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$is paper presents some novel solutions to the family of the Helmholtz equations (including the constant forced undamping
Helmholtz equation (equation (1)) and the constant forced damping Helmholtz equation (equation (2))) which have been
reported. In the beginning, equation (1) is solved analytically using two different techniques (direct and indirect solutions): in the
first technique (direct solution), a new assumption is introduced to find the analytical solution of equation (1) in the form of the
Weierstrass elliptic function with arbitrary initial conditions. In the second case (indirect solution), the solution of the undamping
(standard) Duffing equation is devoted to determine the analytical solution to equation (1) in the form of Jacobian elliptic function
with arbitrary initial conditions. Moreover, equation (2) is solved using a new ansatz and with the help of equation (1) solutions.
Also, the evolution equations (equations (1) and (2)) are solved numerically via the Adomian decomposition method (ADM).
Furthermore, a comparison between the approximate analytical solution and approximate numerical solutions using the fourth-
order Runge–Kutta method (RK4) and ADM is reported. Furthermore, the maximum distance error for the obtained solutions is
estimated. As a practical application, the Helmholtz-type equation will be derived from the fluid governing equations of quantum
plasma particles with(out) taking the ionic kinematic viscosity into account for investigating the characteristics of (un)damping
oscillations in a degenerate quantum plasma model.

1. Introduction

$e ordinary and partial differential equations have played
an important role in explainingmany natural phenomena, in
addition to their applications in many engineering and
physical problems. Due to the great role played by these
equations, many authors focused their efforts on finding
some solutions to these equations [1–10]. $e undamping
Helmholtz equation (€q(t) + 

n
i�1 kiq

i(t) �

0, where i is the odd number, i.e., i � 1, 3, 5, . . .) and
undamping Duffing equation (€q(t) + 

n
i�1 kiq

i(t)

� 0, where i � 1, 2, 3, . . .) in addition to their family

(including friction/damping force in addition to excitation/
perturbation force) are among the most famous differential
equations in dynamic, electrical, and engineering systems
[11–16]. A lot of physical and engineering problems such as
the human eardrum oscillations, the dynamics of the ships,
the electrical circuits signal oscillations, heavy symmetric
gyroscope, andmicroperforated panel absorber [17–21] have
been investigated using different solutions of the Helmholtz-
type oscillator. $e Helmholtz-type oscillator is a second-
order differential equation with a quadratic nonlinear term
in addition to some other terms. For realistic physical sit-
uations, we cannot ignore both the friction/dissipation force
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and excitation/perturbation forcing. Accordingly, the gen-
eral form of the Helmholtz equation reads [22–24]

€q + 2c _q + αq + βq
2

� F, q(0) � q0 & q′(0) � _q0, (1)

where q denotes the displacement of the system, α is the
natural frequency, β is a nonlinear system parameter, c

represents the damping factor, and F is a constant/excitation
force. $e first equation in system (1) is called the constant
forced damping Helmholtz equation (equation (2)). If the
coefficient c of the damping term (2c _q) is neglected,
equation (2) reduces to the constant forced Helmholtz
equation (€q + αq + βq2 � F) (equation (1)). Also, if both the
coefficient c of the damping term and the constant force F

are neglected, the traditional form of Helmholtz equation is
covered (€q + αq + βq2 � 0). $e initial value problem (IVP)
(1) and its family have many applications in several fields,
starting from analyzing the signals that propagate in elec-
trical circuits, plasma physics, general relativity, betatron
oscillations, vibrations of shells, vibrations of the acoustically
driven human eardrum, solid-state physics, etc. [26–33].

It is well known that, in the absence of both friction and
the excitation forces from the IVP (1), the unforced and
undamping Helmholtz equations are covered. $e exact
analytic solutions to the unforced and undamping Helm-
holtz equation have been derived in detail in the literature in
terms of the Weierstrass elliptic function [34–38] and Jacobi
elliptic functions [38–41]. Generally, to solve any quadratic
or cubic nonlinear second-order differential equation, firstly,
we should transform it to an elliptic integral and then we
solve it [24]. It is known that the unforced and undamping
Helmholtz equations are completely integrable, so they have
exact solutions, but if the friction force (damping term) is
included, then the unforced damping Helmholtz equation
becomes nonintegrable and cannot support an exact solu-
tion for arbitrary values of its coefficients (c, α, β). $us,
under certain condition, the unforced damping Helmholtz
equation has been solved analytically in terms of the Jacobi
elliptic functions by Johannessen [24]. Also, Almendral and
Sanjuán [27] derived an exact solution to the unforced
damping Helmholtz equation using the Lie theory under
certain conditions for the coefficients (c, α, β).

In many realistic physical models, both the damping and
the excitation/external terms are very important to be in-
cluded, and thus the problem becomes more complicated to
find its analytical solutions. In this paper, we will derive
some analytical solutions to equation (1) in the terms of the
Weierstrass and Jacobian elliptic functions. Also, an ap-
proximate analytical solution to equation (2) for arbitrary
values to the coefficients and the initial conditions will be
derived in detail. Moreover, the problem under consider-
ation will be solved numerically via using the RK4 and ADM
to make a comparison between the obtained solutions and
the approximate numerical solutions. Furthermore, the
maximum distance error between the approximate analyt-
ical solution and the approximate numerical solutions will
be estimated. Also, the dynamics of nonlinear oscillations

that can be generated in the RLC electronic circuits and
quantum plasma will be investigated using the solution of
equation (2).

$e rest of this work is organized in the following
manner: in Section 2, we will introduce in detail our
methodology for solving the family of the Helmholtz-type
equations. Also, we will introduce some new approaches for
solving equation (1) as well as the exact solution of the
undamped and unforced Duffing equation, which will be
devoted to finding an approximate analytical solution to
equation (2). In Section 3, a comparison between the ob-
tained solutions and the approximate numerical solution
using the ADM will be investigated. In Section 4, some
realistic applications will be introduced. Finally, our results
will be summarized in Section 5.

2. Our Methodology for Solving the
Family of the Helmholtz Equations

Before proceeding in solving the IVP (1), it is necessary to
refer to two fundamental equations and their solutions: the
first one is called the Duffing equation and the other is called
the constant forced Helmholtz equation.

2.1. Duffing Equation and Its Solution. $e analytical solu-
tion to the following IVP, which is called Duffing equation
[30],

η″(t) + Rη(t) + Sη3(t) � 0,

η(0) � η0 & η′(0) � _η0,

⎧⎨

⎩ (2)

is given by the following formula:

η(t) � c1cn

������

R + Sc
2
1



t + c2, m . (3)

By inserting this relation into the IVP (2) and after
several tedious but simple math operations, we finally get the
values of c1 and c2 as follows:

c1 � ±

��������

− R +
��
Δ

√

S



t,

c2 � cn
− 1 η0

c1
,

Sc
2
1

2 R + Sc
2
1 

⎛⎝ ⎞⎠,

(4)

where R, S, η0, and _η0 are real numbers and Δ is called the
discriminant to Duffing (2):

Δ � R + η20S 
2

+ 2 _η20S> 0. (5)

Solution (3) could be expressed as

η(t) �
η0cn(ωt|m) + _η0/ω( dn(ωt|m)sn(ωt|m)

1 − (1/2) 1 − R + Sη20/
��
Δ

√
  sn(ωt|m)

2 , (6)

where
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ω �
��
Δ4

√
,

m �
1
2

−
R

2
��
Δ

√ .

(7)

For negative discriminant (Δ< 0), the solution may be
written in the following form:

η(t) � ρ −
2ρ

1 + κsc
��
ω

√
t + sc

− 1 ρ + η0/κ ρ − η0( ( , m 
,

(8)

where

m �
4ρ

��
2S

√ ������

ρ2S − R



2ρ
��
2S

√ ������

ρ2S − R



+ R − 3ρ2S
,

ω �
1
4

2ρ
��
2S

√ ������

ρ2S − R



+ R − 3ρ2S ,

κ �

����������������������

2ρ
��
2S

√ ������

ρ2S − R



− R + 3ρ2S


������

R + ρ2S
 ,

ρ � ±

��������������

2Rη20 + Sη40 + 2 _η20
− S

4



.

(9)

For a zero discriminant (Δ � 0), the solution of Duffing
equation (2) will be

η(t) � c1 tan h c1

���
− S

2



t + c2 , (10)

with

c1 � ±

�����������������
− S

√
η40 −

�
2

√
η20 _η0



��
− s4

√
Sη0

,

c2 �
1
2
log

_η0 −
�
2

√
η20

���
− S

√
−

���
− S

4
√ �����������������

2η40
���
− S

√
− 2

�
2

√
η20 _η0



_η0
⎛⎜⎜⎝ ⎞⎟⎟⎠ ,

(11)

where _η0η0 ≠ 0.
When (R + η20S)2 + 2 _η20S � η0 � 0, the solution reads

η(t) �

���
− S

2



_η0 tan h

���
− S

2



_η0t . (12)

In case (R + η20S)2 + 2 _η20S � _η0 � 0, the solution becomes
the constant function η(t) � η0.

2.2.<e Analytical Solution to the Constant Forced Helmholtz
Equation. $e solution of the constant forced Helmholtz
equation

ξ″(t) + a + bξ(t) + cξ2(t) � 0,

ξ(0) � ξ0 & ξ′(0) � _ξ0,

⎧⎨

⎩ (13)

may be expressed in either one of the following forms. Note
that a � − F.

2.2.1. First Formula. Suppose that the solution of system
(13) has the following form:

ξ(t) � A +
B

1 + C (1/4) d2 − ℘′ t; g2, g3( /d1 − ℘ t; g2, g3( ( 
2

− d1 − ℘ t; g2, g3(  
, (14)

as well as

ξ(t) � A +
B

1 + C℘ t ± ℘− 1
d1; g2, g3( ; g2, g3 

, (15)

where a represents the constant force and ℘(t) gives the
Weierstrass elliptic function, which satisfies the following
relations:

℘′ x; g2, g3( 
2

� 4℘3 x; g2, g3(  − g1℘ x; g2, g3(  − g3,

℘″ x; g2, g3(  � −
g2

2
+ 6℘2 x; g2, g3( .

(16)

Inserting equation (14) into system (13) and after tedious
straightforward calculations, we can estimate the values of B,
C, g2, g3, d1, and d2 as follows:

B � −
6(a + A(Ac + b))

(2Ac + b)
,

C �
12

2Ac + b
,

g2 �
1
12

b
2

− 4ac ,

g3 �
1
216

(2Ac + b) b
2

− 2c 3a + A
2
c  − 2Abc ,

d1 �
A − ξ0( (2Ac + b)

6(a + A(Ac + b))
,

d2 � −
_ξ0(2Ac + b)

6(a + A(Ac + b))
.

(17)

$e value of parameter A represents a root to the fol-
lowing quartic equation:
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4a
2
b + a

2
b
2

− 4a
3
c + 4ab

2ξ0 − 4b
2ξ20 + 4abcξ20

− 2
8bcξ20 − 2ab

2
− ab

3
− 4a

2
c + 4a

2
bc

− 4b
2ξ0 − 2b

3ξ0 − 4abcξ0 − 2b
2
cξ20 − 4ac

2ξ20
⎛⎝ ⎞⎠A

+
b
4

− 4b
2

+ 12abc − 2ab
2
c − 8a

2
c
2

+32bcξ0 + 12b
2
cξ0 − 16c

2ξ20 + 12bc
2ξ20

⎛⎝ ⎞⎠A
2

+ 2c b
3

− 8b + 4ac − 4abc + 16cξ0 + 4bcξ0 + 4c
2ξ20 A

3

− c
2 16 − b

2
+ 4ac A

4
� 0.

(18)

2.2.2. Second Formula. As another form for the solution of
system (13), let us assume that its solution is given by the
following relationship:

ξ(t) � A +
B

1 − η(t)
, (19)

where η � η(t) is the solution to the following Duffing
equation:

η″(t) + Rη(t) + Sη3(t) � 0,

η(0) � η0 & η′(0) � _η0.

⎧⎨

⎩ (20)

By following the same procedures in the above sections,
we finally obtain

R �
3a + b(3A + B) + Ac(3A + 2B)

B
,

S � −
a + A(Ac + b)

B
,

η0 �
B

A − ξ0
+ 1,

_η0 �
B _ξ0

A − ξ0( 
2.

(21)

$e value of parameter A is a solution to the following
equation:

0 � A
6
c
3

+ 3bc
2
A
5

+ 15ac
2
A

4

− 10c
2 6aξ0 + 3bξ20 + 2cξ30 + 3 _ξ

2
0 A

3

− 15c 3a
2

+ 6abξ0 + 3b
2ξ20 + 2bcξ30 + 3b _ξ

2
0 A

2

− 3
9a

2
b + 18ab

2ξ0 − 12a
2
cξ0 + 9b

3ξ20

− 6abcξ20 + 6b
2
cξ30 − 4ac

2ξ30 + 9b
2 _ξ

2
0 − 6ac _ξ

2
0

⎛⎝ ⎞⎠A

+

− 27a
3

− 54a
2
bξ0 − 27ab

2ξ20 − 72a
2
cξ20 − 90abcξ30

− 18b
2
cξ40 − 48ac

2ξ40 − 24bc
2ξ50 − 8c

3ξ60 − 27ab _ξ
2
0

− 72acξ0 _ξ
2
0 − 36bcξ20 _ξ

2
0 − 24c

2ξ30 _ξ
2
0 − 18c _ξ

4
0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(22)

Also, the value of parameter B is a solution to the fol-
lowing equation:

0 � c
4
B
6

− 9c
2

b
2

− 4ac B
4

−

432

− 3a
2
b
2

+ 16a
3
c − 6ab

3ξ0 + 36a
2
bcξ0

− 3b
4ξ20 + 18ab

2
cξ20 + 36a

2
c
2ξ20 − 2b

3
cξ30

+48abc
2ξ30 + 9b

2
c
2ξ40 + 24ac

3ξ40 + 12bc
3ξ50 +

4c
4ξ60 − 3b

3 _ξ
2
0 + 18abc _ξ

2
0 + 36ac

2ξ0 _ξ
2
0

+18bc
2ξ20 _ξ

2
0 + 12c

3ξ30 _ξ
2
0 + 9c

2 _ξ
4
0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
(23)

2.3. <e Approximate Analytical Solution for the Constant
Forced and Damped Helmholtz Equation. Let us rewrite
system (1) in the following traditional form:

€x + 2ε _x + αx + βx
2

� F, x(0) � x0 x′(0) � _x0, (24)

with β≠ 0.
Also, let us assume that

α2 + 4Fβ≥ 0. (25)

Now, suppose that the solution of system (24) is given by

x(t) � d + exp(− εt)y(t), (26)

where y � y(t) is a solution to the following Helmholtz
equation:

y″ + py + βy
2

� 0,

y(0) � y0 � x0 − d,

y′(0) � _y0 � εx0 + _x0 − dε.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(27)

Inserting (26) into the first equation in system (24),
R(t) ≡ €x + 2ε _x + αx + βx2 − F � 0, we obtain

R(t) � βd
2

+ α d − F

+ e
− 2εt

y(t) βy(t) − e
εt

− α − 2β d + ε2 + p + βy(t)  .

(28)

Expression (28) suggests the following choices:

− α − 2βd + ε2 + p � 0,

βd
2

+ αd − F � 0,
(29)

giving us the values of p and d as follows:

p �� α + 2β d − ε2,

d �
− α +

��������

α2 + 4Fβ


2β
.

(30)

$e solution to the following IVP,
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y″ + α + 2β d − ε2 y + βy
2

� 0,

y(0) � y0 � x0 − d,

y′(0) � _y0 � εx0 + _x0 − dε,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(31)

may be expressed in different forms as we explained in the
previous section.

3. A Comparison between Our Solutions and
ADM Solution

$ere are many numerical methods that could be used to
find approximate solutions to IVP (24). Here, we make use

of the ADM [42–44] to solve IVP (24) with(out) forcing term
(F). According to this method, the first iteration/approxi-
mation for the unforced case (F) reads

xADM0(t) �
e

− εt

F
  εx0 + _x0( Θ1 + x0FΘ2 , (32)

where Θ1 � sin(tF), Θ2 � cos(tF), and F �
�����
α − ε2

√
.

For the second iteration/approximation, we have

xADM1(t) � β
e− εt

αF
 

3 − e
εt
F + εΘ1 + FΘ2 

αx0FΘ2 + εx0F
2

+ _x0F
2

+ ε3x0 + ε2 _x0 Θ1 
2

. (33)

$e approximate Adomian approximate solution reads

x(t) � xADM0(t) + xADM1(t) + · · · . (34)

For (ε, α, β, F) � (0.1, 4, 1, 0) and x(0) � 0& x′(0)

� 0.2, we can compare between the approximate/semi-
analytical solution (26) (for F � 0) and the ADM approxi-
mate numerical solution (34) and the RK4 approximate
numerical solution as shown in Figure 1. Also, the maximum
distance error according to the formula
LD � maxti≤t≤tf

|xRK4(t) − xmethod(t)| has been estimated:

LD � max0≤t≤40 xRK4(t) − xsemi− analy(t)


 � 0.000504825,

LD � max0≤t≤40 xRK4(t) − xADM(t)


 � 0.0000997768.

(35)

It is clear that the semianalytical solution (26) (for F � 0)
gives good results as compared to both the RK4 and ADM
approximate numerical solutions.

Now, let us find an approximate solution for IVP (24) in
the presence of the forcing term, using the ADM. Ac-
cordingly, the first approximation is given by

xADM0(t) �
e

− εt

F
  ε x0 − d(  + _x0(  Θ1 + x0 − d(  FΘ2 ,

(36)

where Θ1 � sin(t F), Θ2 � cos(t F), F �
�����
Λ − ε2

√
,

Λ � (α + 2βd), and d � (− α ±
��������
α2 + 4Fβ


)/(2β).

$e second approximation to IVP (24) according to the
ADM reads

xADM1(t) �
βe

− 2tε

2Λ F
2  d − x0( 

2
(− 2dβ − α) + 2 _x0ε d − x0(  − _x

2
0 

+
βe

− tε

Λ FN
  ε d − x0( 

2 13Λ − 8ε2  − 6Λ _x0 d − x0(  + 2 _x
2
0ε  Θ1

+
βe

− 2tε

Λ FN
  ε d − x0( 

2 8ε2 − 5Λ  + _x0 d − x0(  3Λ − 8ε2  + 2 _x
2
0ε  Θ1

−
βe

− tε

ΛN
  d − x0( 

2 3Λ + 8ε2  + 16 _x0ε x0 − d(  + 6 _x
2
0  Θ2

−
βe

− 2tε

2ΛN F
2 

2 _x0ε d − x0(  7Λ − 8ε2  + _x
2
0 − 3Λ + 4ε2  +

d − x0( 
2

− 18ε2Λ + 3Λ2 + 16ε4 

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠ Θ2,

(37)
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where N � (8ε2 − 9(2 dβ + α)).
$e approximate Adomian approximate solution is

given by

x(t) � xADM0(t) + xADM1(t) + · · · . (38)

For (ε, α, β, F) � (0.1, 2, 1, 1) and x(0) � 0& x′(0) � 0.2,
a comparison between the semianalytical solution (26) (for
F≠ 0) and the ADM approximate numerical solution (38)
and the RK4 approximate numerical solution has been in-
vestigated as shown in Figure 2. Furthermore, the maximum
distance error has been calculated as follows:

LD � max0≤t≤40 xRK4(t) − xsemi− analy(t)


 � 0.00332902,

LD � max0≤t≤40 xRK4(t) − xADM(t)


 � 0.00132421.

(39)

Also, the semianalytical solution (26) for F � 0 and F≠ 0
gives excellent results as compared to the ADM approximate
numerical solution (38).

4. Quantum Plasma Oscillations

In this section, we will reduce the fluid governing equations
of a quantum plasma model to an evolution equation using
the RPT [45–49]. After a suitable transformation, we will be
able to convert the obtained evolution equation to a
Helmholtz-type equation in order to investigate the char-
acteristics behavior of the damping oscillations in the model
under consideration. Now, let us assume that we have a
collisionless and unmagnetized electron-ion quantum
plasma consisting of inertialess degenerate trapped electrons
which obey the Fermi–Dirac distribution and classical fluid
cold positive nondegenerate ion. $us, the basic normalized
fluid equations that govern the nonlinear dynamics of
various structures could be presented as [51, 52]

ztn + zx(nu) � 0,

ztu + uzxu + zxϕ � ηz
2
xu,

z
2
xϕ � ne − n( ,

(40)

where ne and n represent the normalized electron and ion
number densities, respectively, u gives the normalized ion
speed, η is the normalized kinematic viscosity of the ions,
and ϕ indicates the normalized electrostatic wave potential.
$erefore, we shall adopt the adiabatic trapped degeneracy
for electrons, by relying on notations similar to those in [52],
wherein the fundamental algebra is expressed in detail. $e
electron normalized number density according to Fer-
mi–Dirac distribution reads

ne �

�������

(1 + ϕ)
3



+
T
2

������
(1 + ϕ)



≈ s0 + s1ϕ + s2ϕ
2

+ s3ϕ
3
,

(41)

where T expresses the normalized temperature of the de-
generate electron, s0 � (1 + T2), s1 � (3 − T2)/2,
s2 � 3(1 + T2)/8, and s3 � − (1 + 5T2)/6. Note that expres-
sion (41) is obtained under the approximation ϕ≪ 1 for
small wave amplitude.

For investigating the nonlinear structures and oscilla-
tions in the present model, the RPM will be employed for
this purpose. Accordingly, the stretching and expansions for
the independent and dependent variables are, respectively,
introduced as follows:

ξ � ε(1/2)
x − Vpht ,

τ � ε(3/2)
t,

(42)

n(x, t) � 1 + εn(1)
+ ε2n(2)

+ ε3n(3)
+ · · · ,

u(x, t) � εu(1)
+ ε2u(2)

+ ε3u(3)
+ · · · ,

ϕ(x, t) � εϕ(1)
+ ε2ϕ(2)

+ ε3ϕ(3)
+ · · · ,

(43)
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Figure 1: A comparison between approximate analytical solution
(26) (dotted curve) for F � 0 and both RK4 (dashed curve) and
ADM (dashed-dot curve) numerical solutions is plotted against the
time.
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Figure 2: A comparison between approximate analytical solution
(26) (dotted curve) for F≠ 0 and both RK4 (dashed curve) and
ADM (dashed-dot curve) numerical solutions is plotted against the
time.

6 Mathematical Problems in Engineering



where ε is a small (ε≪ 1) and real parameter and Vph
represents the normalized phase velocity of the unmodu-
lated structures. It is assumed that the impact of ionic ki-
nematic viscosity is small according tomany lab experiments
[53, 54]. $us, we could set η � ε1/2η, where η is O(1). By
substituting stretching (42) and expansions (43) into system
(40) and by collecting the terms of different powers of ε, we
could get a system of reduced equations. Solving the system
of reduced equations for the first-two orders of ε by fol-
lowing the same procedures in [46–49], we finally obtain the
Korteweg–de Vries Burgers (KdVB) equation [50].

zτϕ + Apϕzξϕ + Bpz
3
ξϕ − Cpz

2
ξϕ � 0, (44)

with

Ap � Bp

3
V

4
ph

− 2s2
⎛⎝ ⎞⎠,

Bp �
V

3
ph

2
,

Cp �
η
2
,

Vph �
1
��
s1

√ ,

(45)

where Ap, Bp, and Cp represent the coefficients of the
nonlinear, dispersion, and dissipative terms, respectively,
and ϕ ≡ ϕ(1).

Using the traveling wave transformation ϕ(ξ + Vft)

� q(ζ), where ζ � ξ + Vft and Vf gives the frame velocity,

into the KdVB equation (44) and integrating once over ζ,
we get the constant forced and damped Helmholtz
equation as follows:

q″(ζ) + 2cq′(ζ) + αq(ζ) + βq(ζ)
2

� C, (46)

where C is the integration constant, c � − Cp/(2Bp),
α � Vf/Bp, and β � Ap/(2Bp). Now, we can apply the above
solution of the constant forced and damped Helmholtz
equation that is given in equation (26) to equation (46) for
investigating the characteristics of the damped oscillations in
a quantum plasma.

Note that if the ionic kinematic viscosity is neglected, i.e.,
Cp � 0, then the KdV and undamped Helmholtz equations
could be covered. $e KdV equation, i.e., equation (44) for
Cp � 0, is one of the most popular soliton and cnoidal
equations and has been extensively investigated. For the
soliton solution, the following conditions must be fulfilled:
(q(ζ), q′(ζ), q″(ζ))⟶ 0 at ζ⟶ ±∞, so the integration
constant C in equation (46) must vanish. Accordingly,
equation (46) could be reduced to the undamped Helmholtz
equation:

q″(ζ) + αq(ζ) + βq(ζ)
2

� 0. (47)

It is well known that equation (47) supports many so-
lutions such as periodic solution (see the solutions to the
constant forced Helmholtz equation above) and solitons.
$e soliton solution to equation (47) in the form of the
Weierstrass elliptic function ℘ could be written in the fol-
lowing manner:

ϕ(x, t) �
2αβ +

�����������
α2 β2 + 2αC 



α2
−

(9β/2α)

1 + 6℘ x − t
�����������
α2 β2 + 2Cα 


/α ; (1/12), − (1/216) 

, (48)

where (x, t) ≡ (ζ, τ).
Here, the obtained approximate analytical solution (26)

to the constant forced and damped Helmholtz equation (46)
will be analyzed numerically according to the quantum
plasma parameters (T, η) � (0.1, 0.055), i.e., (α, β, c, F)

� (1.828, 2.98, − 0.05, F), and (T, η) � (0.9, 0.18), i.e.,
(α, β, c, F) � (1.146, 1.7273, − 0.1, F). $e behavior of the
quantum plasma oscillations according to the approximate

analytical solution (26) and the approximate numerical
solution according to the RK4 method is presented in
Figure 3 for different values of quantum plasma parameters.
It is clear from Figure 3 that our approximate analytical
solution (26) is more accurate than the RK4 numerical
solution. On the contrary, the RK4 numerical solution gives
poor results and with increasing time this solution becomes
unstable.
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5. Conclusions

$e Helmholtz-type equations including the constant forced
undampingHelmholtz equation (equation (1)) and the constant
forced damping Helmholtz equation (equation (2)) have been
solved analytically and numerically. Two techniques were used
to get the analytical solutions to equation (1). In the first
technique, we used a new assumption to find an analytical
solution to equation (1) in the form of Weierstrass elliptic
function. In the second case, the solution of the standard
Duffing equation has been utilized to find an analytical solution
to equation (1) in the form of Jacobian elliptic function.
However, the main goal of this paper is to solve equation (2),
using the obtained solutions of equation (1). Moreover, both
equation (1) and equation (2) have been solved numerically via
the ADM. $e analytical and approximate analytical solutions
of equations (1) and (2) have been compared to the RK4 and
ADM approximate numerical solutions. Furthermore, the
maximum distance error between the RK4 approximate nu-
merical solution and the approximate analytical solutions in
addition to the approximate numerical solution using the ADM
has been estimated. It was found that the obtained solutions are
generally consistent with both RK4 and ADM solutions.
Moreover, the obtained solutions have been applied for ana-
lyzing the oscillations that may arise in the quantum plasma.

During the analysis, it was found sometimes that the approx-
imate analytical solution is better than the RK4 numerical
solution as shown in the quantum plasma model. Finally, these
solutions may help us understand the oscillations that may arise
in the different physical and engineering systems.

In future work, the similar approaches could be used for
analyzing and solving higher-order nonlinear oscillator equa-
tions. Also, a damping Helmholtz–Duffing equation with time-
dependent forced term is considered one of the most important
and vital problems due to its great role in explaining many
natural phenomena in different branches of science.$us, in the
next work, some new approaches will be devoted to find some
solutions for these problems.
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