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'e drag-free satellites, being space-borne ultrahigh precise measurement platforms, have played irreplaceable roles in a great
number of space science missions such as navigation, earth science, fundamental physics, and astrophysics. Most of these missions
have to be performed based on the satellites placed with double cube test-masses, which makes the satellite layout and control
strategy bemore complex.'is paper investigates the orbit keeping control problem of a class of low Earth orbit drag-free satellites
with double cube test masses. A disturbance observer-based composite control method is proposed, which consists of an extended
sliding mode observer and the tube-based robust model predictive control approach. In this design, the observer is proposed to
estimate the relative position and velocity of the satellite and the external space disturbance force. A tube-based robust model
predictive control scheme is then developed to stabilize the satellite orbit control systems in the presence of actuator saturation,
state constraints, and additive stochastic noises. Finally, a simulation example is presented to demonstrate the efficacy and
superiority of the proposed orbit control method.

1. Introduction

In recent years, the drag-free satellites [1], being space-borne
ultrahigh precise measurement platforms, have played ir-
replaceable roles in many space science missions, such as the
test of equivalence principle [2], the measurement of the
Earth gravity field [3], and the detection of gravitational
waves [4]. 'e drag-free satellites possess many advantages;
for example, they can provide autonomous precision orbit
determination, map the static and time-varying components
of the Earth’s mass distribution more accurately, deepen the
understanding of the fundamental force of gravity, even-
tually open up a new window to the universe through the
detection and observation of gravitational waves, and so
forth.

'e key technology of the drag-free satellite is the
gravitational reference sensor (GRS), which insulates an
internal free-floating test mass (TM, also called proof mass)

from both external disturbances and disturbances caused by
the spacecraft itself [5]. 'e drag-free satellites can be di-
vided into two types [6]. 'e first one is the “accelerometer”
drag-free mode, where an electrostatic accelerometer is used
as the primary sensor and an electrostatic suspension ac-
tuator is paired to maintain the TM to be centred in its cage;
therefore it can counter the disturbance forces acting on the
spacecraft [7–11]. 'e second one is free-falling TM mode,
in which the satellite provides indirect drag-free behaviour
by tracking the movement of the free-falling TM in the cage
[12–15]. In particular, the structure of a satellite with two
cube TMs is always regarded as the primary layout in these
missions, which makes the GRS be more complex and the
control system design work be more challenging. For ex-
ample, as shown in Figure 1, the drag-free satellite con-
taining two cube TMs will enter a low Earth orbit (LEO),
which decays more rapidly due to the decelerating effects of
the Earth’s atmosphere.
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In the research area of control for drag-free satellites, a
trade-off should be considered among system complexity, fuel
conservation, cost of components, operations, performance,
and so forth [16]. In fact, it is always difficult for the drag-free
satellite to obtain control satisfactory performance due to the
existence of external time-varying environmental disturbances
and the unmodelled internal uncertainties. To solve this
problem, various types of robust control algorithms have been
proposed, such as model predictive control (MPC) [17], H∞
control [18, 19], μ-synthesis control [20], embedded model
control (EMC) technique [21], and quantitative feedback theory
[22]. However, these design results can only realize disturbance
attenuation but not disturbance rejection. In order to improve
closed-loop control performance, the disturbance observer-
based control [23–31] and active disturbance rejection control
[32–39] have been developed for drag-free satellite to pursue
more ideal control system performance [25, 40–50]. However,
how to design a suitable observer to estimate the disturbances
more precisely is still an open and attractive problem [51].

'is paper investigates the orbit control problem for a class
of LEO drag-free satellites with double cube TMs based on the
relative position dynamics with state constraints, actuator
saturation, and the additive stochastic disturbances. In this
design, an extended slidingmode observer method is developed
to estimate the system states. 'en, a tube-based robust model
predictive control (TRMPC) approach is presented [52] to
stabilize the resulting orbit control systems. In particular, the
TRMPC design approach is divided into the following two
steps: (i) an offline evaluation of the constraints to ensure the
uncertain future trajectories to lie in sequence of sets, which is
called tubes, and (ii) an online MPC scheme designed for the
nominal trajectories. As a result, the orbit control issue for the
drag-free satellite is solved.

'e remaining of this paper is organized as follows.
Section 2 formulates the design problem under investiga-
tion; the design of disturbance observation-based composite

control strategy is presented in Section 3. A demonstrated
simulation example is provided in Section 4, and the paper is
concluded in Section 5.

2. Problem Formulation

According to [22, 53], for a LEO satellite containing two
TMs, as shown in Figure 2, the drag-free control strategy is
defined as follows: TM1 is chosen as the gravitational ref-
erence, which flies freely in a pure gravitational orbit, and the
satellite and TM2 are controlled to follow TM1; then the
linearized relative position dynamics between the TMs and
the satellite are given as follows:

€ρ1i(t) + Mt _ρ1i(t) + Ntρ1i(t) �
1

mi

Fc,1i(t) + Fd,1i
′ (t) , i � 0 or 2,

(1)

where i � 0 means the satellite and i � 2 means the TM2;
ρ1i(t), mi, and Fc,1i(t) represent the relative position vari-
ables, the mass of the satellite or the TM2, and the control
forces; Fd,1i

′(t) is the sum of all kinds of disturbances, which
for the satellite, the air drag, the solar radiation pressure, and
the thruster quantization error and other stochastic noises is
considered primarily, and, for the TM2, it mainly consists of
electrostatic interference signals, actuator quantization er-
ror, and other stochastic noises [9, 40].

Mt �

0 − 2ω0 0

2ω0 0 0

0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ − Kt,

Nt �

− 3ω0 0 0

0 0 0

0 0 ω2
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ − Dt,

(2)

where ω0 is orbit angular velocity of the TM1 and Kt and Dt

are the damping factors between the TM and its condenser
cage [54].

'e desired positions and velocities of the satellite and
TM2 are denoted as ρd

10(t), _ρd
10(t), ρd

12(t), and _ρd
12(t), re-

spectively. 'e desired positions ρd
10(t) and ρd

12(t) are some
constants dependent on the layout of the satellite. 'e relative
velocities are defined as follows: _ρd

10(t) � 0 and _ρd
12(t) � 0.

Define the following error variables for case of presentation:

ρ1i(t) � ρ1i(t) − ρd
1i(t),

_ρ1i(t) � _ρ1i(t) − _ρd
1i(t),

i � 0 or 2.

(3)

By substituting (3) into (1), one can obtain

€ρ1i(t) + Mt
_ρ1i(t) + Ntρ1i(t) �

1
mi

Fc,1i(t) + Fd,1i(t) , i � 0 or 2.

(4)

Due to the limit volume of the capacitor cage, the relative
error variables should satisfy ρ1i(t)≤ ρmax and _ρ1i(t)≤ _ρmax,
which are the state constraints. For convenience, formations
(4) should be translated into a state space model. By
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Figure 1: A kind of drag-free satellite structure with double test-
masses.
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choosing x1(t) � [ρT
10(t), _ρT

10(t)]T and x2(t) � [ρT
12(t),

_ρT

12(t)]T, u1(t) � Fc,10(t), u2(t) � Fc,12(t), Fd,10(t) � ω1(t) +

ξ1(t), and Fd,12(t) � ω2(t) + ξ2(t), where ωi(t) and
ξi(t) (i � 1, 2) denote the unknown stochastic noises and
unknown estimable disturbances, respectively. 'en, the
state space model is given as follows:

_xi(t) � Aixi(t) + Biui(t) + Bω,i ωi(t) + ξi(t)( ,

yi(t) � Cixi(t),
 (5)

where

Ai �

03 I3

Nt Mt

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

B1 � Bω,1 �

03

1
m0

I3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B2 � Bω,2 �

03

1
m2

I3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Ci � I3 03 ,

i � 1, 2.

(6)

Before designing the disturbance observer-based com-
posite control strategy, the following assumptions are given
about ωi(t) and ξi(t) (i � 1, 2).

Assumption 1. 'e unknown external disturbance ξi(t) (i �

1, 2) satisfies the following: ‖ξi(t)‖< 9i and ‖ _ξi(t)‖< ςi, where
9i and ςi are known real constants.

Assumption 2. 'e unknown stochastic noise ωi(t) (i � 1, 2)

is assumed to be discontinuous but bounded subject to
‖ωi(t)‖≤ϖi and belongs to a bounded and convex subset
W ⊂ Rn containing the origin in its interior.

3. Design of Disturbance Observer-Based
Composite Control

'e control system composition of a LEO satellite with two
cube TMs is shown in Figure 3. To achieve the “drag-free”
goal and eliminate the effects of external disturbances (the
environment disturbances may contain the atmosphere
and the solar radiation pressure, the thruster quantization
error, the electrostatic noises, the actuator quantization
error, etc.), a disturbance observer-based composite con-
trol approach is proposed, which consists of an extended
sliding mode observer and a tube-based robust model
predictive control. 'e detailed design process is as follows.
First, for system (5), the observer is proposed to estimate
states xi for state feedback control and ξi(t) for active
disturbance rejection control uffc,i. Second, a tube-based
robust model predictive control ui � ufbc,i + uffc,i is
adopted, which can cope with state constraints and actu-
ator saturation and attenuate the effects of additive sto-
chastic noises. For convenience, in the following
discussion, the subscript i in (5) is omitted.

3.1. Design of Extended Sliding Mode Observers.
Motivated by the augmented strategy method in
[34, 36, 55], we define the following extended vectors and
matrices:

x(t) � x
T
(t), ξT

(t) 
T
,

A �
A Bω

0 0
 ,

B �
B

0
 ,

D �
0

Ip

⎡⎣ ⎤⎦,

Bw �
Bw

0
 ,

C � C 0 .

(7)

For system (7), consider the following continuous-time
extended SMO [55]:

_x(t) � Ax(t) + Bu(t) + Ly(t) + DFv2(t), (8)

where y(t) � y(t) − C x(t) and v2(t) is the discontinuous
term designed as follows:

v2(t) �

η
y(t)

‖y(t)‖
, if ‖y(t)‖>

ε
η

,

η2
y(t)

ε
, if ‖y(t)‖≤

ε
η

,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(9)

where η> (λF/λ
2
F) and λF �

���������
λmax(FTF)


, λF �

���������
λmin(FTF)


,

and λmax(FTF) and λmin(FTF) are the maximal and minimal
nonzero eigenvalues of matrix FTF, respectively.
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Figure 2: 'e relative position dynamics between the TMs and the
satellite, with respect to TM1 Hill reference system.
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Remark 1. It is worth mentioning that the main function of
the proposed extended SMO is to estimate the state and
disturbances vectors simultaneously, which is a design basis
of the subsequent composite control law.

Define x(t) � x(t) − x(t); then the error system is de-
rived as follows:

_x(t) � (A − LC)x(t) + D _ξ(t) − Fv2(t)  + Bwω(t). (10)

Lemma 1 (see [56]). System (5) has the relative degree n with
respect to the unknown input ξ(t) (i.e., the system is strongly
observable).

Lemma 2. If the matrix pair (A, C) is detectable and the
condition

rank
A Bω

C 0
   � n + p, (11)

holds, then the pair (A, C) is detectable; that is, there exists an
observer gain matrix L such that A − LC is Hurwitz.

Proof. It can be derived that

rank
A − λIn+p

C

⎡⎢⎣ ⎤⎥⎦⎛⎝ ⎞⎠ � rank

A − λIn Bw

0p×n − λIp

C 0q×p

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (12)

□

Case 1. When λ≠ 0, for the matrix in right side of equation
(12), we have

In λ− 1
Bw 0

0 Ip 0

0 0 Iq

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

A − λIn Bw

0p×n − λIp

C 0q×p

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

A − λIn 0p×n

0p×n − λIp

C 0q×p

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(13)
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Figure 3: 'e control system schematic diagram of a LEO satellite with two cube TMs; the satellite and TM2 are controlled, respectively.
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which means that

rank

A − λIn Bw

0p×n − λIp

C 0q×p

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ � rank

In λ− 1
Bw 0

0 Ip 0

0 0 Iq

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

A − λIn Bw

0p×n − λIp

C 0q×p

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� rank

A − λIn 0n×p

0p×n − λIp

C 0q×p

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� rank
A − λIn

C
   + p.

(14)

'at means

rank
A − λIn+p

C

⎡⎢⎣ ⎤⎥⎦⎛⎝ ⎞⎠ � rank
A − λIn

C
   + p. (15)

Hence, if the pair (A, C) is detectable, we have

rank
A − λIn

C
   � n. (16)

'en, the following rank condition holds:

rank
A − λIn+p

C

⎡⎣ ⎤⎦⎛⎝ ⎞⎠ � n + p. (17)

Case 2. When λ � 0, if rank condition (11) holds, we have

rank
A

C
⎡⎣ ⎤⎦⎛⎝ ⎞⎠ � rank

A Bw

C 0
   � n + p. (18)

Finally, for both cases, we can always imply

rank
A − λIn+p

C
   � n + p, λ ∈ C, Re[λ]≥ 0, which im-

plies that the pair (A, C) is detectable.
To attenuate the influence of ω(t) for error system (10),

we define the prescribed H∞ performance index as follows:

‖H‖∞ � sup
‖ω(t)‖L2 ≠ 0

‖ψx(t)‖L2

‖ω(t)‖L2

≤ ��
c1

√
, (19)

where ψx(t) is the weighted estimation error and ψ is the
weight matrix. 'e following main theorem provides the
existence condition of the proposed observer (8).

Theorem 1. >e solution of observer error system (10) is
asymptotically stable with the prescribed H∞ performance
index if there exist positive and definite matrix Q> 0 and
matrix F with appropriate dimensions, in minimizing c1 > 0,
such that the following matrix constraints hold:

Q �
�A

T
Q + Q�A − �C

T �C + ψTψ Q�Bw

�B
T

wQ − c1I

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦< 0,

QD � �C
T
F

T
.

(20)

Moreover, the observer gain is designed as
L � (1/2)Q− 1�C

T.

Proof. For system (10), select the Lyapunov function as
V(t) � x

T
(t)Qx(t) with Q> 0 being designed; it is easy to

obtain that

_V(t) � _x
T

(t)Qx(t) + x
T
(t)Q _x(t)

� 2x
T
(t)Q (A − LC)x(t) + D _ξ(t) − Fv2(t)  + Bwω(t) 

� x
T
(t) A

T
Q + QA − C

T
C x(t) + 2x(t)C

T
F

T _ξ(t) − Fv2(t)  + x
T
(t)QBwω(t) + ωT

(t)B
T

wQx(t)

� x
T
(t) A

T
Q + QA − C

T
C x(t) + 2yF

T _ξ(t) − Fv2(t)  + 2x
T
(t)QBwω(t).

(21)
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In the following analysis, let Y(t) � 2yFT( _ξ(t) − Fv2(t));
we consider two cases separately. □

Case 3. ‖y‖> (ε/η); in this case, we have

Y(t) � 2yF
T _ξ(t) − Fη

y(t)

‖y(t)‖
 

≤ 2‖y‖ ‖F‖ρ − ‖F‖
2η 

≤ 2‖y‖ λFρ − λ2Fη)≤ 0,

(22)

where η can be chosen such that η> (λF/λ
2
F)ρ.

Case 4. ‖y‖≤ (ε/η); in this case, it can be derived that

Y(t) � 2yF
T _ξ(t) − Fη2

y(t)

ε
 

≤ 2ρλF‖y‖ − 2η2λ2F
‖y‖

2

ε
≤ 2ηλ2F‖y‖ − 2η2λ2F

‖y‖
2

ε
≤ − 2λ2F

η‖y‖
�
ε

√ −

�
ε

√

2
 

2

+
λ2Fε
2
≤ 2λ2F

η(ε/η)
�
ε

√ −

�
ε

√

2
 

2

+
λ2Fε
2
≤ 0.

(23)

Based on Cases 3 and 4, we can conclude that

_V(t) � Y(t) + x
T
(t) A

T
Q + QA − C

T
C x(t) + 2x

T
(t)QBwω(t)

≤ x
T
(t) A

T
Q + QA − C

T
C x(t) + 2x

T
(t)QBwω(t).

(24)

To minimize the effect of the disturbance on the esti-
mation error in the sense of L2 norm, we consider the
following constraint:

W(t) � _V(t) + x
T
(t)ψTψx(t) − c1ω

T
(t)ω(t) ≤ 0. (25)

In light of Schur complement, it is easy to derive that

W(t)≤ x
T
(t) A

T
Q + QA − C

T
C x(t) + x

T
(t)QBwω(t) + ωT

(t)B
T

wQx(t) + x
T

(t)ψTψx
T
(t) − c1ω

T
(t)ω(t)

≤ x
T
(t) ωT

(t) Q
x(t)

ω(t)
⎡⎣ ⎤⎦< 0.

(26)

Accordingly, it can be seen that W(t)≤ 0 is ensured
provided that Q< 0 holds. 'erefore, the solution of error
system (10) is asymptotically stable with the prescribed H∞
performance index as t⟶∞.

Remark 2. It should be pointed out that, in 'eorem 1, the
equality constraint QD � C

T
FT can be rewritten as

Trace QD − C
T
F

T
 

T

QD − C
T
F

T
   � 0. (27)

Hence, we can introduce the following condition:

QD − C
T
F

T
 

T

QD − C
T
F

T
 < c2I, (28)

where c2 > 0 is a parameter to be designed. 'en the design
problem of observer gains L can be converted into the
following minimization problem:

minc1, c2

subject to (20) and (28).
(29)

3.2. Design of Tube-Based Robust Model Predictive Control.
For equations (5), ξi(t) is estimated and eliminated through
the extended sliding mode observer; thus we have to
compensate it by disturbance compensation feed-forward
control. Translate formulations (5) without ξi(t) into the
discrete model of the form in (30) as follows:

xk+1 � Adxk + Bduk + Bωd
ξk + ωk( . (30)

As mentioned before, the controller is designed as
uk � uk,ffc + uk,fbc, where

uk,ffc � − ξk, (31)

is the feed-forward control part to compensate ξk and uk,fbc

is the model predictive control law to be designed. Define the
estimation error as
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ξk � ξk − ξk. (32)

'en, system (30) becomes

xk+1 � Adxk + Bduk,fbc + Bωd
ωk − ξk . (33)

As proved in the observer design results in 'eorem 1,
we have ‖ξk‖⟶ 0 with k⟶∞; thus ‖ωk − ξk‖≤ ‖ωk‖ +

‖ξk‖ � (1 + β)‖ωk‖ holds, where β> 0 is a small constant and
β⟶ 0 when k⟶∞.

Define dk � ωk − ξk; it satisfies ‖dk‖≤ (1 + β)ϖ, which
belongs to the bounded and convex subsetW. Hence, system
(30) can be written in the following form:

xk+1 � Adxk + Bduk,fbc + Bωd
dk. (34)

'e investigated system (30) is subject to hard con-
straints on both state and input vectors with the following
form:

x ∈ X,

u ∈ U,
(35)

where X and U are polytopes.
To solve this control problem, a robust MPC algorithm is

considered [57] by repeatedly solving an optimal control
problem, where the finite horizon quadratic cost JN(x, u) to
be minimized at the current time k is

JN xk, uk(  � 
N− 1

i�0
x

T
i|kQxi|k + u

T
i|kRui|k  + x

T
N|kPxN|k.

(36)

In (36), N ∈ R+ is the MPC prediction horizon,
Q ∈ Rn×n, Q> 0, R ∈ Rm×m, R> 0 and P is the solution of
the algebraic Riccati equation [57].

Ad + BdK( 
T
P Ad + BdK(  + Q + K

T
RK � P. (37)

Due to the presence of the unknown disturbance dk, we
rewrite the state vector xi|k of the system as the sum of a
nominal part zi|k and an error part ei|k in the following form:

xi|k � zi|k + ei|k, (38)

where ei|k denotes the deviation of the real state ei|k with
respect to the nominal one.

Design the following feedback policy (39) for system
(30):

ui|k � vi|k + K xi|k − zi|k , (39)

where vi|k denotes the nominal input vector and the gain
matrix K should be selected such that AK � Ad + BdK is
Schur-stable; then the corresponding nominal and error
dynamics can be described, respectively, as follows:

zi+1|k � Adzi|k + Bdvi|k,

z0|k � x0|k,
(40)

ei+1|k � AKei|k + Bωd
di|k,

e0|k � 0.
(41)

Hence, the finite horizon optimal quadratic cost (36) can
be redefined in terms of nominal state zk and control input
vk as

JN zk, vk(  � 
N− 1

i�0
z

T
i|kQzi|k + v

T
i|kRvi|k  + z

T
N|kPzN|k, (42)

and the finite horizon optimal control problem can be
reformulated as follows.

Definition 1. Given the nominal system dynamics (40), cost
(42), and nominal constraints set Z, V ,Zf, the nominal
robust MPC finite horizon optimization problem can be
described as

min
v

JN zk, vk( 

s.t. zi+1|k � Adzi|k + Bdvi|k, z0|k � xk

zi|k ∈ Z, i ∈ [1, N]

vi|k ∈ V , i ∈ [0, N − 1]

zi|k ∈ Zf.

(43)

'e solution of (43) is the optimal nominal control
sequence v∗0|k � [v∗0|k(0; zk), . . . , v∗T− 1|k(T − 1; zk)] and the
first control action, that is, κN(zk): � v∗0|k(0; zk), represents
the optimal control vi|k to be applied to system (40).

'e proposed control law applied on the uncertain
system (40), according to the control policy adopted, is

ui|k � vi|k + K xi|k − zi|k  � κN xk, zk( 

� κN zk(  + K xk − zk( .
(44)

'e composite closed-loop system then satisfies

xi+1|k � Adxi|k + BdκN i, xk, zk(  + Bωd
di|k, (45)

zi+1|k � Adzi|k + BdκN i, zk( . (46)

For the TRMPC approach, the matrix K in the control
policy (39) is designed to stabilize system (30). Consider the
following closed-loop system:

xi+1|k � Ad + BdK( xi|k + Bdvi|k + Bωd
di|k. (47)

Hence, the satisfaction of the following condition aims to
define the feedback gain K that stabilizes the system.
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Ad + BdK( 
T P Ad + BdK(  − P< 0, P> 0. (48)

In order to robustly satisfy the mission constrains, they
are tightened to allow the trajectories of the uncertain
system, affected by disturbance, to lie in a tube centred on
the nominal one, where each trajectory is related to a
particular realization of the uncertainty at each time step k.
'e derivations of the nominal state, input, and terminal
constrains set Z,V ,Zf are described according to the ap-
proach proposed in [57], such that the constraints in (39) of
system (30) are satisfied for every realization of the dis-
turbance sequence ω by suitable design of the tube.

We now define SK(∞): � A0
KW⊕A1

KW⊕ · · · � 
∞
j�0 A

j
K

W, where ⊕ is the Minkowski sum and A
j
KW: � A

j
Kdk|dk

∈W} is the set multiplication; the uncertain set of the error
ei|k is the minimal robust positive invariant set for

xi+1|k � Adxi|k + Bωd
di|k, dk ∈W. (49)

'en the state and control input vector constraints in
(35) are satisfied provided that

zi|k ∈ X⊝ SK(∞),

vi|k ∈ U⊝KSK(∞),
(50)

where ⊝ denotes the Pontryagin set difference. It is obvious
that the terminal constraint for system (30) at time instant N

is ensured if the normal system (40) satisfies the tighter
constraint

zN ∈ Z⊆X − SK(∞), Zf⊆Z. (51)

Moreover, these assertions only make sense if the dis-
turbance set W is sufficiently small to satisfy the following
Assumption 3, as defined in [57].

Assumption 3. (Restricted disturbances for constraints
satisfaction) SK ⊂ X and K × SK ⊂ U.

'e next step is to define a robust positively invariant set
SK for [19] to obtain the tighter constraints acting on the
nominal system. 'en the constraints are considered for the
TRMPC problem. Once the uncertainty set W is evaluated,
an inner approximation of the nominal constraint set can be
constructed. In this design, we adopt the following strategy
presented in [57].

Algorithm 1. Computation of Z and V

(1) Define the linear state constraint as:
X � xi|k ∈ Rn|axi|k < b ;

(2) Construct the nominal state constraint inequality
azi|k ≤ b − max aei|k|ei|k ∈ SK(∞)  � b − Φ∞;

(3) Approximate the upper value of Φ∞ as
ΦN � max a

N− 1
i�0 Ai

Kdi|k|di|k ∈ W ;
(4) Choose a suitable α ∈ (0, 1) and N such that

AN
K di|k ∈ αW, compute Φ∞ ≤ (1 − α)− 1ΦN;

(5) Compute the nominal state constraint set
Z: � zi|k ∈ Rn|azi|k ≤ b − (1 − α)− 1ΦN ;

(6) Compute the nominal control constraint set
V : � vi|k ∈ Rm|a′vi|k ≤ b′ − K(1 − α)− 1ΦN , where
U: � ui|k ∈ Rm|a′ui|k ≤ b′ .

Hence, the observer-based model predictive control
strategy could be formally described by the following
algorithm.

Algorithm 2. Disturbance observer-based model predictive
control strategy.

(1) Initialization: at time k � 0, set xk � zk � x(0) where
x(0) denotes the current state.

(2) At time k, considering the current state (xk, zk),
based on the disturbance estimation ξk from the
observer (8), solve the nominal optimal control
problem (43) to obtain the nominal control vector
vk: � v∗0|k(0; zk) and the control input vector
uk � vk + K(xk − zk) − ξk.

(3) If the nominal optimal control problem (43) is in-
feasible, adopt safety/recovery procedure.

(4) Apply the control uk to the system (45) and (46);
(5) Calculate the estimation xk+1 from the observer (8)

as successor state xk+1 of the system (30), and cal-
culate the successor state zk+1 of the nominal system
(40).

(6) Set (xk, zk)� (xk+1, zk+1), set k � k + 1 , and go to (2).

4. Simulation Results

In this section, a numerical simulation is carried out to verify
the effectiveness of the extended sliding mode-based
TRMPC approach. Suppose that the satellite is flying at a
little eccentric low Earth orbit with altitude of 300 km. 'e
parameters in (1) are given in Table 1 [54].

For the relative position motion between the TM1 and
the satellite, define Fd,10 � Fdrag + Fthruster, where

Fdrag � m0 ×

2.15 × 10− 7 sin(0.00114t)

0.15 × 10− 4 sin(0.00114t) − 2.35 × 10− 4

0.20 × 10− 5 sin(0.00114t) − 2.05 × 10− 5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
N.

(52)

'e resolution and the maximum value of the thruster
are 10− 6 N and 0.4N. Besides, a zero mean white noise with
mean squared error being 10− 8 N is added as the stochastic
disturbance.

For the relative position motion between TM1 and TM2,
define Fd,12 � Felec + Factuator, where

Felec � m1 ×

1 × 10− 6 sin 0.04t +
π
3

 

1 × 10− 6 sin(0.05t)

1 × 10− 6 sin 0.05t +
π
2

 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N. (53)
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Table 1: Parameters of satellite used in the simulation.

Symbols Parameters
m0 145 kg
m1 1 kg
m2 1 kg
ω0 0.0011569 rad/s
ρmax 0.1m
_ρmax 0.1m/s

Kt

1 0.039 0.039
0.039 1 0.039
0.039 0.039 1

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ × 10− 6 N/m

Dt 1.4 × 10− 11I3 N/(m/s)
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Figure 4: Estimation of the disturbances ξ1(t) by the ESMO.
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'e resolution and the maximum value of the thruster
are 10− 7 N and 60 × 10− 6 N. Similarly, a zero mean white
noise with mean squared error being 10− 8 N is added as the
stochastic disturbance.

'e simulation results are shown in Figures 4–10 as
follows. Define the estimated error ξi(t) � ξi(t) − ξi(t) (i� 1,
2), as shown in Figures 4 and 5, and ξi(t) can be estimated

precisely by the ESMO. From Figures 6–11, the relative
motion variables ρ10(t), _ρ10(t), ρ12(t), and _ρ12(t) could be
estimated well by the ESMO. In addition, the stable control
accuracy of the composite control approach has achieved
10− 7 or 10− 8, which shows that the developed extended
sliding mode observer method and tube-based model pre-
dictive control law are effective.
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Figure 5: Estimation of the disturbances ξ2(t) by the ESMO.
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Figure 6: Simulated relative positions ρ10,x(t), _ρ10,x(t) and their estimations between TM1 and the satellite.

Enlarged

ρ10,y

ρ10,y

~̂
~

–2.0 × 10–4

–1.0 × 10–4

0.0

1.0 × 10–4

2.0 × 10–4

Re
lat

iv
e p

os
iti

on
 an

d 
es

tim
at

e (
m

)

2.
0 

× 
10

2

4.
0 

× 
10

2

6.
0 

× 
10

2

8.
0 

× 
10

2

1.
0 

× 
10

3

1.
2 

× 
10

3

0.
0

Time (s)

8.0 × 101 1.2 × 102 1.6 × 102 2.0 × 1024.0 × 101–1 × 10–7

0

1 × 10–7

(a)

Enlarged

–1.0 × 10–3

–5.0 × 10–4

0.0

5.0 × 10–4

1.0 × 10–3

Re
lat

iv
e v

elo
ci

ty
 an

d 
es

tim
at

e (
m

/s
)

2.
0 

× 
10

2

4.
0 

× 
10

2

6.
0 

× 
10

2

8.
0 

× 
10

2

1.
0 

× 
10

3

1.
2 

× 
10

3

0.
0

Time (s)

–1 × 10–6

0
1 × 10–6

8.0 × 101 1.2 × 102 1.6 × 102 2.0 × 1024.0 × 101

ρ10,y

ρ10,y

~̂
~

(b)

Figure 7: Simulated relative positions ρ10,y(t), _ρ10,y(t) and their estimations between TM1 and the satellite.
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Figure 8: Simulated relative positions ρ10,z(t), _ρ10,z(t) and their estimations between TM1 and the satellite.
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Figure 9: Simulated relative positions ρ12,x(t), _ρ12,x(t) and their estimations between TM1 and TM2.
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Figure 11: Simulated relative positions ρ12,z(t), _ρ12,z(t) and their estimations between TM1 and TM2.
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5. Conclusions

'is paper has considered the relative position control of the
drag-free satellite with double cube test-masses in the
presence of external disturbance, additive stochastic dis-
turbances, actuator quantization error, actuator saturation,
and state constraints. An extended sliding mode observer
method is adopted to estimate the state vector and external
disturbance, based on which a tube-based robust model
predictive control scheme is developed. 'e designed con-
trol method can not only cope with the constraints of control
and state but also attenuate the effect of additive stochastic
noises. Future work will be focused on the consideration of
relative attitude dynamics between the test-masses and the
satellite.
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