally
robustly exponentially stable under any switching signals
with the average dwell time τa and passivity rate rp[T1 ,T2]≥ r.

Proof. Let

Wσ(z(t), x(t)) � Uσ(z(t)) + Vσ(x(t)), (32)

where Uσ and Vσ are smooth functions of appropriate
dimensions.

For i ∈ Ip, we make the set Si � t: ‖Lgi
Vi(x(t))‖ ≤ δ􏽮 􏽯.

*en, we divide the proof into two cases: one is Si � ∅, and
the other is Si ≠∅. □

Case 1: Si � ∅.
Assume that the ith subsystem is active. For ω ≡ 0, the

time derivative of Wi(z, x) along the trajectory of the
switched system (1) is

zWi(z(t), x(t))

zt
�

zUi(z)

zz
pi +

zVi(x)

zx
fi + Δfi + giui( 􏼁.

(33)
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Substituting controller (30) into (33), from (3), (4), and
(7), for i ∈ Ip, we obtain that

zWi(z(t), x(t))

zt
≤ Lpi

Ui(z) + Lfi
Vi(x) +

a3

a1
Wi(z, x)ζ(t)

−
zVi(x)

zx

giλ
∗
Wi(z, x) Lgi

Vi(x)􏼐 􏼑
T

Lgi
Vi(x)

�����

�����
2

≤
a3

a1
Wi(z, x)ζ(t) − λ∗Wi(z, x)

� − λ∗ −
a3

a1
ζ(t)􏼠 􏼡Wi(z, x),

(34)

where (zVi(x)/zx)Δfi ≤ a3Δfi‖x‖≤ a3Δfi(‖x‖+ ‖z‖)≤ a3ζ
(t)(‖x‖ + ‖z‖)2 ≤ (a3/a1)Wi(z, x)ζ(t).

Similarly, for i ∈ In, it follows from (3), (4), and (6) that

zWi(z(t), x(t))

zt
≤ λWi(z, x) +

a3

a1
Wi(z, x)ζ(t)

� λ +
a3

a1
ζ(t)􏼠 􏼡Wi(z, x).

(35)

For t ∈ [tk, tk+1), we apply the integral of (34) and (35)
that

Wik
(z(t),x(t))≤ 􏽥ϕik

t, tk( 􏼁Wik
z tk( 􏼁,x tk( 􏼁( 􏼁, t ∈ tk, tk+1􏼂 􏼁,

(36)

where 􏽥ϕik
(t, tk) �

e
− λ∗(t− tk)+(a3/a1) 􏽒

t

tk

ζ(τ)dτ
, ik ∈ Ip

e
λ(t− tk)+(a3/a1) 􏽒

t

tk

ζ(τ)dτ
, ik ∈ In.

⎧⎪⎪⎨

⎪⎪⎩
,

Define

ϕik
t, tk( 􏼁 ≔

ξe
− a∗ t− tk( ), ik ∈ Ip,

ξe
a t− tk( ), ik ∈ In,

⎧⎪⎪⎨

⎪⎪⎩
(37)

where ϕik
(t, tk): �

ξe
− a∗(t− tk)

, ik ∈ Ip,

ξe
a(t− tk)

, ik ∈ In.
􏼨 From Assump-

tion 3, then

Wik
(z(t), x(t))≤ ϕik t, tk( 􏼁Wik

z tk( 􏼁, x tk( 􏼁( 􏼁,

t ∈ tk, tk+1􏼂 􏼁.
(38)

Choose the piecewise function:

W(z(t), x(t)) � Wik
(z(t), x(t)), (39)

where W(z(t0)x(t0)) � Wi0
(z(t0), x(t0)).

On the contrary, ϕik
(t, τ)ϕik− 1

(τ, s) � ξϕik− 1
(t, s), for

t ∈ [tk, tk+1), and we obtain

W(z(t),x(t)) � Wik(z(t),x(t))

≤ϕik
t, tk( 􏼁Wik

z tk( 􏼁,x tk( 􏼁( 􏼁

≤ϕik
t, tk( 􏼁μWik− 1

z tk( 􏼁,x tk( 􏼁( 􏼁

≤ϕik
t, tk( 􏼁μϕik− 1

tk, tk− 1( 􏼁Wik− 1
z tk− 1( 􏼁,x tk− 1( 􏼁( 􏼁

. . .

≤ϕik
t, tk( 􏼁, . . . ,ϕi0

t1, t0( 􏼁Wi0
z t0( 􏼁,x t0( 􏼁( 􏼁

� ξkϕ t, t0( 􏼁μk
Wi0

z t0( 􏼁,x t0( 􏼁( 􏼁

� ξe
N0− t− t0( )/τa( )lnμξ− a∗Tp t0 ,t[ ]+aTn t0 ,t[ ]

· W z t0( 􏼁,x t0( 􏼁( 􏼁.

(40)

From λ∗ � (λ1/r) + (λ/r) + (ln μξ/rτa) + (a3κ/ra1) − λ,
we have λ1 � λ∗r − λ − (ln μξ/τa) − (a3κ/a1) + λr; then,

N0 +
t − t0

τa

􏼠 􏼡ln μξ − a
∗
Tp t0,t[ ] + aTn t0 ,t[ ] � N0 ln μξ − λ1 t − t0( 􏼁.

(41)

Taking (41) into (40), we obtain

W(z(t), x(t))≤ ξN0+1μN0e
− λ1 t− t0( )W z t0( 􏼁, x t0( 􏼁( 􏼁.

(42)

From (3), we get that

a1(‖z(t)‖ +‖x(t)‖)
2 ≤ ξN0+1μN0a2e

− λ1 t− t0( ) z t0( 􏼁
����

���� + x t0( 􏼁
����

����􏼐 􏼑
2
,

(43)

which means

‖z(t)‖ +‖x(t)‖≤
���������
a2

a1
ξN0+1μN0

􏽲

e
− λ1/2( ) t− t0( ) z t0( 􏼁

����
���� + x t0( 􏼁

����
����􏼐 􏼑.

(44)

Case 2: Si ≠∅.
In the case, for i ∈ Ip, we suppose that

t: ‖Lgi
Vi(x(t))‖≤ δ􏽮 􏽯 � [ti1

, ti1
′]∪ [ti2

, ti2
′]∪ · · · ⊂ [t0, t].

From Definition 3, we have ‖z(t + τ)‖ + ‖x(t + τ)‖≤
ce− λτ(‖z(t)‖ + ‖x(t)‖). *en,

z tik
′􏼐 􏼑

�����

����� + x tik
′􏼐 􏼑

�����

�����≤ce
− λ tik
′ − tik􏼐 􏼑

z tik( 􏼁
����

���� + x tik( 􏼁
����

����􏼐 􏼑

≤

���
a1ξ
a2

􏽳

e
− a∗/2( ) tik

′ − tik􏼐 􏼑
z tik( 􏼁

����
���� + x tik( 􏼁

����
����􏼐 􏼑.

(45)

From (3), we obtain

Wik z tik
′􏼐 􏼑, x tik
′􏼐 􏼑􏼐 􏼑≤ ξe

− a∗ tik
′− tik􏼐 􏼑

Wik z tik( 􏼁, x tik( 􏼁( 􏼁.

(46)
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Similar to Case 1, we can achieve

‖z(t)‖ +‖x(t)‖≤
���������
a2

a1
ξN0+1μN0

􏽲

e
− λ1/2( ) t− t0( )

· z t0( 􏼁
����

���� + x t0( 􏼁
����

����􏼐 􏼑.

(47)

*erefore, the closed-loop switched system (1) is ex-
ponential stability for all admissible uncertainties. *is
completes the proof.

3.2. Part II::e L2-Gain Analysis of ω≠ 0. In this section, we
investigate the H∞ performance analysis of system (1) by the
L2-gain c.

Theorem 2. Assume the positive constants τ, r, and c are
average dwell time, passivity rate, and disturbance attenu-
ation level, respectively. Uσ , Vσ , and Wσ still satisfy (3)–(7).
For all admissible uncertainties and disturbance inputs, as-
sume the passive subsystems are exponentially small-time
norm-observability with positive constants λ, c, δ, k0, and k.
All of these satisfy k � λ− (1/2)(λ∗ − (a3κ/a1)

− (a2
3ρ

2/4a1c
2)) and a2c

2 ≤ (a1 − k0)e
(a3η/a1). :en, we design

the controllers:

ui(x) �
− ki Wi(z, x), τa, r, c( 􏼁 Lgi

Vi(x)􏼐 􏼑
T
, i ∈ Ip,

− Lgi
Vi(x)􏼐 􏼑

T
, i ∈ In,

⎧⎪⎨

⎪⎩

(48)

where

ki Wi(z, x), τa, r, c( 􏼁 �

λ∗Wi(z, x) + yiy
T
i

Lgi
Vi(x)

�����

�����
2 , Lgi

Vi(x)
�����

�����> δ,

0, Lgi
Vi(x)

�����

�����≤ δ,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(49)

and λ∗ is given by :eorem 1 with λ1 � λ2 + (a2
3ρ2/4a1c

2)

and λ2 > 0. :en, the switched system (1) achieves a weighted
L2-gain from ω to y for all admissible uncertainties.

Proof. On the basis of *eorem 1, the time derivative of
Wi(z, x) along the trajectory of switched system (1) is

zWi(z(t), x(t))

zt
�

zUi(z)

zz
pi + qiω( 􏼁 +

zVi(x)

zx

· fi + Δfi + giui + ciω( 􏼁.

(50)

When i ∈ Ip, Si � ∅, similarly the proof of *eorem 1,
we have

zWi(z(t), x(t))

zt
≤ − λ∗ −

a3ξ
a1

􏼠 􏼡Wi(z, x) +
zUi(z)

zz
qiω +

zVi(x)

zx
ciω − y

T
i yi

≤ − λ∗ −
a3

a1
ζ(t)􏼠 􏼡Wi(z, x) + a3‖z‖qi + a3‖x‖ci( 􏼁‖ω‖ − y

T
i yi

≤ − λ∗ −
a3

a1
ζ(t)􏼠 􏼡Wi(z, x) +

a
2
3ρ

2

4c
2 (‖z‖ +‖x‖)

2
+ c

2
‖ω‖

2
− y

T
i yi

≤ − λ∗ −
a3

a1
ζ(t) −

a
2
3ρ

2

4a1c
2􏼠 􏼡Wi(z, x) + c

2ωT
(t)ω(t) − y

T
i yi,

(51)

where ρ � max qi, ci􏼈 􏼉. When i ∈ Ip, Si ≠∅, on the interval [tik
, tik
′], we have

z tik
′􏼐 􏼑 + ‖x tik

′􏼐 􏼑
�����

�����􏼒 􏼓
2
≤ c1e

− 2(λ− k) tik
′ − tik

􏼐 􏼑
z tik

􏼐 􏼑
�����

����� + x tik
􏼐 􏼑

�����

�����􏼒 􏼓
2

−
ξ
a2

􏽚
tik
′

tik

e
− 2(λ− k) tik

′ − θ􏼐 􏼑
y

T
i yidθ.

(52)
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From (3), we obtain

Wik
z tik
′􏼐 􏼑, x tik
′􏼐 􏼑􏼐 􏼑

≤ c
2
a2 + ξk0􏼐 􏼑e

− 2(λ− k) tik
′ − tik

􏼐 􏼑
z tik

􏼐 􏼑
�����

����� + x tik
􏼐 􏼑

�����

�����􏼒 􏼓
2

− 􏽚
tik
′

tik

ξe
− 2(λ− k) tik

′ − θ􏼐 􏼑
y

T
ik

yik
dθ

≤
c
2
a2 + ξk0

a1
e

− 2(λ− k) tik
′ − tik

􏼐 􏼑
Wik

z tik
􏼐 􏼑x tik

􏼐 􏼑􏼐 􏼑 − 􏽚
tik
′

tik

ξe
− 2(λ− k) tik

′ − θ􏼐 􏼑
y

T
ik

yik
dθ.

(53)

Due to k � λ − (1/2)(λ∗ − (a3κ/a1) − (a2
3ρ

2/4a1c
2)), we

get λ − k � (1/2)(λ∗ − (a3κ/a1) − (a2
3ρ

2/4a1c
2)) � (1/2)a∗−

(a2
3ρ

2/4a1c
2). Substituting λ − k into (53), we know

Wik
z tik
′􏼐 􏼑, x tik
′􏼐 􏼑􏼐 􏼑≤

c
2
a2 + ξk0

a1
e

− a∗− a2
3ρ

2/4a1c2( )( ) tik
′ − tik

􏼐 􏼑
Wik

z tik
􏼐 􏼑, x tik

􏼐 􏼑􏼐 􏼑

+ 􏽚
tik

tik
′

ξe
− a∗− a2

3ρ
2/4a1c2( )( ) tik

′ − θ􏼐 􏼑
c
2ω2

(θ) − y
T
ik

yik
􏼐 􏼑dθ.

(54)

For a2c
2 ≤ (a1 − k0)e

(a3η/a1) � (a1 − k0)ξ � a1ξ − k0ξ,
which means (c2a2 + ξk0/a1)≤ ξ; then,

Wik
z tik
′􏼐 􏼑, x tik
′􏼐 􏼑􏼐 􏼑≤ ξe

− a∗ − a2
3ρ

2/4a1c2( )( ) tik
′ − tik

􏼐 􏼑
Wik

z tik
􏼐 􏼑, x tik

􏼐 􏼑􏼐 􏼑

+ 􏽚
tik

tik
′

ξe
− a∗− a2

3ρ
2/4a1c2( )( ) tik

′ − θ􏼐 􏼑
c
2ω2

(θ) − y
T
ik

yik
􏼐 􏼑dθ.

(55)

Similarly, when i ∈ In,

zWi(z(t), x(t))

zt
≤ λ +

a3ξ
a1

􏼠 􏼡Wi(z, x) +
zUi(z)

zz
qiω +

zVi(x)

zx
ciω − y

T
i yi

≤ λ +
a3

a1
ζ(t) +

a
2
3ρ

2

4a1c
2􏼠 􏼡Wi(z, x) + c

2ωT
(t)ω(t) − y

T
i yi.

(56)

Let 􏽥a∗ � a∗ − (a2
3ρ

2/4a1c
2), 􏽥a � a + (a2

3ρ
2/4a1c

2),

and Γi(t) � c2ωT(t)ω(t) − yT
i yi, where a∗ � λ∗ − (a3κ/a1),

a � λ + (a3κ/a1), and ξ � e(a3η/a1) 􏽒
t

t0
ζ(τ)dτ ≤ κ(t − t0) + η.

For (51), (55), and (56), the differential equation theory and
the constant variable formula are used, respectively. When
i ∈ Ip and Si � ∅,
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Wik
(z(t), x(t))≤ e

􏽒
t

tk

− λ∗ − a3/a1( )ζ(t)− a2
3ρ

2/4a1c2( )( )ds

· Wik
z tk( 􏼁, x tk( 􏼁( 􏼁 + 􏽚

t

tk

Γik(τ)e
− 􏽒

τ

tk

− λ∗− a3/a1( )ζ(s)− a2
3ρ

2/4a1c2( )( )ds
dτ􏼢 􏼣

≤ ξe
− 􏽥a
∗

t− tk( )Wik
z tk( 􏼁, x tk( 􏼁( 􏼁 + 􏽚

t

tk

e
− λ∗ − a3/a1( )ζ(t)− a2

3ρ
2/4a1c2( )( )(t− τ)+ a3/a1( )ηΓik(τ)dτ

≤ ξe
− 􏽥a∗ t− tk( )Wik

z tk( 􏼁, x tk( 􏼁( 􏼁 + 􏽚
t

tk

ξe
− 􏽥a∗(t− τ)Γik(τ)dτ.

(57)

When i ∈ Ip and Si ≠∅,

Wik
z(t), x tk( 􏼁( 􏼁≤ ξe

− 􏽥a
∗

t− tk( )Wik
tk( 􏼁 + 􏽚

t

tk

ξe
− 􏽥a
∗
(t− τ)Γik(τ)dτ.

(58)

And when i ∈ In,

Wik
(z(t), x(t))≤ e

􏽒
t

tk

λ+ a3/a1( )ζ(t)+ a2
3ρ

2/4a1c2( )( )ds

· Wik
z tk( 􏼁, x tk( 􏼁( 􏼁 + 􏽚

t

tk

Γik(τ)e
− 􏽒

τ

tk

λ+ a3/a1( )ζ(t)+ a2
3ρ

2/4a1c2( )( )ds
dτ􏼢 􏼣

≤ ξe
􏽥a t− tk( )Wik

z tk( 􏼁, x tk( 􏼁( 􏼁 + 􏽚
t

tk

e
λ+ a3/a1( )ζ(t)+ a2

3ρ
2/4a1c2( )( )(t− τ)+ a3/a1( )ηΓik(τ)dτ

≤ ξe
􏽥a t− tk( )Wik

z tk( 􏼁, x tk( 􏼁( 􏼁 + 􏽚
t

tk

ξe
􏽥a(t− τ)Γik(τ)dτ,

(59)

where

e
􏽚

t

tk

− λ∗ − a3/a1( 􏼁ζ(t) − a
2
3ρ

2/4a1c
2

􏼐 􏼑􏼐 􏼑ds
􏽚

t

tk

Γik(τ)e
− 􏽒

τ

tk

− λ∗ − a3/a1( )ζ(s)− a2
3ρ

2/4a1c2( )( )ds
dτ

� 􏽚
t

tk

Γik(τ)e
􏽚

t

τ
− λ∗ − a3/a1( 􏼁ζ(s) − a

2
3ρ

2/4a1c
2

􏼐 􏼑􏼐 􏼑ds
dτ

≤ 􏽚
t

tk

Γik(τ)e
− λ∗− a3κ/a1( )− a2

3ρ
2/4a1c2( )( )(t− τ)+ a3/a1( )ηdτ

� 􏽚
t

tk

ξe
− 􏽥a∗(t− τ)Γik(τ)dτ.

(60)

Combining (57)–(59), we obtain

Wik
(z(t), x(t))≤ψ t, tk( 􏼁Wik

z tk( 􏼁, x tk( 􏼁( 􏼁 + 􏽚
t

tk

ψik
(t, τ) Γik(τ)dτ, t ∈ tk, tk+1􏼂 􏼁, (61)
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where ψik
(t, τ) �

ξe
− 􏽥a
∗
(t− τ)

, ik ∈ Ip

ξe
􏽥a(t− τ)

, ik ∈ In

⎧⎨

⎩ . Define the piece-

wise function W(z(t), x(t)) � Wik
(z(t), x(t)) and t ∈

[tk, tk+1). When the time t satisfies
t0 < t1 < · · · < tn < t< tn+1 < · · ·, by the property
ψik

(t, τ)ψik− 1
(τ, s) � ξψik− 1

(t, s), i ∈ I, and from (61), we have

W(t) � Wik(z(t), x(t))

≤ψik
t, tk( 􏼁Wik

z tk( 􏼁, x tk( 􏼁( 􏼁 + 􏽚
t

tk

ψik
(t, τ)Γik(τ)dτ

≤ψik
t, tk( 􏼁μWik− 1

z tk( 􏼁, x tk( 􏼁( 􏼁 + 􏽚
t

tk

ψik
(t, τ)Γik(τ)dτ ≤ψik

t, tk( 􏼁μ

≤ ψik− 1
tk, tk− 1( 􏼁Wik− 1

z tk− 1( 􏼁, x tk− 1( 􏼁( 􏼁 + 􏽚
tk

tk− 1

ψik− 1
tk, τ( 􏼁Γik− 1

(τ)dτ􏼢 􏼣 + 􏽚
t

tk

ψik
(t, τ)Γik(τ)dτ

. . .

≤ψik
t, tk( 􏼁, . . . ,ψi0

t1, t0( 􏼁Wi0
z t0( 􏼁, x t0( 􏼁( 􏼁μk

+ ψik
t, tk( 􏼁, . . . ,ψi1

t2, t1( 􏼁μk
􏽚

t1

t0

ψi0
t1, τ( 􏼁Γi0(τ)dτ

+ · · · + ψik
t, tk( 􏼁μ􏽚

tk

tk− 1

ψik− 1
tk, τ( 􏼁Γik− 1

(τ)dτ + 􏽚
t

tk

ψik
(t, τ)Γik(τ)dτ

� ψik
t, tk( 􏼁, . . . ,ψi0

t1, t0( 􏼁Wi0
z t0( 􏼁, x t0( 􏼁( 􏼁μk

+ 􏽘
k

n�1
􏽚

tn

tn− 1

ξk− n+1μk− n+1ψin− 1
(t, τ)Γin− 1

(τ)dτ + 􏽚
t

tk

ψik
(t, τ)Γik(τ)dτ

≤ ξk+1μk
e

− 􏽥a
∗
Tp t0 ,t[ ]+􏽥aTn t0 ,t[ ]W z t0( 􏼁, x t0( 􏼁( 􏼁 + ξ 􏽚

t

t0

(μξ)
Nσ(τ,t)

e
− 􏽥a
∗
Tp[τ,t]+􏽥aTn[τ,t]Γ(τ)dτ.

(62)

Due to λ1 � λ2 + (a2
3ρ2/4a1c

2), we have − 􏽥a∗Tp[t0, ,t]
+

􏽥aTn[t0 ,t] � (− λ2 − (ln μξ/τa))(t − t0).
*en,

0≤ ξkμk
e

− λ2− ln μξ/τa( )( ) t− t0( )W z t0( 􏼁, x t0( 􏼁( 􏼁

+ 􏽚
t

t0

(μξ)
Nσ(τ,t)

e
− λ2− ln μξ/τa( )( )(t− τ)Γ(τ)dτ,

(63)

which means

0≤ e
− λ2− ln μξ/τa( )( ) t− t0( )+Nδ t,t0( )ln(μξ)

W z t0( 􏼁, x t0( 􏼁( 􏼁

+ 􏽚
t

t0

e
− λ2− ln μξ/τa( )( )(t− τ)+Nδ(t,τ)ln(μξ)Γ(τ)dτ.

(64)

We multiply both sides of the above formula by
e− Nσ(t0 ,t) ln μξ :

0≤ e
− λ2− ln μξ/τa( )( ) t− t0( )W z t0( 􏼁, x t0( 􏼁( 􏼁

+ 􏽚
t

t0

e
− λ2− ln μξ/τa( )( )(t− τ)+Nδ t0 ,τ( )ln(μξ)Γ(τ)dτ.

(65)

Obviously, − Nδ(t0, τ)≤ 0, ξ > 1, μ> 1, then e− Nδ(t0 ,τ)ln(μξ)

≤ 1, and putting Γ(τ), Nδ(t0, τ) � (τ − t0/τa) into (65), we
obtain

􏽚
t

t0

e
− λ2− ln μξ/τa( )( )(t− τ)− ln μξ/τa( ) τ− t0( )y

T
(τ)y(τ)dτ

≤ c
2

􏽚
t

t0

e
− λ2− ln μξ/τa( )( )(t− τ)ωT

(τ)ω(τ)dτ + e
− λ2− ln μξ/τa( )( ) t− t0( )W z t0( 􏼁, x t0( 􏼁( 􏼁.

(66)
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For the trivial case of μ � 1 and ξ � 1, we obtain

􏽚
∞

t0

y
T
(τ)y(τ)dτ ≤ c

2
􏽚
∞

t0

ωT
(τ)ω(τ)dτ + W z t0( 􏼁, x t0( 􏼁( 􏼁.

(67)

Next, we consider the nontrivial case of μ> 1. Rear-
ranging the double-integral area leads

􏽚
+∞

t0

e
− ln μξ/τa( ) τ− t0( )y

T
(τ)y(τ)dτ

≤ c
2

􏽚
+∞

t0

ωT
(τ)ω(τ)dτ + W z t0( 􏼁, x t0( 􏼁( 􏼁.

(68)

Hence, the switched system (1) achieves a weighted
L2-gain from ω to y for all admissible uncertainties. *is
completes the proof. □

Remark 3. Under zero initial condition, we have
W(0, 0) � 0, and from (68), we can get the weighted L2-gain
level c2 � 􏽒

+∞
0 e− (ln μξ/τa)(τ− t0)yT(τ)y(τ)dτ/ 􏽒

+∞
0 ωT(τ)ω

(τ)dτ. *e smaller the weighted L2-gain level c is, the better
the performance of robust H∞ control of system (1) is [25,
26].

Remark 4. *e system in [19] is similar to system (1) in this
paper, and it needs to satisfy these conditions in [19]: (i)
c2 − c2

3 − c2
d > 0; (ii) for unbounded positive definite dif-

ferentiable functions Vi(x1), i � 1, . . . , N, constants c1 > 0
and λ0 > 0, such that (zVi/zx1)f1,i(x1, 0)+ (1/4c2

1)(zVi/
zx1)ci(x1,0)cT

i (x1,0)(zVT
i /zx1)+hT

i (x1,0)hi(x1,0)+λ0Vi≤0
holds. In our paper, we just need c>0, and the positive
definite differentiable functions Wi do not need to satisfy
condition (ii). So, this paper gets less conservative.

4. Numerical Example

In this section, we give two examples to demonstrate the
effectiveness of the proposed method.

Example 1. Consider a switched continuous stirred tank
reactor system with two modes feed stream [27, 28]:

_ξ1 �
Fσ(t)

V
ξ1,in,σ(t) − ξ1􏼐 􏼑 + Kσ(t)φσ(t) ξ1, ξ2( 􏼁 − d(t),

_ξ2 �
Fσ(t)

V
ξ2,in,σ(t) − ξ2􏼐 􏼑 − ΔHσ(t) ξ1, ξ2( 􏼁φσ(t) ξ1, ξ2( 􏼁

+ c ξ2c − ξ2( 􏼁 + d(t).

(69)

In this paper, we ignore the influence of temperature on
reaction speed, and only consider the disturbance d(t) on
the concentration. And the physical meaning of the pa-
rameters in system (69) can be found in [28].

*e control objective is to make the temperature to some
constant reference ξ∗1 and ξ

∗
2 . And u∗k � cξ∗2c is a steady-state

control corresponding to the temperature set points
ξ∗1 and ξ

∗
2 . Let z � ξ1 − ξ∗1 , x � ξ2 − ξ∗2 , uk � c(ξ2c − ξ∗2c).

System (69) can be expressed in the form with equilibrium
point at the origin:

_z � f1σ(z, x) + d(t),

_x � f2σ(z, x) + Δf2σ(z, x) + uσ + d(t),
(70)

where f1σ � (Fσ/V)(ξ1,in,σ − ξ∗1 − z) + Kσφσ(z + ξ∗1 , x + ξ∗2 ),

f2σ � (Fσ/V)(ξ2,in,σ − ξ∗2 − x) + c(ξ∗2c − ξ∗2 − x) and Δf2σ �

− ΔHσ (z + ξ∗1 , x + ξ∗2 )φσ(z + ξ∗1 , x + ξ∗2 ).
*en, let the steady-state point ξ∗2 � ξ∗2c � 0K, ξ∗1 �

1mol/L, and parameters for the simulation F1 � 4L/s,
c � K1 � 1, ξ2in1 � ξ2in2 � 0K, V � 1L, ξ1in1 � ξ1in2 � 1mol/
L,ΔH1 � ΔH2 � − 0.5, F2 � 1 L/s, K2 � 2,φ1 � ze− x, φ2 �

(z + x)e− 2x, and d(t) � ω(t). And defining the output
y � 2x, we get two subsystems as follows:

_z � − 4z + ze
− x

+ ω(t),

_x � − 5x + 0.5ze
− x

+ u1 + ω(t),

y � 2x,

⎧⎪⎪⎨

⎪⎪⎩
(71)

_z � − z + 2(z + x)e
− 2x

+ ω(t),

_x � − 2x + 0.5(z + x)e
− 2x

+ u2 + ω(t),

y � 2x,

⎧⎪⎪⎨

⎪⎪⎩
(72)

where ui, i � 1, 2, are controllers and θi, i � 1, 2, are un-
known constants.

It is not difficult to know that ‖Δf1(t, x)‖≤ 0.5‖z‖ and
‖Δf2(t, x)‖≤ 0.5(‖z‖ + ‖x‖). So, 􏽒

t

t0
ζ(τ)dτ ≤ 􏽒

t

t0
0.5dτ ≤

κ(t − t0) + η, where κ � 1 and η � 0.5.
Let W1 � z2 + 0.5x2 and W2 � z2 + x2. For system (71),

Lp1
U1(z) �

zU1

zz
p1 � 2z × − z + ze

− x
( 􏼁 � − 2z

2
+ z

2
e

− x ≤ 0,

Lf1
V1(x) �

zV1

zx
f1 � 2x ×(− 5x) � − 10x

2 ≤ 0,

Lg1
V1(x) � 2x.

(73)

For system (72),

Lp2
U2(z) � 2z × − z + 2(z + x)e

− 2x
􏼐 􏼑

� − 2z
2

+ 4z(z + x)e
− 2x

,

Lf2
V2(x) � 2x × − x � − 4x

2
,

Lg2
V2(x) � 2x.

(74)

*en,

Lp2
U2(z) + Lf2

V2(x) � − 2z
2

+ 4z(z + x)e
− 2x

− 4x
2

≤ 2z
2

+ 4zx − 4x
2 ≤ 3z

2 ≤ 3W2(z, x).

(75)

It is easy to verify that system (71) is passive and system
(72) is nonpassive.

A simple calculation shows that a1 � 0.5, a2 � 2, a3 � 2,
μ � 2, ρ � 1, and λ � 2. In addition, we acquire that c � 3 and
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ξ � e(a3η/a1). Let the average dwell time τa � 2, the passivity
rate r � 1, the disturbance attenuation level c � 2, and
λ2 � 1.2. *en, λ1 � λ2 + (a2

3ρ2/4a1c
2) � 1.7000, λ∗ �

(λ1/r) + (λ/r) + (ln(μξ)/rτa) + (a3κ/ra1) − λ � 7.0466, λ �

10(λ∗ − (a3κ/a1)) � 30.4657, and λ − cκ − (1/2)(λ∗−
(a3κ/a1) − (a2

3/4a1c
2)) � 26.9424> 0. According to *eo-

rem 1, when ω(t) ≡ 0, we construct the controllers

ui �

− 14.0932 z
2

+ 0.5x
2

􏼐 􏼑x

‖2x‖
2 , i ∈ Ip, ‖2x‖> 0.1,

0, i ∈ Ip, ‖2x‖≤ 0.1,

0, i ∈ In.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(76)

Figure 2 gives the control input of systems (71) and (72)
and the switching signal σ(t). Figure 3 is the simulation
result with the initial states z(1) � 2 and x(1) � 1.

When ω(t) � e− t, we construct the controllers

n∗ ui �

− 14.0932 z
2

+ 0.5x
2

􏼐 􏼑 − 8x
2

􏽨 􏽩x

‖2x‖
2 , i ∈ Ip, ‖2x‖> 0.1,

0, i ∈ Ip, ‖2x‖≤ 0.1,

− 2x, i ∈ In.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(77)

From Remark 3, we define the function

c
2
(s) �

􏽒
s

0 e
− ln μξ/τa( ) τ− t0( )y

T
(τ)y(τ)dτ

􏽒
s

0 ω
T
(τ)ω(τ)dτ

. (78)

In this example, we can get c2(s) �

􏽒
s

0 e− 26.9315yT(τ)y(τ)dτ/􏽒
s

0 ω
T(τ)ω(τ)dτ. Figure 4 gives the

L2-gain level with the initial states z(1) � 0 and x(1) � 0.
And we can easily see the L2-gain less than c � 2.

Example 2. Consider the uncertain switched nonlinear
cascade systems with two systems:

z1
.

� − 3z1 − z2x1,

z2
.

� − z2 + 5z1x1,

x1
.

� − x1 − z1x2 + θ1x1 − u1,

x2
.

� − 2x2 + 0.3z1x1 + θ1x2 − 3u1,

y � − 6x1 − 6x2,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(79)

z1
.

� z1 − 0.2z2x1,

z2
.

� z2 + 2z1x1,

x1
.

� x1 + z1x2 + θ2x1 + 0.1u2 + sin x
2
1􏼐 􏼑ω,

x2
.

� x2 − z1x1 + θ2x2 − 0.1u2 + sin x
2
2􏼐 􏼑ω,

y � 2x1 + 2x2 + ω,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(80)

where θ1 � − 0.48 and θ2 � − 0.06 are generated constants by
random numbers.

Let W1 � 0.5z2
1 +0.1z2

2 +3x2
1 + x2

2, and W2 � z2
1 +0.1z2

2+

x2
1 + x2

2. For system (79),
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Figure 2: *e control input u and the switching signal σ(t).
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Lp1
U1(z) � z1 0.2z2( 􏼁

− 3z1 − z2x1

− z2 +5z1x1
􏼠 􏼡 � − 3z

2
1 − 0.2x

2
2≤0,

Lf1
V1(x) � 6x1 2x2( 􏼁

− x1 − z1x2

− 2x2 +0.3z1x1
􏼠 􏼡 � − 6x

2
1 − 4x

2
2≤0,

Lg1
V1(x) � − 6x1 − 6x2.

(81)

For system (80),

Lp2
U2(z) � 2z1 0.2z2( 􏼁

z1 − 0.2z2x1

z2 + 2z1x1
􏼠 􏼡 � 2z

2
1 + 0.2z

2
2,

Lf2
V2(x) � 2x1 2x2( 􏼁

x1 + z1x2

x2 − z1x1
􏼠 􏼡 � 2x

2
1 + 2x

2
2,

Lg2
V2(x) � 0.2x1 − 0.2x2.

(82)

*en,

Lp2
U2(z) + Lf2

V2(x) � 2z
2
1 +0.2z

2
2 +2x

2
1 +2x

2
2≤2W2(z,x). (83)

It is easy to see that system (79) is passive and system (80)
is nonpassive. A simple calculation shows that a1 � 0.1,

a2 � 3, a3 � 2, μ � 10, κ � 0, η � 0.5, ρ � 1, and λ � 2. In
addition, we acquire that c � 20 and ξ � e(a3η/a1). Let the
average dwell time τa � 2, the passivity rate r � 6, the dis-
turbance attenuation level c � 1, and λ2 �1.2. Hence,
λ1 �λ2+(a2

3ρ2/4a1c
2)�3.7000, λ∗�(λ1/r)+ (λ/r)+(ln(μξ)/

rτa)+(a3κ/ra1) − λ�0.3919, λ�10(λ∗ − (a3κ/a1))�3.9188,
and λ − cκ − (1/2)(λ∗ − (a3κ/a1) − (a2

3/4a1c
2))�4.0354>0.

According to *eorem 1, we construct the controllers;
when ω(t) ≡ 0,

ui �

0.3919 0.5z
2
1 + 0.1z

2
2 + 3x

2
1 + x

2
2􏼐 􏼑 x1 + x2( 􏼁

6 x1 + x2
����

����
2 , i ∈ Ip, 6 x1 + x2

����
����> 0.3,

0, i ∈ Ip, 6 x1 + x2
����

����≤ 0.3,

0, i ∈ In.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(84)

Figure 5 shows the control input of systems (79) and (80)
and the switching signal σ(t). Figure 6 is the simulation

result with the initial states z1(1) � 1, z2(1) � 2, x1(1) � − 1,
and x2(1) � − 1.
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Figure 4: *e L2-gain level c2.
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When ω(t) �
e

− t

e
− t􏼠 􏼡, we construct the control

functions:

ui �

0.3919 0.5z
2
1 + 0.1z

2
2 + 3x

2
1 + x

2
2􏼐 􏼑 + y1y

T
1􏽨 􏽩 x1 + x2( 􏼁

6 x1 + x2
����

����
2 i ∈ Ip, 6 x1 + x2

����
����> 0.3,

0, i ∈ Ip, 6 x1 + x2
����

����≤ 0.3,

− 0.2x1 − 0.2x2( 􏼁, i ∈ In.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(85)
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Figure 5: *e control input u and the switching signal σ(t).
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In this example, we can get c2(s) �

􏽒
s

0 e− 103.8155yT(τ)y(τ)dτ/ 􏽒
s

0 ω
T(τ)ω(τ)dτ. Figure 7 is the

L2-gain level with the initial states z1(1) � 0, z2(1) � 0,
x1(1) � 0, and x2(1) � 0. And we can easily see the L2-gain
less than c � 1.

5. Conclusion

Based on the method of average dwell time, we give sufficient
conditions to ensure the solvability of the problem avoiding
the Lyapunov function construction by the storage functions
and reducing the computational complexity of the solution.
For any switching signal, the system can achieve stability and
have the weighted L2-gain property under the action of the
feedback controller designed by the given passivity rate,
average dwell time, and interference attenuation level. *e
proposed scheme supplements the research methods of
robust H∞ control for the nonlinear cascade systems. In the
future, we will extend the results of this paper to global
stabilization of switched stochastic nonlinear robust H∞
control systems.
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