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Stochastic resonance is like a nonlinear filter to detect the weak bearing fault-induced impulses that submerged in strong noises.
Signal-to-noise ratio (SNR) is often used as the index to evaluate the SR output, but the fault characteristic frequency (FCF) must
be known in order to calculate SNR. A novel bearing fault diagnosis method called synthetic quantitative index-based adaptive
underdamped stochastic resonance (SQI-AUSR) is proposed. The synthetic quantitative index (SQI) is composed of power
spectrum kurtosis, kurtosis, margin index, and correlation coefficient. The SQI is independent of FCF, which avoids the limitation
that the calculation of SNR must know the FCF. Numeric simulations and two case studies of bearing faults are carried out. The
results show that (1) the SQI is more effective than other proposed indexes such as correlation coefficient and weight power

spectrum kurtosis and (2) the proposed SQI-AUSR is effective for bearing fault diagnosis and is better than SNR-AOSR.

1. Introduction

Bearing is one of the most commonly used parts in rotary
machinery, but prone to failure because of its poor work
environment such as high temperature, low lubrication, and
strong cyclic stress, which can cause tremendous economic
losses and even fatal accident. However, the impulses induced
by bearing failure, especially the incipient bearing failure, are
submerged in strong noise and difficult to be detected. To
improve the weak fault-induced impulses, some methods are
proposed. Bessous et al. [1] applied discrete wavelets transform
to bearing defects’” diagnosis. Chegini et al. [2] used empirical
wavelet transform to reduce the noise of bearing vibration
signal so as to realize bearing fault diagnosis. Gong et al. [3]
proposed the tentative variational mode decomposition for the
fault feature detection of rolling element bearing. Although
much research has been carried out on bearing fault diagnosis,
most methods focus on the noise removal rather than the fault-
induced impulse enhancement.

Unlike the traditional filters, stochastic resonance (SR) is
like the nonlinear filter that enhances the weak signal with

the help of appropriate noise in the proper nonlinear system.
However, according to adiabatic approximation theory, the
traditional SR only can process the small-parameter signal
that the frequency is less than 1 Hz. However, most bearing
fault signals are usually large-parameter signal in which the
frequency is larger than 1 Hz, which cannot be processed by
the traditional SR. As to this problem, some large-parameter
SR (LPSR) methods are proposed such as normalized scale
transform SR [4], step-changed SR [5], and re-scaling SR [6].
In essence, these methods transform the large-parameter
signal into a proper small-parameter signal or adjust the SR
potential parameters to the proper. Normalized scale
transform SR will be used in our proposed method.

Most SR methods concern four aspects including SR
models, SR potentials, optimization algorithms, and eval-
uation criterions [7, 8]. SR models express the SR phe-
nomenon types such as overdamped SR [9], underdamped
SR [10], cascaded SR [11], and parallel SR [12]. SR potentials
express the SR nonlinear systems such as monostable po-
tential [13], bistable potential [9-12], tristable potential [14],
and multistable potential [15]. SR model and SR potential
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focus on the description of SR phenomenon. The under-
damped SR with bistable potential will be introduced in our
proposed method. Unlike these two aspects, optimization
algorithms are used to find the proper parameters adaptively
that transform the larger signal to the proper small-pa-
rameter signal or adjust the potential parameter to the
proper. Many optimization algorithms can be used such as
differential evolution algorithm [16-18], cuckoo search
[9, 13], and Levenberg-Marquardt algorithm [12]. Cuckoo
search is a good optimization algorithm which has been used
in our previous studies [9, 13] and will be used in our
proposed.

Evaluation criterions are used to evaluate the SR effect.
When optimization algorithms are used to find the optimal
SR parameters adaptively, evaluation criterions are neces-
sary. The most commonly used evaluation indexes are
signal-to-noise ratio (SNR) and its improved indexes [9-13].
Larger the SNR or its improved indexes are, better the SR
effect is. When calculating these indexes, the fault charac-
teristic frequency (FCF) is necessary. However, FCF is not
always known because the bearing structure parameters or
the rotational speed are not always known. Correlation
coefficient (CC) [19] and weighted power spectrum kurtosis
(WPSK) [20] are independent of the FCF and avoid the
limitation of FCF. Larger the CC or WPSK is, better the SR
effect is. However, the two indexes are not always valid to
evaluate the SR effect especially when the input SNR is low.
Proper synthetic index is made up of multiple single indexes
and is more robust than the single index. For example, the
WPSK that is made up of CC and power spectrum kurtosis
(PSK) is more robust than CC in most cases. In addition,
PSK and CC are related to the SNR [20]. Larger the SNR is,
the larger the PSK or the CC is. Therefore, the single indexes
that constitute the synthetic index should be independent of
the FCF and related to the SNR. In this paper, we collect four
indicators that are independent on FCF, research their re-
lationship with the SNR, and propose a novel synthetic
quantitative index (SQI) instead of SNR.

The remaining sections are arranged as follows. Section 2
will introduce the bearing fault diagnosis framework based
on adaptive underdamped SR, underdamped SR, and
cuckoo search. Section 3 will introduce the four evaluation
indexes that are independent on FCF, analyze their rela-
tionship with the SNR, and propose the SQI. Section 4 will
verify the novel SQI by numeric simulation and apply the
proposed SQI-AUSR to bearing fault diagnosis. Section 5
will summarize this paper.

2. Bearing Fault Diagnosis Based on Adaptive
Underdamped Stochastic Resonance

2.1. Bearing Fault Diagnosis Framework. A bearing fault
diagnosis framework with eight steps is established, as
shown in Figure 1.

Step 1: acquire the vibration signal of the bearings. The
closer the sensor is to the bearing, the easier the fault is
to be detected from the acquired vibration signal.
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Step 2: preprocess the signal. Resonance demodulation
is applied to preprocess the bearing signal. Then, the
Hilbert transform is used to obtain the envelope signal.

Step 3: initialize the parameters. Some parameters of
USR and CS should be set.

Step 4: operate USR. The envelope signal is inputted to
the USR and the SR output is obtained. And, the USR
will be introduced in Section 2.2.

Step 5: evaluate the SR output by an index. The most
used index is the SNR. However, the FCF should be
known at first. A novel synthetic index that does not
need the FCF is proposed in this paper. The novel
synthetic index will be introduced in Section 3.

Step 6: execute the termination judgment. If the index
reaches the optimum or the iteration reaches the max,
the SR output and the optimum parameter will be
recorded, and step 8 will be jumped to. Otherwise, step
7 will be carried out.

Step 7: search the optimum parameters by CS. CS is an
effective heuristic optimization algorithm, which can
help find the optimum USR parameters quickly. It will
be introduced in Section 2.3.

Step 8: analyse and diagnose the output. The final SR
out will be analyzed and the bearing condition will be
diagnosed.

2.2. Underdamped Stochastic Resonance. SR describes an
interesting noise-benefit physical phenomenon that the
weak signal can be enhanced when the weak signal and
proper noise are inputted to a proper nonlinear system.
When the damping factor is considered, the underdamped
SR (USR) phenomenon can be described as follows:

¢x dx  dU(x)

il - — 1
. 1y i +8,(t) + N (t), (1)

where x is the trajectory of the particle. y > 0 is the damping
factor. When y =0, the SR is called overdamped SR (OSR). S4
(t) = Asin (27tf4t) is the weak driving signal with amplitude A
and frequency f; N (f) = (2D)Y%¢ () is the Gaussian white
noise (GWN) with noise intensity D. ¢ (t) is the standard
GWN. U (x) is the nonlinear system called potential
function, and the common nonlinear system is the bistable
potential function as follows:
a, b,

U(x) = X (2)
where both a > 0 and b > 0 are the potential parameters of the
bistable potential function U (x) whose shape is shown in
Figure 2. The bistable potential function U (x) has two
minimums located at +x,,, = + (a/b)"* and a potential barrier
located at x;, =0 with the height AU= a*/(4b).

Substituting (2) into equation (1), the bistable USR is
obtained as follows:

d*x dx

?:—yamx—bx%sd(t)uv(t). (3)
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FIGURE 1: Bearing fault diagnosis framework.
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FIGURE 2: The shape of the bistable potential function (U) (x).

Let z=(a/b)"?*x, T=at,and S (1) =S, (t) + N (¥); then, (3)
is rewritten as follows:

dz_z _—y(dz/d1) +z - 2° + KS(v/(f ,H))
dr? f.H ’

where K = (b/a’)"/? is the amplitude gain, H=ax h=alf, is
the time resolution after transformation, and f; is the
sampling frequency. Because the coeflicient of z becomes 1
after transformation, this transformation is called normal-
ized scale transform.

After transformation, the current time resolution H is a
times of the original, which says that the driving frequency f;
is reduced by a times. In addition, the signal amplitude also
becomes K times of the original. Therefore, signal S is
transformed from a large-parameter signal into a small-
parameter signal after transformation, and the LPSR can be
realized.

Let z; =z and z, = dz,/d7; equation (4) can be rewritten
as follows:

(4)

bl
dr ~ 7%

(5)
dz,  —yz+z - z, + KS(1/f ;H)
dr fH '

The collected vibration signals are all discrete signals.
When § is the discrete signal, equation (5) can be solved by
equation (6) as follows:

3
Zfl) = Zz(l) = Oa
fi(z2) =25,
3
—yz, +z; — 2] +KS
f2(21,2,,8) = 2 flsH ! >
A= fl(zz(n))’
B, = fz(zfn)ﬂz(n)’sn)’
H
()
A, = fil 2" +7Bl>’
H H
BZ = JC2 Zl(n) +EA1, Zz(n) + ?Bl,Sn>,
H
(1)
| A3 :fl Zzn +?BZ>’ (6)

H H
B; = f2<z1(n) +5A2’Z§n) + ?BZ’SnJrl)’

H H

By=f, Zl(n) + EA3’Zz(n) + 7BS’Sn+1>’
As = (2" + HB,),

Bs = fy(2{" + HAp, 23" + HB,,S,,)),

H
zMD = 2"y < (A; + Ay + 245 + Ay + As),

H
Z2M = 2y < (By+ By + 2By + By + Bs).

Input signal S (¢) is the actual vibration signal and
cannot be changed. SR output z is depended on param-
eters (H, K, y), which can be seen from equation (6). Thus,
the adaptive USR focuses on the search of the optimum
parameters (H, K, y).

2.3. Cuckoo Search. Cuckoo search (CS) is an effective in-
telligent optimization algorithm that is designed according
to the parasitic breeding strategy of the cuckoos [9, 21]. This
algorithm regards the solutions as the cuckoo eggs, the
optimum solution that owns the optimum fitness as the
optimum cuckoo egg, and the feasible region of the solutions



as the cuckoos’ search zone. Three ideal assumptions are set
up:
The cuckoo lays only one egg at a time and then
randomly throws it into the nest.
The optimum eggs at present should be left to the next
generation.

The number of nests is immutable. Some cuckoo eggs
are found by the host birds with a probability Pa = (0,
1], and then, they will be replaced with new eggs.

New solutions are produced from old solutions. The
update by Lévy flights is performed as follows[21]:

XD = ®

+ S,

u () () -
5~R|V|(—1/ﬁ)(xi —xbest), i=12,...,n,

u~ N(O, ai),

, [T+ Psin((np)2) "7
YT T+ pralpePr |

v~ N(0,1),
ai =1,
where xi(t“) is the ith cuckoo egg of the (t + 1)th generation,

xi(t) is the ith cuckoo egg of the tth generation, s is the step
length, R is the step-size scale, xé?st is the optimum cuckoo
egg among the whole eggs of the tth generation, u and v obey
Gaussian distribution, I (-) is the standard gamma function,
n is the number of the nests, and 3 is a constant and equal to
1.5 in this paper.

Based on these three rules and the necessary steps, CS
can be summarized as the pseudocode shown in Figure 3.

3. Novel Synthetic Quantitative Index

Many indexes can be used to evaluate the SR output. SNR is
the most used index. However, the FCF should be known
before the calculation of SNR. A novel synthetic index that
does not need the known FCF is proposed in this section.

3.1. Traditional Evaluation Indexes. Five traditional evalu-
ation indexes including SNR, power spectrum kurtosis
(PSK), kurtosis (K), margin index (MI), and correlation
coeflicient (CC) are shown in Table 1.

Supposing that the input signal is x (k), the output signal
is y (k), the frequency spectrum of y (k) is Y (k), and the
power spectrum of y (k) is PY (k), the spectrums and the five
indexes are defined as follows:
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Begin
Parameter Initialization. ;= 0)
While G< G,,,, do

max
Generate candidate solutions (say i) and evaluate fitness F;.
Choose a solution from population (say j) randomly and
evaluate fitness F;.
If (F; better than Fj)

Replace solution j by candidate solution i.
End
Abandon a fraction of worse solutions with a probability P,
and build new ones.

Keep the best solutions.

G=G+1.
End while
END.
FiGURE 3: Pseudocode of CS.
1N 2mkn
Y (k) =N nz:(:) y(n)exp(—] N ) ,
2
1|2t 2mkn
PY (k) =N ,;) y(n)exp(—] N ) ,
SNR =101 PYq
= (0] —
§ YN py, - Py,
2 N2 (py (i) - PY)*
PSK = ( /N) Zz:l ( (1) )

(@) S (pY () - YY) (8)

K = Ny, (yi_7)4,
(Zf\:jl (i - 7)2)

MI = maxlyil S
(amzXIn)
oo IR (i-7)

TV - 0 9)

3.2. Correlation Analysis by Numeric Simulation. To find the
index instead of SNR, the correlations between SNR and the
other four indexes are analyzed. Correlation coeflicient is a
common index that reflects the relationship between two
variables. The correlation coefficient of variable A and
variable B is defined as follows:

N _ _
CC = Zizl (Ai — A) (Bi B B)
—2 —2
VY, (4,- A5, (B~ B)
The closer the |CC| is to 1, the greater the correlation
between A and B is. When CC is smaller than 0, A and B are

negatively correlated. When CC is larger than 0, they are
positively correlated.

(9)
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TaBLE 1: Tradition signal evaluation indexes.

Need FCF No need FCF
SNR PSK, K, MI, CC

To analyze the correlations between SNR and the other
four indexes, a numeric simulation will be carried out. In the
simulation, the driving signal S; is the sine signal with
driving frequency f; = 120 Hz and amplitude A = 1. The noise
is the GWN with the noise intensity from 0.199 to 49.882 (an
equal ratio sequence with length 49 and ratio 1.122).
Sampling frequency f; is 8000. Signal length N is 2048. To
reduce the influence of noise randomness, 10 groups of noise
with the same intensity were generated. Thus, 490 groups of
noise were generated. The mixtures of the driving signal and
every noise are regarded as the USR inputs and their SNRs
are calculated. These USR inputs are processed by USR, and
CS is used to search the optimum parameters (H, K, y),
which can maximize the SNR of the USR outputs. The max
SNRs of the USR outputs are recorded. Then, PSK, K, and MI
of the USR outputs and the CC between input and every USR
output are calculated. The CCs are calculated as shown in
Table 2. From Table 2, we can find that there is a positive
correlation between CC and input SNR, a positive corre-
lation between PSK and output SNR, a negative correlation
between K and output SNR, and a negative correlation
between MI and output SNR. And, the four relationships are
shown in Figure 4, from which the same conclusion as
Table 2 can be drawn. Figure 5 shows the box plots of PSK, K,
and MI. From Figure 5, we can find that most of the three
indexes are in their own specific small areas.

3.3. Novel Synthetic Quantitative Index. CC, PSK, K, and MI
cannot replace SNR singly. Under the comprehensive
consideration of these four indexes, a novel synthetical
quantitative index (SQI) is constructed as

PSK M M
SQI = |CC|<wPSKm + wK?K + (OMIWI\;I), (10)

where CC is the correlation coefficient between USR input
and output. PSK, K, and MI are the power spectrum kurtosis,
kurtosis, and margin index of the USR output, respectively.
wpsk = 0.862, wi =0.772, and wyy; = 0.830 are the weights of
PSK, K, and M, respectively, which can be found in Table 2.
Mpgk =1002.227, Mg =1.989, and My =2.643 are the me-
dians of PSK, K, and MI, which can be found in Figure 5.

The larger the SQI is, the better the USR output is. Thus,
an objective function for searching the optimum USR pa-
rameters can be built as

(H,K,y) = max SQI(z). (11)

4. Verification

4.1. Verification by Numeric Simulation. The effectiveness of
SQI will be analyzed by numeric simulation. SQI will be used

as the evaluation index of USR output. For comparison, CC
[19] and WPSK [20] are also used as the evaluation index.

In this simulation, the driving signal S4 is the sine signal
with driving frequency f;=120 Hz and amplitude A = 1. The
noise is the GWN with the noise intensity from 0.250 to
49.882 (an equal ratio sequence with length 24 and ratio
1.250). Sampling frequency f; is 8000. Signal length N is
2048. To reduce the influence of noise randomness, 5 groups
of noise with the same intensity were generated. Thus, 120
groups of noise were generated. The mixtures of the driving
signal and every noise are regarded as the USR inputs. The
parameters of CS are set as H € [10, 200], K € [107° 10°], and
y € [107%, 2]. The max CC, WPSK, and SQI are searched by
CS, respectively, and the SNRs of the corresponding USR
outputs are also calculated.

We suppose that the index is successful when the SNR of
the corresponding USR output is larger than —1dB. The
success number and success rate are shown in Table 3. From
Table 3, we can find that the success rate based on SQI is up
to 94.17% which is the largest of the three methods. Thus,
SQI-AUSR is the best and SQI can replace SNR when FCF is
unknown.

The input SNRs versus WPSK, SQI, and their USR
output SNRs are shown in Figure 6. With the increase of the
input SNRs, both the max WPSK and max SQI rise, as shown
in Figures 6(a) and 6(b). However, the SNRs of their cor-
responding USR outputs are around [-1, 15] dB, which
means that the USR output SNR has the upper limit.
Meanwhile, the faults appear when the input signal is small,
as shown in Figures 6(c) and 6(d). However, the fault times
of SQI-AUSR are smaller than WPSK-AUSR. It means that
SQI-AUSR is better than WPSK-AUSR when the input SNR
is small. And, when the input SNR is high, both of these
methods are right.

4.2. Verification by Bearing Fault Signals. Two bearing
planted-fault tests will be conducted through the test rig, as
shown in Figure 7. The planted-fault bearing type is ER-12K,
whose main dimensions and FCFs/f are shown in Table 4.
The planted fault is a deep groove with 0.5 mm width located
in the inner or outer race. The planted-fault bearing is lo-
cated in bearing 1. The motor speed fz is 30 round/s.

The relevant parameters are set as follows: sampling
frequency f,=12.8 kHz, signal length N=8192, He [1073,
10%], Ke[1073, 107, y€ [107%, 2], max generation Gy = 50,
and population size n = 30. SNR-AOSR [9] and the proposed
SQI-AUSR are both used to analyze the fault signals for
comparison.

4.2.1. Verification by Outer Race Fault Signal. The outer race
fault signal is analyzed at first. fgpro is equal to 91.44 Hz. 30-
order Butterworth band-pass filter with the pass-band [1500,
5000] Hz is applying to filtering the fault signal. Then,
Hilbert transform is used to envelop the filtered signal. The
envelope signal is obtained, as shown in Figure 8(a). SNR-
AOSR and SQI-AUSR are used to process the preprocessed
signal, respectively. CS is used to search the optimum
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TaBLE 2: Correlation coefficients between SNR of the input or output signals and other four indexes.

PSK K MI CC
Input SNR 0.370 —-0.351 —-0.537 0.981
Output SNR 0.862 -0.772 -0.830 0.5345
06 1000 [
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FIGURE 4: (a) Input SNR versus CC; output SNR versus (b) PSK, (¢) K, and (d) ML
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TaBLE 3: The success times and success rates of CC, WPSK, and SQI.

Success times

Fault times

Success rate (%)

CC-AUSR

81 39 67.57
WPSK-AUSR 107 13 89.17
SQI-AUSR 113 7 94.17
Note. If the SNR of the corresponding USR output is larger than —1dB, it is judged as a success.
800 T T T T 30
600 | 1
2t * 1
*:
< ~ §§
£ 400 { g *;iii*
= ? *
1} *?;ii J
200 ] 5 ¥§*§*
peeprsth
ol - - - - ol - - - -
-25 -20 -15 -10 -5 -25 -20 -15 -10 -5
Input SNR (dB) Input SNR (dB)
(@) (b)
20 pr 20
MIETE - E L Ll o
2 ol 1B ol% S L L
= =
5 | apt Z L
2 | A s | %
S 20t A { B -2¢}
) A A o} *
*
40 - - : - 40 b : - - :
-25 -20 -15 -10 -5 -25 -20 -15 -10 -5
Input SNR (dB) Input SNR (dB)
(c) (d)
F1GUrE 6: Input SNRs versus (a) WPSK, (b) SQI, (c) WPSK-AUSR output SNR, and (d) SQI-AUSR output SNR.
[Bearing 1] [ Wheels | [Bearing2]
FIGURE 7: Bearing fault test rig.
TaBLE 4: The dimensions and characteristic failure parameters of bearing ER-12K.
Ball number Ball diameter (inch) Pitch diameter (inch BPFI (fr) BPFO (fr)
8 0.3125 1.318 4.950 3.048

Note. BPFI means the ball pass frequency inner race; BPFO means the ball pass frequency outer race; f is the bearing rotation speed.
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FIGURE 8: Analyzed results of the outer race fault signal: (a) envelope signal; (b) SNR-AOSR output with (H), (K) = (0.0898, 100); (c) SQI-

AUSR output with ((H), (K), y)=(28.657, 0.287, 2).

TaBLE 5: The SNRs of the preprocessed signal, SNR-AOSR output, and SQI-AUSR output.

, SNR (dB)
Fault location )
Preprocessed signal SNR-AOSR output SQI-AUSR output
Outer race -3.339 -2.951 4.822
Inner race -10.300 -7.138 0.946

Note. The preprocessed signal is the SR input. For example, the preprocessed signal is the envelope signal for the outer race fault case.

parameters. Their optimum SR outputs are shown in
Figures 8(b) and 8(c). The SNRs of the preprocessed
signal, SNR-AOSR output, and SQI-AUSR output are
shown in Table 5. It is obvious that both the output SNRs
are larger than the preprocessed signal, which means that
SR can enhance the weak signal. The SQI-AUSR output
SNR (4.822dB) is higher than the SNR-AOSR output
SNR (2.951 dB). Consequently, SQI-AUSR is better than
SNR-AOSR, and the proposed SQI is practicable in this
case.

4.2.2. Verification by Inner Race Fault Signal. Then, the
inner race fault signal is analyzed. fpppr is equal to
148.50 Hz. The same way is used to preprocess the fault
signal. And, the obtained envelope signal is shown in
Figure 9(a). Because the harmonics of the rotation fre-
quency fr (marked by the dotted box in Figure 9(a)) are

intense which can is adverse for SR effect, they removed by
the spectrum editing technology, as shown in Figure 9(b)
[9]. SNR-AOSR and SQI-AUSR are used to process the
preprocessed signal, respectively. CS is used to search the
optimum parameters. Their optimum SR outputs are
shown in Figures 9(c) and 9(d). The SNRs of the pre-
processed signal, SNR-AOSR output, and SQI-AUSR
output are shown in Table 5. It is obvious that both the
output SNRs are larger than the preprocessed signal,
which means that SR can enhance the weak signal. The
SQI-AUSR output SNR (0.946 dB) is much higher than the
SNR-AOSR output SNR (-7.138 dB). Consequently, SQI-
AUSR is better than SNR-AOSR and the proposed SQI is
practicable in this case. In Figure 9(c), the low-frequency
components that are lower than fgpgy are also enhanced,
which means that SNR-AOSR is like a low-pass filter that
cannot filter the low-frequency components. However,
SQI-AUSR filters not only the high-frequency
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FIGURE 9: Analyzed results of the inner race fault signal: (a) envelope signal; (b) envelope signal after removing the rotation frequency fz and
its harmonic 2fz; (c¢) SNR-AOSR output with [(H), (K)] =[0.140, 100]; (d) SQI-AUSR output with [(H), (K), y] =[72.629, 0.594, 1.996].

components but also the low-frequency components,
which means that it is like a band-pass filter.

5. Conclusions

A novel synthetic quantitative index-based adaptive
underdamped stochastic resonance (SQI-AUSR) is
proposed for bearing fault diagnosis. Numeric simula-
tions and case verifications prove that (1) SQI-AUSR can
detect the weak signal even when the FCF is unknown,
(2) the proposed SQI has more effective than CC or
WPSK for realizing the SR, and (3) SQI-AUSR has better
capability than SNR-AOSR for the bearing fault
diagnosis.
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