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Accurate and reliable fruit detection in the orchard environment is an important step for yield estimation and robotic harvesting.
However, the existing detection methods often target large and relatively sparse fruits, but they cannot provide a good solution for
small and densely distributed fruits. .is paper proposes a YOLOv3-Litchi model based on YOLOv3 to detect densely distributed
litchi fruits in large visual scenes. We adjusted the prediction scale and reduced the network layer to improve the detection ability
of small and dense litchi fruits and ensure the detection speed. From flowering to 50 days after maturity, we collected a total of 266
images, including 16,000 fruits, and then used them to construct the litchi dataset. .en, the k-means++ algorithm is used to
cluster the bounding boxes in the labeled data to determine the priori box size suitable for litchi detection.We trained an improved
YOLOv3-Litchi model, tested its litchi detection performance, and compared YOLOv3-Litchi with YOLOv2, YOLOv3, and Faster
R-CNN on the actual detection effect of litchi and used the F1 value and the average detection time as the assessed value. .e test
results show that the F1 of YOLOv3-Litchi is higher than that of YOLOv2 algorithm 0.1, higher than that of YOLOv3 algorithm
0.08, and higher than that of Faster R-CNN algorithm 0.05; the average detection time of YOLOv3-Litchi is 29.44ms faster than
that of YOLOv2 algorithm, 19.56ms faster than that of YOLOv3 algorithm ms, and 607.06ms faster than that of Faster R-CNN
algorithm. And the detection speed of the improved model is faster. .e proposed model remits optimal detection performance
for small and dense fruits. .e work presented here may provide a reference for further study on fruit-detection methods in
natural environments.

1. Introduction

Litchi fruit has a high commercial value, but unfortunately,
has a high tendency to drop from its mother plant to the
ground as it grows. .e setting percentage of litchi is sig-
nificantly affected by environmental factors; the number of
litchi fruits varies greatly in various environments. Smart
agriculture necessitates accurately and efficiently collecting
crop growth information. At present, there have been many
studies on fruit detection. Robotic harvesting devices must
detect fruits in the orchard and properly locate them to pick

them [1, 2]; fruit detection can also automatically count the
number of fruits in the field [3–7]. Automated fruit counting
helps the orchard manager to measure fruit drop, estimate
the yield, and plan for the market accordingly [8]. Machine-
vision-based fruit detection technology is currently capable
of detecting fruit growth information, providing early
warnings for disease and pest infestations, yield prediction,
harvest positioning, and other tasks. .e use of robotics in
orchards is increasing, particularly in yield prediction, yield
mapping, and automated harvesting [9]. At the same time,
machine vision, as the eyes of an intelligent robot, allows the
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robot to perceive the operating environment, improve the
robot’s intelligence, and thereby improve its work efficiency
and accuracy.

Early approaches to methodical fruit detection involved
manually extracting the color, texture, contour, and other
characteristics of the fruits. Lin et al. [10] detected fruits by a
support vector machine classifier trained on color and
texture features. Xu et al. [11] determined the area of
strawberry fruits in images by calculating the color infor-
mation of the HSV color space and then used the HOG
feature combined with an SVM classifier to detect straw-
berries in the field. Lin et al. [12] proposed an algorithm for
detecting spherical or cylindrical fruit of plants based on
color, depth, and shape information, to guide the automatic
picking of harvesting robots. Lu and Sang [13] proposed a
citrus recognition method based on color information and
contour segments; this involves a segmentation technique
that combines color difference information and a normal-
ized RGB model and then fits an ellipse to identify citrus
under outdoor natural light. .e preliminary segmentation
stage does not exclude the influence of lighting in this case.
Fu et al. [14] proposed an image processing method to
segment and then separate linearly aggregated kiwi fruits. Li
et al. [15, 16] used a reliable algorithm based on red-green-
blue-depth (RGB-D) images to detect fruits.

.ere are also many important studies on litchi detec-
tion. He et al. [17] used AdaBoost to integrate multiple
strong LDA classifiers to detect green litchi fruits in the
natural environment. .is method has good classification
and recognition capabilities, but the classification takes too
long to meet real-time requirements. Xiong et al. [18]
proposed a method for identifying litchi at night and a
calculationmethod for picking points. By using an improved
fuzzy clustering method (FCM), the analysis method is
combined with a one-dimensional random signal histogram
to remove the background of the night scene image, and
then, the Otsu algorithm is used to segment the fruit from
the stem. .is method requires high image quality and is
more sensitive to noise. Wang et al. [19] used wavelet
transform to normalize the image to reduce the influence of
light and then used the K-means clustering algorithm to
separate litchi fruits from branches and leaves. In the case of
poor light conditions and serious fruit occlusion, this
method has low recognition accuracy for mature tomato
fruits. Guo et al. [20] presented a detection method based on
monocular machine vision to detect litchi fruits growing in
overlapped conditions. .is method takes a long time to
recognize and is not conducive to the picking efficiency of
the robot. Fruit images taken in the natural environment
often have variable lighting and complex backgrounds.
Traditional algorithms can successfully identify litchi fruits,
and its optimization method can reduce the impact of en-
vironmental changes on the detection results, but the ro-
bustness of traditional algorithms is limited.

Deep learning has gained popularity across various
engineering fields in recent years [21–30]. Deep learning has
been applied in the field of agriculture for pest identification,
weed identification, and yield estimation [31]. Deep learning
methods are generalized, robust, and suitable for detecting

fruits in complex outdoor environments. .ere have been
many studies on fruit detection based on deep learning in
recent years [32–34]. Sa et al. [35] proposed a multimodal
faster R-CNN which combines the RGB and NIR; compared
with the previous bell pepper detection methods, the F1
score of sweet pepper detection increased from 0.807 to
0.838 and the speed was faster. Chen et al. [36] used deep
learning to estimate the total number of fruits directly from
an input picture; an FCN first segmented the fruit in the
input image and then a counting neural network revealed an
intermediate estimate of the number of fruits. Tian et al. [37]
replaced the Darknet53 of YOLOv3 with DenseNet to im-
prove feature propagation during training; the YOLOv3-
dense model they trained detected apples at different growth
stages more accurately and quickly than YOLO v3 or Faster
RCNN. Koirala et al. [38] proposed the MangoYOLO net-
work for real-time detection of mangoes in orchards with
high accuracy and in real time. Wang et al. [39] used the
Faster Region-based Convolutional Neural Network (R-
CNN) model to identify fruits and vegetables. Gao et al. [40]
proposed an apple detection method based on a fast regional
convolutional neural network for multiclass apple dense
fruit trees. Chen et al. [41] trained the robust semantic
segmentation network for bananas and realized effective
image preprocessing.

Deep learning is also used in the study of small-scale
compacted fruits. Liang et al. [42] proposed a method to
detect litchi fruits and fruiting body stems in a night en-
vironment. .ey detected litchi fruits in a natural envi-
ronment at night based on YOLOv3 and then determined
the region of interest of the fruit stems according to the
bounding box of the litchi fruits (RoI) and finally segmented
the fruit stems one by one based on U-Net, but the detection
scheme in the complex orchard environment during the day
has not yet been proposed. Santos et al. [43] used the latest
convolutional neural network to successfully detect, seg-
ment, and track grape clusters to determine the shape, color,
size, and compactness of grape clusters, but this method is
not suitable for estimating the yield of grapes. In the actual
field environment, the litchi fruits overlapped, blocked se-
verely, and had different sparseness and different sizes.
.erefore, the algorithm proposed in the above literature
does not have a good solution for small and densely dis-
tributed litchi detection. .ese have become difficult points
for rapid and accurate identification of litchi fruits.

.e main contributions of this paper are as follows: (1) it
proposes a densely distributed litchi detection algorithm
YOLOv3-Litchi in a large visual scene. It adjusts the
YOLOv3 prediction scale and reduces the network layer to
improve the detection ability of small and dense litchi and
ensure the detection speed. .e final construction is a
network model for tomato fruit recognition in a complex
environment in the wild. (2) .e proposed YOLOv3-Litchi
algorithm was successfully trained and tested on the litchi
data set and compared with the actual detection effect of
YOLOv2, YOLOv3, and Faster R-CNN algorithm on litchi.
.e result shows the F1 value of the YOLOv3-Litchi algo-
rithm, and the average detection time is better than the
above algorithm, and it takes up less computer resources. (3)
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YOLOv3-Litchi and YOLOv3 algorithms are used to detect
litchi at different growth stages and compare the detection
performance of the two at different growth stages. (4) In
order to prove the robustness of the proposed algorithm, the
YOLOv3-Litchi algorithm was used to detect litchi under
strong light and weak light.

2. Materials and Methods

2.1. Data Preparation. As there is no public dataset for litchi
fruit detection, we need to build our own dataset for training
and testing for the task of litchi detection. In this paper, we
collected images of litchi fruit trees at different stages of
growth and constructed a litchi image dataset to support our
fruit-recognition algorithm. .e orchard where the images
were collected is located on the South China Agricultural
University campus, Guangzhou, Guangdong, China, at
113°21′ east longitude and 23°9′ north latitude. .e image
collection time was between 9 a.m. and 3 p.m. every Tuesday
between April 17 and June 14. .e distance between the
camera (OLYMPUS E-M10 Mark III and 4/3 Live MOS
image sensor) and that between the camera and the edge of
the tree crown was 1-2m during shooting, as shown in
Figure 1. .e resolution of those collected images is
4608× 3072. In sunny weather, we adjusted the shooting
angle to capture forward light and backlight. In cloudy
weather, we took images under scattered light. .e images
collected included litchi fruit from 50 days after flowering to
maturity.

In this paper, we have used 266 images to build the litchi
image dataset. .e fruits in these 266 images with a total of
16,000 targets were labeled in LabelImg software. .en, the
266 images were divided into a train set, valid set, and test
set. .e division results are shown in Table 1. All the litchi
fruits in an image were labeled as one class.

2.2. YOLOv3 Algorithm. YOLOv3 is evolved from YOLO
and YOLOv2 [44–46]. YOLO series algorithms can directly
predict the bounding box and corresponding class proba-
bility through a single neural network, making them faster
than two-stage algorithms such as Faster RCNN [47]. .e
network structure of YOLOv3 is shown in Figure 2. YOLOv3
uses Darknet53 as the feature extraction network and uses
the FPN structure to achieve the fusion of different scale
features and multiple scale prediction. .e use of multiple
scale prediction makes YOLOv3 detect small targets better.
.erefore, YOLOv3 is selected as the method to detect litchi
fruit in this paper.

In the YOLOv3 algorithm, the original images are first
resized to the input size, using a scale pyramid structure
similar to the FPN network [48] and then divided into S× S
grids according to the scale of the feature map. Take the
input scale of 416× 416 as an example, YOLOv3 will predict
on three scales of featuremap of 13×13, 26× 26, 52× 52, and
use 2 times up-sampling to transfer features between 2
adjacent scales. In every prediction scale, every grid cell will
predict 3 bounding boxes with the help of 3 anchor boxes.
.erefore, the YOLOv3 network can be applied to the input

pictures of any resolution size. As shown in Figure 3, if the
center of a target falls into a grid, then the grid is responsible
for predicting this target.

.e network predicts 4 values for every bounding box on
every grid, including the center coordinates (x, y) of the
bounding box and the width w and height h of the target.
YOLOv3 uses logistic regression to predict the confidence
score of the target contained in the anchor box. .e con-
fidence score reflects whether the grid contains objects and
the accuracy of the predicted location when the target is
included. .e confidence is defined as follows:

confidence � pr(object) × IOUtruth
pred , pr(object) ∈ 0, 1{ }.

(1)

When the target is in the grid, pr(object) � 1, otherwise
0. IOUtruth

pred represents the consistency between the ground
truth and the predicted box. If the confidence of the pre-
dicted bounding box is greater than a preset IoU threshold,
the bounding box is retained. If multiple bounding boxes
detect the same target, the best bounding box is selected by
the NMS method.

2.3.Model Improvements. With the introduction of the FPN
network, YOLOv3 takes good use of the high resolution of
low-level features and the semantic information of high-
level features, achieves the fusion of different levels via up-
sampling and detects objects in three different prediction
scales. .e feature map with smaller prediction scale and
larger receptive field is responsible for predicting bigger
targets, while the feature map with a larger prediction
scale and smaller receptive field is responsible for pre-
dicting smaller targets. For the fact that the targets in the
litchi fruit dataset are generally small, adjusting the
prediction scale of the module can improve the effect of
detection.

Shallow information can be better utilized by adding a
larger prediction scale. A larger feature map can then be
obtained to enhance the detection ability for smaller fruits

1~2m

Figure 1: Image collection diagram.

Table 1: Dataset division details.

Dataset Number of pictures Number of fruits
Train set 210 11,390
Valid set 18 882
Test set 38 3,769
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like litchis..e target litchi fruit is very small within the large
scene, so smaller-scale feature outputs can be omitted.

In this study, we improved on the YOLOv3 model
(Figure 4) to create a novel network structure. A new
104×104 scale feature map was output after upsampling the
52× 52 feature map and merging it with a shallow 104×104
feature map. .e 13×13 scale feature output and four re-
sidual units at the tail of the original Darknet53 were re-
moved to form the proposed model, YOLOv3-Litchi.

2.4. Prior Box Clustering. Anchor mechanism is used in
YOLOv3 to solve regression of the bounding box. YOLOv3
algorithm allocates 3 anchor boxes for every grid in every
prediction scale, for 3 scales and a total of 9 anchor boxes.
Although the network can adjust the size of the box, setting
priori boxes helps the network learn features better. It is
proposed that the k-means clustering method can be used to
determine the size of prior boxes in YOLO. We clustered the
labeled data to determine the size of the anchor boxes for
litchi detection. .e k-means clustering algorithm first
randomly generates seed points and then performs cluster

analysis based on the Euclidean distance. .is clustering
makes a larger box produce more errors than a smaller box.
Our goal, in this case, is to obtain a larger IOU value between
the anchor boxes and labeled boxes through clustering, so we
used the following distance measure:

d(box,centroid) � 1 − IOU(box,centroid). (2)

.e initial seed point of the k-means algorithm is ran-
domly determined, which creates an unstable clustering
result that is not globally optimal. We used the k-means ++
algorithm to solve this problem [49]. .e k-means ++ al-
gorithm is used to select initial seed points by maximizing
the distance between the initial clustering centers.

.e size of the anchor boxes clustered using the k-means
algorithm and k-means ++ algorithm in this study is shown
in Figure 5. .e k-means ++ algorithm produced more
diverse and stable results than the k-means algorithm. We
ultimately determined nine anchor boxes in the
model training process with the k-means ++ clustering
algorithm.

3. Experiment and Discussion

.e Darknet53 framework was used in this study to modify
and train the proposed objection detection model. .e
models were trained on a computer running a 64-bit Ubuntu
16.04 system with Intel Core i7-7700K, 16GB RAM, and
NVIDIA GTX 1080Ti GPU.

Larger input sizes tend to produce better detection
results in neural networks, but also means longer detection
times. Multiscale training strategies can effectively improve
the accuracy and robustness of the model. In this study, we
trained a model with an input size of 416 × 416 through
multiscale training [50]. We set the batch size to 64, the
initial learning rate to 0.001, and the learning rate to 0.1
times the original after 15,000 steps and 20,000 steps. For
the model with an input size of 416× 416, we set nine
anchor box sizes as follows: (3 × 5), (4 × 7), (6 × 9), (7 ×11),
(9 ×13), (11 × 17), (14 × 22), (22 × 33), and (37 × 54). We
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Figure 2: YOLOv3 network structure.

Figure 3: Bounding box prediction on 13×13 grids.
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trained the YOLOv3-Litchi model and the original
YOLOv3 model to assess their performance by comparison
between them.

3.1. Related Evaluation Indicators. Intersection-over-union
(IoU) is an important parameter when verifying object
detection results. It represents the ratio of the intersection
and union between the “predicted bound” and “ground
truth bound,” as shown in equation (3). If the IoU of the
detection result exceeds a given threshold, the result is
correct; otherwise, it is incorrect.

IoU �
area(P)∩ area(G)

area(P)∪ area(G)
. (3)

Common evaluation indicators for object detection in-
clude precision, recall, F1 score, and mean average precision
(mAP). .e results were predicted by the model include

true-positive samples (TP), false-positive samples (FP), and
false-negative samples (FN). Precision is defined as

precision �
TP

TP + FP
. (4)

.e recall is defined as

recall �
TP

TP + FN
. (5)

F1 score is defined as

F1 �
2 × precision × recall
precision + recall

. (6)

.e precision is the proportion of all samples that are
predicted to be a certain category. .e mAP is an indicator
that reflects global performance. AP is the average precision
rate, and mAP is the average value of the APs of all classes.
.e recall is the proportion of all samples whose true label is
a certain category. F1 score is a comprehensive index, which
is the harmonic average of precision and recall.

We plotted the models’ precision-recall (P-R) curves,
where recall is the horizontal axis and precision is the
vertical axis, to compare their performance of the models.
.e P-R curve intuitively reflects the precision and recall of a
model on an overall sample. If a curve protrudes more to the
upper right, then its corresponding model is more effective.

3.2. Comparison of Results. To validate the performance of
the proposed YOLOv3-Litchi model, other state-of-the-art
detection methods were evaluated for compar-
ison—YOLOv2, YOLOv3, and Faster R-CNN. Faster R-CNN
is a detection method based on a region generation network.
.is method first generates a series of sample candidate
frames by an algorithm and then classifies samples through a
convolutional neural network. YOLOv2 and YOLOv3 are
regression-based detection methods. .e method does not
need to generate candidate frames, directly converts the
problem of target frame positioning into regression problem
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processing, and predicts target classification while achieving
target positioning. .e test set contains a total of 38 images
each 4608× 3072 pixels in size. We set the detection confi-
dence threshold to 0.25 and the IoU threshold to 0.5. .e
model receives images of 416× 416 pixels as inputs. .e re-
sults are given in Table 2.

As shown in Table 2, under the same output size, the
detection performance of the proposedmodel is significantly
better than other models. Compared with YOLOv2,
YOLOv3-Litchi’s model accuracy has increased by 0.07, the
recall rate has increased by 0.11, the F1 score has increased
by 0.1, and the mAP has increased by 0.17; compared with
YOLOv3, the model’s accuracy has increased by 0.06, the
recall rate has increased by 0.09, the F1 score increased by
0.08, and the mAP increased by 0.15; compared with Faster
R-CNN, the accuracy of the model increased by 0.03, the
recall rate increased by 0.06, the F1 score increased by 0.05,
and the mAP increased by 0.12.

.e P-R curves of each model are shown in Figure 6.
When the input dimensions are the same, the P-R curve of
the proposed model is more convex to the upper right,
indicating better performance.

Figure 7 shows the detection results of the YOLOv3-
Litchi model. Because the target is small, it is difficult to
observe. To effectively compare the detection results of the
two models we tested, we isolated a portion of the detection
result image as shown in Figure 8.

As shown in Figure 8, we compared the detection results
in the case of small, densely distributed fruits–some of which
were not detected by any model. Under the same input size,
the proposed model did appear to detect litchis most ac-
curately. When the input size of the model is larger, even
more litchis could be detected.

3.2.1. Comparison of Detection Time. .e average detection
time of the four cases was also tested for comparison against
the two models (Figure 9).

.e test results show that the average detection time of
YOLOv3-Litchi is 29.44ms faster than that of YOLOv2
algorithm, 19.56ms faster than that of YOLOv3 algorithm,
and 607.06ms faster than that of Faster R-CNN algorithm.
.e proposed YOLOv3-Litchi model has the fastest detec-
tion speed, which indicates that the model can perform litchi
detection in real time, which is important for harvesting
robots.

3.2.2. Detection of Litchis at Different Growth Stages. .e
size and density of litchis differ in different stages of growth.
We collected 12 images of young litchis, 12 images of
expanding litchis, and 9 images of ripe litchis from the test
set to compare the detection results of the proposed and
original model among them. Table 3 shows the detection
effects of the models with input size of 416× 416.

.e detection results for young litchis, expanding litchis,
and ripe litchis between the proposed and original models
are shown in Figures 10–12. .e upper left corner of each
figure is an enlarged view of the clustered litchi parts.

.e results show that YOLOv3-Litchi can also suc-
cessfully detect litchi at different growth stages, and the
detection performance at each growth stage is better than
YOLOv3; the proposed algorithm shows the worst detection
performance on young litchi, followed by expanding litchi. It
performs best on ripe litchi.

3.2.3. Detection under Different Illumination Conditions.
In the natural environment, dynamic weather changes and
the sun’s movement across the field create continuous
changes in the illumination on the litchi tree. .e brightness
of the fruit image changes with these changes in illumina-
tion, which affects the fruit-detection algorithm.

Figure 13 shows where the YOLOv3-Litchi model de-
tects litchis under both strong and weak light illumination
conditions.

3.2.4. Model Size. .e size of the model files is shown in
Table 4. As the proposedmodel has fewer network layers and
fewer parameters, it consumes less memory than the original
model..e file size of the improved model is 76.9MB, which
is about 1/3 that of the original YOLOv3 model. However,
Faster R-CNN is a two-stage target detection algorithm. It
first generates a series of candidate frames as samples by the
algorithm and then classifies the samples through the
convolutional neural network, which occupies more
memory than other algorithms.

Table 2: Test results of 4 models.

Model name Precision (%) Recall (%) F1 score mAP (%)
YOLOv2 80.54 63.92 0.71 60.73
YOLOv3 81.72 65.96 0.73 62.34
Faster R-CNN 84.10 68.75 0.76 65.24
YOLOv3-Litchi 87.43 74.93 0.81 77.46
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(a) (b)

(c) (d)

Figure 8: Comparison of local detection results. (a) YOLOv2 and (b) YOLOv3 results; (c) Faster R-CNN and (d) YOLOv3-Litchi results.

Figure 7: Prediction results on one image.
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Table 3: Test results of litchis at different growth stages.

Model Growth stage Precision (%) Recall (%) F1 score mAP (%)

YOLOv3
Young litchi 75.31 53.43 0.63 47.87

Expanding litchi 79.95 56.48 0.66 55.48
Ripe litchi 86.58 81.45 0.84 83.49

YOLOv3-Litchi
Young litchi 84.15 64.38 0.73 67.26

Expanding litchi 86.44 67.33 0.76 71.86
Ripe litchi 91.40 85.98 0.89 93.76

165.61 155.73

743.23

136.17 
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Figure 9: Fruit detection speed.

(a) (b)

Figure 11: Detection results of expanding litchis: (a) original YOLOv3 model and (b) proposed YOLOv3-Litchi.

(a) (b)

Figure 10: Detection results on young litchis: (a) original YOLOv3 model and (b) proposed YOLOv3-Litchi.
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4. Conclusions

An improved YOLOv3 model was established in this study
for automatic detection of small-scale and densely growing
litchi fruits in large orchard scenes. Our conclusions can be
summarized as follows:

(1) We adjusted the output scale of the original YOLOv3
network and reduced its depth to build the proposed
improved YOLOv3-Litchi model. We used the
k-means++ clustering algorithm to cluster the
bounding boxes, obtaining nine prior boxes for litchi
detection model training.

(2) .e proposed model and the original model were
trained and tested on the litchi dataset. .e results
show that YOLOv3-Litchi can successfully detect
litchi, which is suitable for small and densely dis-
tributed fruits.

(3) When the input size is 416× 416, the F1 score of the
YOLOv3-Litchi model for litchi detection is 0.81 and

the average detection time for a single image is
136.17ms..e proposed model can effectively detect
litchi under strong and weak lighting conditions.
Compared with other network models, this model
takes into account the requirements of recognition
accuracy and speed and has the highest detection and
positioning accuracy and the best comprehensive
performance.

(4) YOLOv3-Litchi and YOLOv3 algorithms have been
used to successfully detect litchi in different growth
stages. YOLOv3-Litchi has better detection perfor-
mance at each growth stage than YOLOv3; the
proposed algorithm shows the worst detection
performance on young litchi, followed by expanding
litchi perform best on ripe litchi.

(5) We used the YOLOv3-Litchi algorithm to compare
the actual detection effect of litchi with YOLOv2,
YOLOv3, and Faster R-CNN and used the F1 value
and the average detection time as the evaluation
value. .e test results show that F1 of YOLOv3-
Litchi is higher than that of YOLOv2 algorithm 0.1,
higher than that of YOLOv3 algorithm 0.08, and
higher than that of Faster R-CNN algorithm 0.05; the
average detection time of YOLOv3-Litchi is 29.44ms
faster than that of YOLOv2 algorithm, 19.56ms
faster than that of YOLOv3 algorithm, and 607.06ms

(a) (b)

Figure 12: Detection results on ripe litchis: (a) original YOLOv3 model and (b) proposed YOLOv3-Litchi.

(a) (b)

Figure 13: Detection results under different illumination: (a) litchis under strong light and (b) litchis under weak light.

Table 4: Comparison of model sizes.

Model Size (MB)
YOLOv2.weights 268
YOLOv3.weights 234
YOLOv3-Litchi.weights 76.9

Mathematical Problems in Engineering 9



faster than that of Faster R-CNN algorithm.
YOLOv3-Litchi occupies the least computer re-
sources than other algorithms.

.e method proposed in this paper may serve as a
workable reference for further research on dense fruit de-
tection in large visual scenes.

Although the YOLOv3-Litchi model proposed in this
paper can detect litchi fruit with dense distribution well, the
current detection is tested with sharp pictures and the
sample size is limited. In our future work, we will collect
more data, build a larger dataset for training, and study the
dynamic detection of litchi fruit in monitoring images in the
natural environment.
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