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Empirical mode decomposition (EMD) is an effective method to deal with nonlinear nonstationary data, but the lack of or-
thogonal decomposition theory andmode-mixing are themain problems that limit the application of EMD. In order to solve these
two problems, we propose an improvedmethod of EMD..emost important part of this improvedmethod is to change the mean
value by envelopes of signal in EMD to the mean value by the definite integral, which enables the mean value to be mathematically
expressed strictly. Firstly, we prove that the signal is orthogonally decomposed by the improved method. Secondly, the Monte
Carlo method of white noise is used to explain that the improved method can effectively alleviate mode-mixing. In addition, the
improved method is adaptive and does not need any input parameters, and the intrinsic mode functions (IMFs) generated from it
is robust to sifting. We have carried out experiments on a series of artificial and real data, the results show that the improved
method is the orthogonal decomposition method and can effectively alleviate mode-mixing, and it has better decomposition
performance and physical meaning than EMD, ensemble EMD (EEMD), and complete ensemble empirical mode decomposition
with adaptive noise (CEEMDAN). In addition, the improved method is generally more time-consuming than EMD, but far less
than EEMD and CEEMDAN.

1. Introduction

Empirical mode decomposition (EMD) [1] is a local, data-
driven, and adaptive method in processing nonlinear and
nonstationary signals and has been widely used in ma-
chinery, voice, geography, medicine, and other fields [2–10].

However, because EMD is an experience-based method,
there are many problems [11]. .ese problems include the
mixing of multiscale modes, and the sifting process for in-
trinsic mode functions (IMFs) requires an appropriate
stopping criterion, the end effect, and the orthogonality of
IMFs. Among them, EMD has been criticized by signal
processing experts because of the lack of orthogonal de-
composition theory, which has become a major problem
restricting the application of EMD [12, 13]. Various research
studies based on the orthogonal or approximate orthogonal

decomposition methods of EMD [12, 14–17] are not con-
vincing. References [18, 19] use Schmidtʼs formula to make
IMFs strictly orthogonal, but it cannot guarantee that the IMF
is obtained from the orthogonal decomposition of the signal.
Mode-mixing between IMFs is another major problem that
limits EMD applications. Although a large number of im-
proved methods of EMD are devoted to solving this problem,
they often need to determine the input parameters a priori.
Inappropriate parameters will reduce the accuracy of de-
composition [20] and even lead to decomposition failure. For
example, ensemble EMD (EEMD) [21], complementary
EEMD (CEEMD) [22], and complete ensemble empirical
mode decomposition with adaptive noise (CEEMDAN) [23]
effectively alleviate mode-mixing, but need to set parameters
of the amplitude and quantity of auxiliary noise; moreover,
their related procedures are time-consuming, which is often
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intolerable for large-length signal; empirical wavelet trans-
form (EWT) [24], variational mode decomposition (VMD)
[25], and the methods based on Hankel matrix eigenvalue
decomposition (EVD) [26] build EMD on additional classical
theoretical methods to alleviate mode-mixing, but they also
need to carefully select appropriate parameters, especially the
number of mode components.

In fact, the orthogonality and mode-mixing between
IMFs are related. If the signal will be orthogonally
decomposed and the mode components will orthogonal,
mode-mixing will be effectively alleviated. For this reason,
an improved EMD method is proposed in this study. .e
most important change in the improved method is to change
the envelope mean method (in EMD) [1] to the integral
mean value theorem (IMVT) to find the data’s mean, which
makes the mean be strictly expressed mathematically. Al-
though some EMD improvement methods have tried to
change the mean method, none of these methods can be
expressed in a strict analytical formula [27–30]. Local mean
decomposition (LMD) constructs a mean curve with the
mean of adjacent extreme points of signal, but this will lose
the detailed fluctuation information between these two
adjacent extreme points [31]. We call the improved method
the integral mean mode decomposition (IMMD). In the
IMMD method, we try to prove the orthogonality of IMFs
and show that mode-mixing is effectively alleviated. In
addition, IMMD uses spline interpolation to directly predict
the mean value at both ends of the data and uses a stop
criterion with a fixed number of sifting [32] to reduce
complexity.

.e rest of the manuscript is organized as follows: in
Section 2, we give in detail the steps of the IMMD method
and the corresponding flowchart (Figure 1), the stopping
criterion of IMF, and the method of restraining the end
effect. And in the part of the stopping criterion, we will take
Gaussian white noise as an example to analyze the ro-
bustness of IMFs from IMMD to sifting. In Section 3, a
widely used nonlinear nonstationary signal is used as an
example to prove the orthogonality of IMMD decomposi-
tion in three steps. In Section 4, the Monte Carlo method is
used to show that IMMD can alleviate mode-mixing than
EMD. In Section 5, a series of artificial and real signals are
used to verify that the IMMD method is the orthogonal
decomposition method and can alleviate mode-mixing.
Finally, discussion and conclusion are given in Section 6
(Figure 1).

2. IMMD Method

2.1. Steps

(1) .e original signal (or protomode function (PMF)
[33]) is divided into many local parts by all extrema.

(2) For each local part, the value of the local mean is
calculated by IMVT, and its position is fixed at the
midpoint of the local time series. All the local means
are interpolated by cubic splines to get the mean
curve (in EMD, the mean curve of the signal is
obtained by the difference between the upper and

lower envelopes, and the upper (lower) envelope is
obtained by smoothing the maxima (minima) of the
signal. .e remaining steps of EMD are the same as
those of IMMD (see Figure 1)).

(3) PMF is obtained by subtracting the mean curve from
the signal.

(4) Repeat steps (1)–(3) on PMF (as a signal) iteratively,
until PMF satisfies the stoppage criterion. .is
process of subtracting the mean iteratively from the
signal is called sifting. When the sifting is over, PMF
is IMF1.

(5) New signal is obtained by subtracting IMF1 from the
original signal, and IMF2 is obtained by repeating
steps (1)–(4) on the new signal.

(6) Repeat steps (1)–(5) to get other IMFs of the original
signal.

.e flowchart of IMMD based on EMD is shown in
Figure 1. .e method to construct the mean curve of signal
in [34] is the same as that in IMMD. However, in [34], the
definition of “centroid” is used to determine the time series
position of the local mean t, which makes the time series
position of t be restricted by the signal amplitude. .erefore,
IMMD uses the simplest time series midpoint as the time
series position of t.

2.2. /e Stoppage Criterion. .ere are two purposes of
sifting: to eliminate riding waves and to make the wave
profiles more symmetric [1]. .e commonly used sifting
stoppage criterion was called the Cauchy type of stoppage
criterion [11], and the equation is as follows:

SD(k) �


T
t�0 PMFk− 1(t) − PMFk(t)



2

 


T
t�0 PMF2k−1(t) 

. (1)

Among them, PMFk is the PMF obtained by k-th sifting.
If SD< 0.2∼0.3, sifting stops. In fact, although 0.2∼0.3 as the
SD threshold is accepted by most users of EMD, it is
controversial [11]. It is generally accepted that, under a
limited sifting number, the smaller the SD value, the better.
In order to reduce the complexity, EMD uses the stoppage
criterion of fixing sifting number to 10, which also satisfies
the Cauchy type of stoppage criterion [32].

Let IMMD adopt the stoppage criterion of fixed sifting
number and decompose a randomly generated Gaussian
white noise..e SDs of all IMF vary with the sifting number,
as shown in Figure 2(b). It can be seen that SD1∼SD14 shows
fast and stable strong convergence. When the sifting number
>6, all SD values <0.01; when the sifting number >9, all SD
values <0.001; and when 100< the sifting number <5000,
almost all SD values <1× 10−30.

Let EMD decompose the same Gaussian white noise, and
the SDs of IMF vary with the sifting number, as shown in
Figure 2(a). Almost all SDs show weak convergence of slow
oscillation. Except for SD8 and SD9 (the sifting number> 47,
and SD8 and SD9< 0.1), when the sifting number> 3, all SD
values< 0.01; when the sifting number> 19, all SD
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Figure 1: .e flowchart of the EMD and IMMD method.
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Figure 2: SDi (i� 1, 2, . . .) curves of IMFi of white Gaussian noise (length� 29, mean� 0, and standard deviation� 1) are decomposed by
EMD (a) and IMMD (b).
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values< 0.001; and when the sifting number< 5000, almost
all SD values are still more than 1× 10−10.

.e results of the two methods show that the sifting
process of IMFs in IMMD is stable and can meet the Cauchy
stop criterion very well. In addition, we have tested all the
signals decomposed by IMMD in this study about sifting,
and the SD curve of them is almost exactly similar to that of
Gaussian white noise, and there is no qualitative difference.
.erefore, we recommend that the IMMD method adopts
the stop criterion of fixed sifting number.

2.3. Method of Alleviating End Effects. End-effect processing
methods are essentially predicting the end mean of data [21].
.e error caused by prediction will spread from the end to
the interior of the data with the sifting, so it will affect the
stability of IMF. We propose a method of predicting the end
mean which is suitable for IMMD: using the spline inter-
polation of the data’s mean to directly predict the end mean
of the data.

Compared with the other prediction methods, the
proposed method has the following characteristics: (1) it
directly predicts the end mean; (2) it does not need to in-
troduce additional end-effect processing methods; and (3) it
ensures that IMFs have good robustness to the sifting. We
present the SD curves (see Figure 3) obtained when Gaussian
white noise is decomposed by IMMD with enlargement of
the ends (one common method to alleviate end effects in
EMD) [21], and make a simple visual comparison between
Figures 3 and 2(b). .e details of the comparison are similar
to that in Section 2.2, and there is no essential difference, so
we will not repeat it here. .e comparative analysis between
the proposedmethod and othermethods is beyond the scope
of this study.

3. The Proof of IMMD
Orthogonal Decomposition

Let IMMD decompose the signal x(t) into a total of n
components of IMF1, . . ., IMFj, . . ., IMF (n− 1), rn, where
IMFj is the j-th mode component and its corresponding
residue is rj. .e proof of the orthogonal decomposition of
IMMD is divided into three steps: first, IMFj is orthogonal to
rj; second, IMFj is orthogonal to rk (j< k≤ n); and third, IMFj
is orthogonal to IMFk.

3.1. /e Proof of Orthogonality of IMFj and rj

3.1.1. /e Proof. Take IMF1 as an example. Suppose that
PMFk (k� 0, 1, . . ., PMF0 � x(t)) is obtained after the k-th
sifting and the number of its extrema is n, let PMFk � hk(t),
hk(t) can be described as follows:

hk(t) � hk1(t), . . . , hki(t), . . . , hk(n−1)(t) , (2)

where hki(t) is the local part of hk(t) from ti to ti+1, ti is the
position (on the time series) of the i-th extremum of hk(t)

(see Figure 4). Let mk(t) is the mean curve of hk(t); mk(t)

can also be described as follows:

mk(t) � mk1(t), . . . , mki(t), . . . , mk(n−1)(t) . (3)

According to the IMVT, we have

mki(t) �
1

ti+1 − ti


ti+1

ti

hk(t)dt �
1

ti+1 − ti


ti+1

ti

hki(t)dt,

(4)
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Figure 3: .e SDi curves of IMFi of white Gaussian noise
(length� 29, mean� 0, and standard deviation� 1) decomposed by
IMMD with enlargement of the ends.
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where mki(t) is a constant, described as mki (see Figure 4).
After one shifting on hk(t), we get hk+1(t) � hk(t) − mk(t),
and hk+1(t) can also be described as follows:

hk+1(t) � h(k+1)1(t), . . . , h(k+1)i(t), . . . , h(k+1)(n−1)(t) .

(5)

From equation (4), we have


ti+1

ti

h(k+1)i(t)dt � 0. (6)

hl(t) is obtained after the l-th (l≤ k) sifting, and its
mean curve is ml(t). ml(t) can also be described as ml(t) �

[ml1(t), . . . , mli(t), . . . , ml(n−1)(t)], where mli(t) is also a
constant, described as mli (see Figure 4). .en, we have

h(k+1)i(t) · mli(t) � mli 
ti+1

ti

h(k+1)i(t)dt � 0. (7)

.erefore, we have

hk+1(t) · ml(t) � 

n−1

i�1
h(k+1)i(t) · mli(t) � 0, (8)

i.e., hk+1(t)⊥ml(t), (l� 0, 1, . . ., k; m0(t) is the mean curve of
PMF0).

Here, it should be noted that the sifting will produce new
extrema (the result of overshoot and undershoot), but the
new extrema have no effect on the above conclusion. .e
reason is that the mean curve mli(t) is a constant in any local
part of hk+1(t) (take the annual global surface temperature
anomaly (GSTA) [35] as an example (Figure 5): the sifting
produced a new extremum at 1912 in PMF3, but in the local
parts [1911, 1912] and [1912, 1913], m0(t), m1(t), andm2(t)

are all constant).
Assuming that hk+1(t) satisfies the stoppage criterion, so

hk+1(t) � IMF1..e difference between x(t) and IMF1 is the
corresponding residue r1(t) of IMF1, and r1(t) � m0(t)+

m1(t) + · · · + mk(t). So we get

IMF1 · r1(t) � hk+1(t) · m0(t) + m1(t) + · · · + mk(t)  � 0.

(9)

In the same way, it is easy to get

IMFj · rj(t) � 0, (j � 1, 2, . . . , n − 1). (10)

.erefore, any IMF is orthogonal to its corresponding
residue.

3.1.2. /e Effect of Sifting on the Orthogonality of IMFj and rj.
Although the new extremum produced by sifting has no
effect on the above conclusion, the spline interpolation of all
local means in the sifting process will affect the orthogonality
of IMF and its corresponding residue. In the above proof, the
spline interpolation of all local means is ignored. .e ex-
planation is as follows: suppose mean2(t) is the mean curve
of the signal obtained by spline interpolating all local means
of the signal. .e error of the mean curve is the difference

between mean2(t) and the stair step curve of mean,
mean1(t) (the default mean curve in the above proof).
Similar to the SD of two continuous PMFs, the standard
deviation of mean is used to evaluate this error, which is
defined as follows:

Take the IMF1 of GSTA as an example (see Figure 6).
With the increase of the sifting number, the SD value in-
creases linearly and reaches the maximum 0.028 after 20
siftings. For GSTA with low sampling frequency, 0.028 is
enough small (in practice, the error can be reduced by in-
creasing the sampling frequency). .erefore, the error of the
mean curve has a small effect on the orthogonality, and it can
be ignored in theoretical proof.

SD(k) �


T
t�0 mean1(t) − mean2(t)



2

 


T
t�0 mean21(t) 

. (11)

3.2. /e Proof of Orthogonality of IMFj and rk (j< k≤ n)

3.2.1. /e Proof. .e average period of the IMFj (j� 1, 2, ...)
from EMD and its improved methods will increase with the
increase of order j. which means

TIMFj
<TIMFk

, (k> j). (12)

In particular, for Gaussian white noise, TIMF(j+1) �

2TIMFj
[32, 36, 37]. Let Lj be any local time region [ti, ti+1] of

IMFj (ti is the time series point of the i-th extremum of IMFj)
and Lk be any local time region [ti′ , ti′+1] of IMFk (ti′ is the
time series point of the i′-th extremum of IMFj). Generally, if
Lj ∩ Lk ≠ 0, then according to equation (12), ti′ ≤ ti and
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Figure 5:.e sifting process for IMF1 of the annual GSTA. ml(t) is
the mean curve of PMFl (l� 0, 1, 2, 3 is the sifting number) for
IMF1.
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ti+1 ≤ ti′+1, that is, Lj ⊂ Lk. Taking GSTA as an example,
when the fixed sifting number is 1, IMMD decomposes into
IMF1∼IMF7 of GSTA, as shown in Figure 7. In most local
parts, Lj≤ Lk (a typical part is marked in the black dotted
box: L1< L2<· · ·<L7), but there are a few local parts (marked
by red box), L1> L2 or L1> L3.

Section 3.1 has proved that ignoring the smoothing of the
mean, the residue rk of IMFk is a constant within Lk. Because
Lj ⊂ Lk, rk should also be a constant in Lj. Due to the im-
portance of this conclusion, we take GSTA as an example to
explain and verify. First of all, in order to reduce the in-
fluence of the spline smoothing mean curve, and to better
illustrate the above conclusion, the sifting number is fixed at
1. Figure 8 gives all the IMFj curves and rk (k> j; j, k� 1∼6)
step curves of GSTA. It can be seen in Figure 8 that rk is a
constant in most locals except for a few locals (marked by
color dotted line in Figure 8) of IMFj.

Data sampling and spline interpolation produce a few
locals of IMFj where rk is not constant. Discrete sampling of
data and local definite integral to obtain the mean value
makes the mean curve of the data discontinuous and needs
to be smoothed. Smoothing may cause a small number of
extrema to move or even generate new extrema. For ex-
ample, in Figures 8(e) and 8(f), r5 becomes rs5 after
smoothing. As a new data, rs5 is decomposed by IMMD to
get IMF6. Let r6 be the step mean curve of rs5. If r6 is not
smooth, r6 is constant in the two parts of rs5-r6 (should be
equal to IMF6); however, r6 must be smoothed, so the ex-
tremum of real IMF6 has shifted slightly to the right, which
causes r6 to be no longer a constant in the first local of IMF6.

After the above analysis, it can be determined that if the
smoothing of the mean curve is ignored, not only rj but also rk
(k> j) are constant in any local of IMFj (j� 1, 2, ..., n). In
addition, according to equation (6), in any local of IMFj, the
definite integral of IMFj is 0, so the inner product of IMFj and
rk is 0..erefore, globally, IMFj and rk are orthogonal, which is

IMFj · rk � 0, (k � j + 1, j + 2, . . . , n). (13)

3.2.2. Index of Orthogonality of IMFj and rk. Because of the
smoothing of the mean curve, the finite length of the data
will cause leakage, and equations (10) and (13) are not strictly
equal to 0. .erefore, define an index for checking the or-
thogonality of IMFj and rk (k≥ j) as

IROjk �


T
t�0 IMFj · rk 


T
t�0 IMF2j · r

2
k 

. (14)

When the sifting number is fixed to 1, the IROjk of
IMF1∼IMF6 and r1′∼r6′ (sum of step mean curves) and the
IROjk of IMF1∼IMF6 and r1∼r6 (sum of smooth mean curves
obtained by smoothing the step mean curves) of GSTA are
shown in Table 1. Overall, these values verify IMFj and rk is
orthogonal, and the smoothing of the mean curve reduces
the orthogonality of IMFj and rk.

3.2.3./e Effect of Sifting on the Orthogonality of IMFj and rk.
In the process of sifting, the influence on the orthogonality of
IMFj and rk includes the smoothing of the mean curve of
PMF and the symmetry of PMF with respect to the time axis.
It has been explained and verified in Sections 3.2.1 and 3.2.2
that smoothing the mean of PMF will reduce the orthog-
onality of IMFj and rk. However, when the PMF is more
symmetric about the time axis, its local integral tends to 0, so
the orthogonality is stronger. As the sifting number in-
creases, the mean value of PMF and the change of PMF both
tend to 0, and the orthogonality no longer changes.
.erefore, sifting makes the orthogonality index oscillate
and eventually tend to be constant.

Figure 9 shows the curve of the IRO1k value of IMF1 and
r1∼r6 of GSTA with the change of fixed sifting number
(1∼5000). It can be seen visually that when the fixed sifting
number is less than 20, the IRO1k value oscillates; when it is
greater than 20, it quickly converges to a fixed value. Table 2
shows the IROjk value of IMFj and rk (k≥ j; j, k� 1∼9) when
the fixed sifting number� 10. Compared with Table 1, it can
be seen that sifting enhances orthogonality.
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Figure 6: .e SD curve of the mean error of PMFj (1≤ j≤ 5000 is the sifting number) for IMF1 of the annual GSTA.
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3.3. /e Proof of Orthogonality of IMFj and IMFk

3.3.1. /e Proof. According to equations (10) and (13), it can
be obtained that

0 � IMFj · rj � IMFj · IMF(j + 1) + rj+1(t)  � IMFj · IMF(j + 1)

0 � IMFj · rj � IMFj · IMF(j + 1) + IMF(j + 2) + rj+2(t)  � IMFj · IMF(j + 2)

. . .

0 � IMFj · rj � IMFj · IMF(j + 1) + IMF(j + 2) + . . . + IMF(n − 1) + rn(t)  � IMFj · IMF(n − 1),

(j � 1, 2, . . . , n − 1).
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Figure 8: IMFj (j� 1∼6) and their corresponding residual components rj of GSTA. In the locality of IMFj, the variable rk (k� j, j+ 1, . . ., 6) is
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And it is equivalent to:

IMFj · IMFk � 0, (j≠ k; j, k � 1, 2, . . . , n − 1). (16)

So far, we have proved that any two IMF components are
orthogonal.

3.3.2. Index of Orthogonality of IMFj and IMFk. Similar to
equation (13), equation (16) is not strictly equal to zero.
Reference [1] has defined an index to check the orthogo-
nality of any two IMFs:

IOjk �


T
t�0 IMFj · IMFk 


T
t�0 IMF2j · IMF2k 

. (17)

When the fixed sifting number is 1, the IOjk values of
IMF1∼IMF7 of GSTA are shown in Table 3. .ere are 5
values with the order of magnitude of 10−1 in Table 3, mainly
due to the poor symmetry of the IMFs obtained by sifting
once (especially IMF4 and IMF5 in Figures 8(d) and 8(e)).
.erefore, the integral of IMF in each local is 0 and cannot be
satisfied very well.

3.3.3. /e Effect of Sifting on the Orthogonality of IMFj and
IMFk. With the increase of sifting number, the symmetry of
IMF and the orthogonality of IMFs increased. Figure 10
shows that the IO1k of GSTA varies with the fixed sifting
number (1∼5000). It can be seen that, with the increase of
sifting number, the values of IO1k oscillate but converge
rapidly to the constant. In fact, Figure 10 is consistent with

Figure 9, and it shows that IMF from IMMD has good
robustness to sifting.

When the fixed sifting number is 10, the IOjk values of
IMF1∼IMF10 of GSTA are shown in Table 4. In Table 4, the
five IOjk values with an order ofmagnitude of 10−1 (in Table 3)
do decrease. In addition, the increase in the number of IMFs
also shows the performance of orthogonal decomposition.
.erefore, sifting can enhance the orthogonality, which is
consistent with the conclusion of Section 3.2.3.

In addition, reference [1] also has defined an overall
index of orthogonality (IO):

IO � 
T

t�0


n+1
j,k�1
j≠k

IMFj · IMFk


T
t�0x

2
(t)

. (18)

Figure 11(a) shows the IO value of GSTA, which varies
with the fixed sifting number (1∼5000). When sifting
number <20, IO value oscillates; when sifting number ≥20,
IO� 5.1× 10−2. Figure 11(b) shows the number of IMFs of
GSTA, which varies with the fixed sifting number (1∼5000).
Compared Figure 11(a) with Figure 11(b), the IO value is
approximately inversely proportional to the number of
IMFs, which indicates that the number of IMFs increases,
the IO value is smaller, and the orthogonality is stronger.

4. Alleviation of Mode-Mixing

IMFs from IMMD are orthogonal to each other, so it can
effectively alleviate themode-mixing. Using theMonte Carlo
method of Gaussian white noise, references [32, 36, 37]
indirectly explain that EMD, EEMD, B-spline interpolation-
based EMD (B-EMD) [38], and trigonometric cardinal
spline interpolation-based EMD (C-EMD) [39] are all
equivalent to a set of binary filter banks with a constant
quality factor Q. .is section will use the same method to
illustrate that IMMD can effectively alleviate the mode-
mixing.

Let IMMD and EMD decompose 5000 samples of
Gaussian white noise with length� 512, mean� 0, and
variance� 1, respectively. IMMD (EMD) decomposes each
Gaussian white noise into at least 10 (8) IMFs. .e average
Fourier power spectrum of the corresponding order IMF of
all samples is shown in Figure 12. .e IMF1 from IMMD or
EMD is equivalent to a high-pass filter, and the other IMF is
equivalent to a set of overlapping band-pass filters. .e
center frequency of the latter band-pass filter from IMMD
(EMD) is approximately 2/3 (1/2) of the center frequency of
the previous band-pass filter. .erefore, the decomposition
of Gaussian white noise by the IMMD method is also
equivalent to filter banks and has the characteristic of
trisection.

Except for IMF1, the bandwidth of the equivalent band-
pass filter of the latter IMF from IMMD (EMD) is roughly 2/
3 (1/2) times that of the previous IMF, so the equivalent
band-pass filter bank has a constant-Q property. It means
that the power spectra of IMFs have self-similarity [36]:

Sk′(f) � Sk ρk′− k
f . (19)

1 10 100 1000 5000
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Figure 9: IRO1k (k� 1∼6) of IMF1 and rk of GSTA which is
decomposed by IMMD with the fixing sifting number (1∼5000).
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Table 2: IRO1k of GSTA (sifting� 10).

IROjk r1 r2 r3 r4 r5 r6 r7 r8 r9
IMF1 −1.4×10−3 −3.9×10−3 −2.2×10−3 −1.6×10−3 −2.2×10−3 −1.7×10−3 −2.4×10−3 −1.1× 10−3 −9.3×10−3

IMF2 −1.3×10−3 −2.0×10−3 −3.7×10−5 1.3×10−3 6.7×10−4 1.1× 10−3 1.3×10−3 3.8×10−4

IMF3 1.1× 10−3 −7.7×10−4 7.9×10−4 6.4×10−4 1.7×10−3 6.6×10−4 1.7×10−3

IMF4 −2.0×10−3 −1.7×10−4 −4.1× 10−4 −1.7×10−4 −5.7×10−4 −2.1× 10−5

IMF5 −6.3×10−3 −3.2×10−3 −6.9×10−3 −2.1× 10−3 −9.7×10−4

IMF6 1.7×10−3 9.8×10−3 9.1× 10−4 2.9×10−4

IMF7 −1.7×10−2 −8.9×10−4 −1.0×10−3

IMF8 7.2×10−3 3.9×10−3

IMF9 −4.0×10−2

Table 3: IO1k of GSTA (sifting� 1).

IOjk k� 2 k� 3 k� 4 k� 5 k� 6 k� 7
j� 1 9.4×10−2 1.1× 10−2 1.0×10−2 −1.8×10−5 −4.3×10−3 4.8×10−3

j� 2 1.3×10−1 −2.0×10−2 7.8×10−3 3.0×10−4 −3.3×10−3

j� 3 3.9×10−2 −8.5×10−4 1.3×10−2 2.0×10−2

j� 4 −1.4×10−1 −2.1× 10−1 −8.4×10−2

j� 5 −1.2×10−1 2.9×10−1

j� 6 6.8×10−2
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Figure 10: IO1k (k� 2, . . . ,7) of GSTA which is decomposed by IMMD with the fixing sifting number (1∼5000).

Table 4: IO1k of GSTA (sifting� 10).

IOjk k� 2 k� 3 k� 4 k� 5 k� 6 k� 7 k� 8 k� 9 k� 10
j� 1 3.6×10−2 −3.3×10−2 −1.1× 10−2 1.1× 10−2 −1.1× 10−2 1.1× 10−2 −1.3×10−2 −1.6×10−3 −9.3×10−4

j� 2 1.4×10−2 −4.6×10−2 −2.9×10−2 1.6×10−2 −8.0×10−3 −4.0×10−4 7.5×10−3 3.8×10−4

j� 3 7.0×10−2 −4.8×10−2 6.2×10−3 −2.5×10−2 1.4×10−2 −9.9×10−3 1.7×10−3

j� 4 −6.4×10−2 1.0×10−2 −5.8×10−3 4.7×10−3 −5.5×10−3 −2.1× 10−5

j� 5 −1.1× 10−1 8.4×10−2 −6.2×10−2 −1.1× 10−2 −9.7×10−4

j� 6 −2.1× 10−1 1.2×10−1 6.2×10−3 2.9×10−4

j� 7 −1.8×10−1 1.1× 10−3 −1.0×10−3

j� 8 2.2×10−2 3.9×10−3

j� 9 −4.0×10−2
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Among them, Sk′(f) (Sk(f)) is the power spectrum of
the k′-th (k-th) IMF; ρ is a constant, for IMMD, ρ � (3/2);
for EMD, ρ � 2. Based on equation (5), the power spectra of
all IMFs are standardized and collapsed and coincident into
a single curve [36]. For EMD, the mode-mixing causes the
band-pass filter to mix more low-frequency components.
.erefore, the filter has poor symmetry about the center
frequency and poor narrow-band characteristics, and the ρ
value needs to be adjusted to 2.01 [40]. IMMD does not have
these problems, and the power spectra normalization result
of IMFs is shown in Figure 13.

When IMMD decomposes Gaussian white noise, its
equivalent filter bank has the characteristic of trisection. .e
number of equivalent filters from IMMD is more than that
from EMD, and the narrow-band characteristics and con-
stant-Q properties of the filter bank are better than EMD.
.erefore, it has better multiresolution analysis capabilities
and can effectively alleviate mode-mixing.

5. Experiments and Results

As mentioned in the Introduction, the orthogonality of signal
decomposition will lead to the alleviation of mode-mixing,
and we believe that they are unified. .ey are not only jointly
displayed in the orthogonal index, but more importantly
reflected in the decomposition capabilities of good

decorrelation, energy concentration, and better physical
meaning. IMMD has a good orthogonal decomposition
theory, which can effectively alleviate mode-mixing. .ere-
fore, IMMD has good orthogonal decomposition capabilities.

In this section, we will conduct experiments on the
decomposition of a series of test signals. Firstly, we start with
multicomponent nonstationary signals. Secondly, in order
to highlight the capabilities and shortcomings of EMD, the
authors in [41] successfully used a two-tone signal, and it is
often used in many literature studies [15, 25, 27, 28, 41].
.erefore, the two-tone signal is used to evaluate the IMMD
method. In addition, EMD has a critical frequency ratio of
0.67 that cannot successfully decompose two-tone signal
[41], so we specially construct a three-sine superimposed
signal with a frequency ratio of 1 : 0.67 : 0.5 and compare
IMMD with EMD to evaluate the IMMD method. Finally,
two real complex signals are used to test and evaluate
IMMD. One is the annual GSTA data, which is one of the
most widely studied nonlinear nonstationary climate time
series. It can explain the general method well and is often
used by Huang to illustrate the performance of EMD and
EEMDmethods [42–44]. .e other is the electrocardiogram
(ECG) signal provided by Moody and Mark [45], which is
often used by researchers to illustrate the performance of
signal processing methods [46–51]. For these two realistic
nonstationary and nonlinear signals, we compare the
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Figure 11: (a) .e IO value and (b) the number of IMFs of GSTA which is decomposed by IMMD with the fixing sifting number (1∼5000).
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Figure 12: Equivalent filter banks of IMMD and EMD decomposing Gaussian white noises: averaged power spectra of IMFs from EMD (a)
and IMMD (b).
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performance of EMD, EEMD, CEEMDAN, and IMMD
methods at the same time and demonstrate the ability of the
IMMD method to orthogonally decompose and alleviate
mode-mixing.

5.1. Multicomponent Nonstationary Signals

5.1.1. Example 1. Signal1 (Sig1) is the superposition of two
different frequency-modulation (FM) signals:

Sig1(t) �y1(t) + y2(t)

� sin(2π ×(15 + 2t) × t) − sin(2π ×(10 + 2t) × t).

(20)

Let IMMD and EMD decompose Sig1 into Sig3 mode
components. .e waveforms and time-frequency spectra of
these components are shown in Figure 14. Figure 14(a)
shows that IMF1 and IMF2 from EMD have severe waveform
distortion. In the frequency domain (see Figure 14(c)), IMF1
and IMF2 from EMD are mixed with more frequency
components; at t� 0.7 s, mode-mixing occurs between these
two IMFs. IMMD can separate mode components well, and
only the frequency mixing occurs at the end of IMF2 (see
Figures 14(b) and 14(d)). Compared with EMD, IMMD
alleviates mode-mixing, separates two FM signals well, and
shows better orthogonal decomposition capability than
EMD.

Table 5 shows the values of orthogonal indexes of Sig1
decomposed by two methods. .ese values verified the
theory that IMFs from IMMD are orthogonal, and IMFs

from EMD are posteriori orthogonal (the orthogonality of
the EMD method cannot be proved, and it can only be
verified by the IO value of data [1]). In addition, the three
IOjk values of IMMD are all smaller than those of EMD, but
the IO value is larger than that of EMD. Overall, IMMD has
better orthogonality than EMD.

5.1.2. Example 2. Signal2 (Sig2) is the superposition of three
monocomponent signals including a FM signal, an ampli-
tude-modulated (AM) signal, and a linear signal:

Sig2(t) �y1(t) + y2(t) + y3(t)

� sin(2π ×(10 + 2t) × t)

+ sin(20πt) × sin(0.2πt) + 0.6t.

(21)

Let IMMD and EMD decompose Sig2 into Sig3 IMFs,
respectively, and waveforms and time-frequency spectra of
the components are shown in Figure 15..e characteristic of
Sig2 is that the frequency of the FM signal is equal to the
frequency of amplitude change of the AM signal when
t⟶ 0. When 0< t< 2, two mode components from EMD
have serious waveform distortion (see Figure 15(a)). In the
frequency domain, when t< 2, IMF1 and IMF2 from EMD
are mixed with more frequency components; when t� 0.17 s
and 0.6 s, mode-mixing occurs between IMF1 and IMF2 (see
Figure 15(c)). IMF1 from IMMD restores the FM signal well;
except for the end, IMF2 also restores the AM signal well, but
more frequency components are mixed (see Figure 15(d)).
In addition, the residual components from the two methods
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Figure 13: Collapse and coincidence of the average power spectrum of IMFs from EMD (a) and IMMD (b) based on equation (19).
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restore the linear signal well. .erefore, IMMD alleviates
mode-mixing.

All IOjk and IO values of Sig2 decomposed by IMMD are
smaller than that by EMD (see Table 6). It is verified that
IMFs from IMMD are orthogonal, and IMMD has better
orthogonality than EMD.

5.1.3. Two-Tone Signal. Compared with EMD, this section
uses a commonly used discrete-time two-tone signal to
evaluate the decomposition capability of IMMD. .e two-
tone signal is as follows:

Sig3(t; a, f) � cos(2πt) + a cos(2πft + φ), (22)

where a ∈ [0.01, 100] is the amplitude ratio and f ∈ (0, 1) is the
frequency ratio of low-frequency (LF) component,
a cos(2πft + φ), and high-frequency (HF) component,
cos(2πt). For the convenience of discussion, let φ � 0 [28].
.e criterion for judging the correct separation of two
components is as follows:

c
n
1(a, f, φ) �

IMF1 − cos(2πt)
����

����L2(T)

‖a cos(2πft + φ)‖L2(T)

. (23)

IMF1 is the first IMF extracted from Sig3 with n-th
siftings and ‖ · ‖L2(T) stands for the Euclidean norm on
functions defined over [0, T]. .e value of equation (23)
equals 0 when the two components are correctly separated; it
is close to 1 when the two components are badly separated.

However, this criterion has one obvious drawback: there
may be some discrete data points with large errors at the
ends of IMF1, which makes the value of equation (23) far
greater than 1, especially when a is small (for example, in
Figure 14(b), the error between IMF and the FM signal is
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Figure 14: .e waveform and time-frequency spectrum of mode components of Sig1 decomposed by EMD (a, c) and IMMD (b, d).

Table 5: IOjk and IO of Sig1.

IO12 IO13 IO23 IO
EMD 7.7×10−2 −3.3×10−3 −3.7×10−2 7.1× 10−2

IMMD −7.2×10−2 −2.2×10−4 −5.5×10−4 −7.2×10−2
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great only at the ends, so that the value of equation (23) is
much greater than 1, but the high- and low-frequency
components are well separated). .erefore, we change the
criterion to the correlation coefficients described in the
following equation:

ρ(a, f, φ) � ρ IMF1 − cos(2πt)( , a cos(2πft + φ) .

(24)

If the HF and LF components are separated correctly, the
difference between IMF1 and HF does not contain any in-
formation of LF, and the value of ρ is 0. When they are not
well separated, the difference between IMF1 and HF is close

to LF and the value of ρ is close to 1. .reshold 0.5 is used to
determine whether HF and LF are separated.

Based on equation (24), Figures 16(c) and 16(d) show the
performance of the EMD method for separating two-tone
signals. It is almost identical with the performance measure
figures (see Figures 16(a) and 16(b)) using equation (23) in
[41], but Figures 16(c) and 16(d) have more high and low
peaks, representing more details of decomposition. Equation
(24) is better as a new criterion.

When EMD and IMMD decompose Sig3, there is a
critical cutoff frequency ratio (see Figure 16). If f exceeds the
cutoff frequency ratio, no matter what the amplitude ratio is,
the two components cannot be separated. .e cutoff fre-
quency ratio from EMD is about 0.65 (0.67 [41] and 0.65
[28]), and that from IMMD is about 0.95. .e transition
areas (af � 1; af2 � 1) [41] of the two methods are almost
identical. Obviously, in the area where the critical frequency
ratio is 0.65∼0.95, IMMD can successfully separate two-tone
signals against mode-mixing. .erefore, IMMD shows su-
perior orthogonal decomposition capability than EMD.
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Figure 15: .e waveform and time-frequency spectrum of mode components of Sig2 decomposed by EMD (a, c) and IMMD (b, d).

Table 6: IOjk and IO of Sig2.

IO12 IO13 IO23 IO
EMD 1.9×10−2 −9.2×10−4 −2.9×10−4 2.6×10−3

IMMD −7.8×10−3 −2.6×10−4 −1.6×10−4 −1.9×10−3
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Figure 16: (a, b) Figures of the performance measure (equation (23)) of EMD decomposing Sig3; (c–f) figures of the performance measure
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5.1.4. /ree-Tone Signal. .e cutoff frequency ratio for two-
tone signals decomposed by IMMD is greater than that by
EMD. .erefore, we particularly construct the two-tone
signal with a frequency ratio of 1 : 0.67, to evaluate the
decomposition performance of the IMMDmethod in detail.
Furthermore, as there is a dyadic filter bank of EMD, a signal
whose frequency is 0.5 times of frequency of the HF signal is
superposed on the signal, which increases the difficulty of
separation. .e three-tone signal model is as follows:

Sig4(t) �x1(t) + x2(t) + x3(t)

� sin(20πt) + sin(0.67 × 20πt) + sin(0.5 × 20πt).

(25)

Let two methods decompose Sig4 into Sig3 IMFs and a
residual component r. .e Fourier spectra of three IMFs are
shown in Figure 17.

In the results of Sig4 decomposed by EMD (see
Figures 17(a) and 17(c)), tone with a frequency of 10Hz only
exists in IMF1. Undoubtedly, EMD breaks the tone with a
frequency of 6.7Hz into two parts, one in IMF1 and the other
in IMF2. To our surprise, the tone with a frequency of 5Hz
does not exist only in IMF2, but is broken in both IMF1 and
IMF2. So there is severe mode-mixing between IMF1 and
IMF2 from EMD. IMF3 is a pseudocomponent from EMD.
On the contrary, although the three sinusoidal signals in the
frequency domain have mode-mixing, the amount of mixing
is very small. IMMD separates three-tone signal well (see
Figures 17(b) and 17(d)).

Finally, Table 7 shows the orthogonal values of Sig4
decomposed by two methods. It is verified that IMFs from
IMMD are orthogonal. Although some IOjk and IO values
from EMD are better than those from IMMD, the decom-
position of Sig4 by the EMD method is a failure. .erefore,
there is no doubt that the orthogonal decomposition capa-
bility of IMMD is better than that of EMD about Sig4.

5.2. Two Commonly Used Realistic Nonstationary and Non-
linear Signals. In this section, we will conduct experiments
on two commonly used real-world signals to compare the
decomposition performance of the three common EMD
domain methods of EMD, EEMD, and CEEMDAN with the
IMMD method, including orthogonal performance and
mode-mixing.

5.2.1. GSTA. .e IMFs of GSTA decomposed by EMD,
EEMD, CEEMDAN, and IMMD methods are shown in
Figure 18.

We carry out a statistical significance test on IMFs of
annual GSTA with the posteriori test method proposed in
[42–44]. .e premise of applying the posteriori test method
is that IMF1 of any well-sampled data is almost always the
noise, so the noise contained in the data was estimated based
on the IMF1 [42]. In Figure 19, the solid line is the ex-
pectation of variance of IMFs of the white noise, and IMF1 of
white noise contains the same variance as the IMF1 of GSTA
(the expected case); the upper (lower) dotted line is the
expectation of variance of IMFs of white noise of three (one-

third) times that of the expected case [42]; the upper (lower)
dash-dotted line is the expectation of variance of IMFs of
white noise of two (one-second) times that of the expected
case. .e results show that IMMD and EMD each have 4
IMFs and EEMD and CEEMDAN each have 3 IMFs which
are useful information of the data because they are beyond
the three-time variance of the noise. EEMDʼs IMF4 and
IMMDʼs IMF5 are also useful information for data, but it is
beyond the twice variance of noise. In addition, there is a
pseudocomponent IMF6 (with minimal energy) from EMD.

For IMFs with insignificant noise in the statistical sense,
it is indicated that these IMFs contain physically meaningful
information, that is, various trends of GSTA [42] (see
Figure 20). EMD obtains the overall trend and the change
trend about 60 years of GSTA [42]; in addition to the above
two trends, EEMD also obtains a trend of about 20 years of
GSTA [42]; CEEMDAN obtains a suspected noised 60-year
trend of GSTA; in addition to the above three different
trends, IMMD also obtains a linear trend of GSTA [42].
Because the decomposition of GSTA by IMMD is adaptive
and orthogonal, the number of mode components obtained
is more, so it can effectively alleviate mode-mixing (re-
markably, the mixing of IMF9 and r of IMMD is approxi-
mately the r component of the other three methods), making
GSTA have more physical meaning.

Tables 8 and 9 give the IOjk values of the first 7 IMFs of
GSTA, which verifies that GSTA is orthogonally decom-
posed by IMMD and posteriori orthogonally decomposed by
the other three methods. IOj6 and IO67 from EMD are very
small, which are caused by the pseudocomponent IMF6, and
have no practical significance. .e number of IMFs from
IMMD is more than that from the other three methods,
resulting in more leakage, so most of the IOjk values from
IMMD are greater than that from the other three methods.
Table 10 shows the IO value of GSTA. Among them, EEMD
has the best IO value, followed by EMD, IMMD, and
CEEMDAN. Except for IMMD, the order of the magnitude
of the IO value corresponds to the ability of the other three
methods to decompose GSTA (the number of trends). We
believe that if we evaluate the decomposition orthogonality
of the signal, then the decomposition result with better
practical physical meaning should be the most important.
.erefore, IMMD has better orthogonal decomposition
capability than the other three methods.

In addition, Table 10 also shows the time-consuming of
GSTA decomposed by four methods related procedures;
EMD has the least time-consuming, followed by IMMD,
EEMD, and CEEMDAN.

5.2.2. Electrocardiogram (ECG) Signal. ECG signal is a
typical nonlinear and nonstationary weak signal. Muscle
artifact (MA) and baseline wander (BW) are the main noises
of ECG signal. Figure 21 shows the original ECG100
(numbered as 100 in the database), MA, BW waveforms
[52], and the noised ECG100 waveform formed by super-
imposing these three signals, and Figure 22 shows all IMFs of
the noised ECG100 decomposed by EMD, EEMD,
CEEMDAN, and IMMD. In ECG reconstruction, IMF1
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contains a lot of high-frequency noise, which is generally
recognized as MA, so it is often removed [53–56]. For the
remaining IMFs, the QRS characteristic wave is used to
identify the mode components of ECG. IMF2∼IMF5 from
EMD, IMF2∼IMF5 from EEMD, IMF2∼IMF7 from
CEEMDAN, and IMF2∼IMF11 from IMMD contain obvious
QRS waves, which are identified as mode components of
ECG100 and used to reconstruct ECG100.

Figure 23 shows the waveform and spectrum of the
ECG100 reconstructed by four methods. In the frequency
domain, the four methods have removed BW well, and for
low-frequency BW with f< 1Hz, IMMD has the best
elimination effect; the best method to eliminate MA is EMD,
and the worst is CEEMDAN, which may be caused by the
largest amount of auxiliary noise in CEEMDAN. In the time
domain, except for the IMMD, the first, second, third, and
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Figure 17: .e waveform and time-frequency spectrum of mode components of Sig4 decomposed by EMD (a, c) and IMMD (b, d).

Table 7: IOjk and IO of Sig4.

IO12 IO13 IO14 IO23 IO24 IO34 IO
EMD 1.3×10−2 −6.1× 10−3 −1.0×10−2 −2.3×10−2 8.0×10−3 4.4×10−2 −2.4×10−2

IMMD −4.7×10−2 −3.6×10−3 5.6×10−5 −5.9×10−2 −2.1× 10−3 −8.6×10−3 −7.6×10−2
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sixth characteristic Twaves of ECG100 reconstructed by the
other three methods have all moved forward, so pseudo-T
waves are generated, which may cause doctors to
misdiagnose.

In order to quantitatively evaluate the performance of
the four methods, the correlation coefficient R is used to
quantitatively describe the reconstruction accuracy, the
signal-to-noise ratio (SNR) and the mean square error
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Figure 18: Mode components of GSTA decomposed by EMD (a), EEMD (b), CEEMDAN (c), and IMMD (d).
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Figure 19: .e statistical significance test of mode components of the annual GSTA decomposed by EMD (a), EEMD (b), CEEMDAN (c),
and IMMD (d).
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Figure 20: .e various trends of the annual GSTA decomposed by EMD (a), EEMD (b), CEEMDAN (c), and IMMD (d).
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Table 10: Time-consuming of procedures and IO of GSTA decomposed by four methods.

EMD EEMD CEEMDAN IMMD
IO 2.6×10−2 −7.0×10−5 6.7×10−2 −4.8×10−2

Time-consuming (s) 0.234 10.916 44.107 0.344
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Figure 22: Continued.
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Figure 22: IMFs of noised ECG100 decomposed by (a) EMD, (b) EEMD, (c) CEEMDAN, and (d) IMMD.
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Figure 23: PSD and waveform of reconstructed ECG100 by EMD (a, b), by EEMD (c, d), by CEEMDAN (e, f ), and by IMMD (g, h). In the
green dashed box, pseudo-T waves are obviously caused by the forward movement of the T wave from reconstructed ECG100 by EMD,
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Table 11: ρ, SNR, MSE, IO, and time-consuming of procedure of ECG100 reconstructed by four methods.

EMD EEMD CEEMDAN IMMD
ρ 7.42×10−1 8.48×10−1 8.60×10−1 8.64×10−1

SNR (dB) 3.40 5.10 5.33 5.57
MSE 1.33×10−2 9.00×10−3 8.50×10−3 8.00×10−3

IO −9.2×10−2 3.1× 10−1 2.5×10−1 2.1× 10−2

Time-consuming (s) 0.531 56.021 224.187 1.313

Table 12: IOjk of GSTA decomposed by EMD.

IOjk k� 2 k� 3 k� 4 k� 5 k� 6 k� 7 k� 8 k� 9 k� 10 k� 11
j� 1 1.4×10−1 3.3×10−3 −2.5×10−2 −2.1× 10−2 −1.3×10−2 3.0×10−3 −1.1× 10−2 3.7×10−3 −1.2×10−3 1.6×10−3

j� 2 8.6×10−2 −1.9×10−2 −1.9×10−2 −1.6×10−3 −8.1× 10−3 1.1× 10−3 −4.6×10−3 −8.1× 10−4 2.9×10−3

j� 3 6.5×10−2 −5.7×10−3 −3.4×10−2 −1.6×10−3 −1.6×10−3 3.0×10−3 1.1× 10−3 −6.4×10−4

j� 4 2.9×10−2 −3.3×10−2 −1.3×10−4 2.2×10−2 −1.8×10−2 5.8×10−4 5.5×10−3

j� 5 3.1× 10−2 2.0×10−2 −2.5×10−2 1.9×10−2 −3.4×10−3 −4.7×10−4

j� 6 1.8×10−1 −1.5×10−1 7.9×10−2 −1.0×10−2 −3.5×10−3

j� 7 −2.0×10−1 1.8×10−1 8.1× 10−3 −4.8×10−2

j� 8 −3.2×10−1 1.3×10−3 5.8×10−2

j� 9 2.6×10−2 −1.2×10−1

j� 10 2.5×10−3

Table 13: IOjk of GSTA decomposed by EEMD.

IOjk k� 2 k� 3 k� 4 k� 5 k� 6 k� 7 k� 8 k� 9 k� 10 k� 11
j� 1 7.0×10−2 1.9×10−2 4.7×10−3 1.7×10−3 1.4×10−4 2.9×10−4 −6.0×10−4 −6.2×10−4 −2.5×10−4 1.2×10−4

j� 2 2.8×10−1 2.3×10−2 −3.2×10−2 −2.5×10−2 −1.3×10−2 −1.6×10−4 7.7×10−3 4.7×10−3 5.8×10−3

j� 3 1.9×10−1 −3.7×10−3 −1.1× 10−2 4.1× 10−4 −1.7×10−4 4.5×10−3 3.9×10−3 2.1× 10−3

j� 4 2.1× 10−1 −2.2×10−2 −3.3×10−2 −8.7×10−3 1.5×10−4 −2.3×10−3 1.3×10−3

j� 5 6.5×10−2 −3.9×10−3 1.3×10−2 3.1× 10−3 −3.7×10−4 8.9×10−4

j� 6 1.3×10−1 −3.3×10−2 1.7×10−3 9.4×10−3 3.0×10−3

j� 7 1.0×10−1 −2.4×10−4 −9.1× 10−3 2.4×10−3

j� 8 1.9×10−1 8.2×10−2 −3.2×10−2

j� 9 3.1× 10−1 1.4×10−1

j� 10 1.4×10−1

Table 14: IOjk of GSTA decomposed by CEEMDAN.

IOjk k� 2 k� 3 k� 4 k� 5 k� 6 k� 7 k� 8 k� 9 k� 10 k� 11
j� 1 2.2×10−1 1.0×10−1 1.9×10−2 4.8×10−3 1.7×10−3 5.1× 10−4 2.7×10−4 −1.1× 10−4 −3.0×10−4 −1.9×10−4

j� 2 6.5×10−2 1.2×10−2 3.1× 10−3 8.0×10−4 −3.0×10−4 −5.3×10−4 3.8×10−4 −4.1× 10−4 −6.5×10−5

j� 3 2.4×10−1 6.9×10−2 2.2×10−3 −9.5×10−3 −1.1× 10−2 −5.5×10−3 1.2×10−5 5.9×10−4

j� 4 2.3×10−1 −7.1× 10−3 −2.8×10−2 −1.5×10−2 5.9×10−3 1.5×10−3 1.7×10−3

j� 5 1.4×10−1 −2.6×10−2 −2.1× 10−2 −5.9×10−3 −1.2×10−3 3.5×10−3

j� 6 1.8×10−1 −6.0×10−2 −2.9×10−2 −6.7×10−3 −3.4×10−3

j� 7 1.1× 10−1 −1.9×10−2 6.0×10−3 −6.6×10−4

j� 8 1.6×10−1 −4.0×10−4 8.1× 10−3

j� 9 7.4×10−2 9.3×10−4

j� 10 1.0×10−1
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(MSE) are used to quantitatively describe the ability of
denoising, and the corresponding formulas are as follows:

R �


N
n�1(x[ n ] − x[ n ] )( y[ n ] − y[ n ])


N
n�1 (x[ n ] − x[ n ])2 · 

N
n�1 (y[ n ] − y[ n ])2 

(1/2)
,

SNR � 10 · lg


N
n�1 x

2
[ n ]


N
n�1 (y[ n ] − x[ n ])

2,

MSE �
1
N



N

n�1
(x[ n ] − y[ n ])

2
,

(26)

where x [n] is ECG100 and y [n] is ECG100 reconstructed by
methods. .e three characteristic quantities of each of the
four methods are shown in Table 11. .e ECG100 recon-
structed by IMMD has the largest ρ and SNR values and the
smallest MSE value. .erefore, IMMD causes the smallest
ECG100 distortion, its denoising performance is the best,
and it shows the best reconstruction performance, followed
by CEEMDAN, EEMD, and EMD. IMMD has better or-
thogonal decomposition capability than the other three
methods, noise can be well separated from ECG100, and
mode-mixing can be alleviated.

In addition, the related procedure of noised ECG100
decomposed by EMD has the least time-consuming, fol-
lowed by IMMD, EEMD, and CEEMDAN.

Tables 12–15 show the IOjk values of the first 11 IMF
components of noised ECG100, which verifies that the
IMMD method decomposing complex ECG is orthogonal
and that the other three methods decomposing ECG have
posterior orthogonality. In addition, most of the IOjk values
of IMMD are larger than those of the other three methods.
.is is because the number of IMFs from IMMD is nearly 1.7
times more than that from the other three methods, which
causes more leakage. Table 11 shows the IO value of ECG100
decomposed by the four methods. IMMD has the best IO
value, followed by EMD, CEEMDAN, and EEMD.

6. Discussions and Conclusions

6.1. Discussions. In theory, the signal is orthogonally
decomposed by IMMD. .e mean value by the envelope
used in EMD and its existing improved methods is difficult

to be expressed mathematically, so the decomposition or-
thogonality cannot be proved. IMMD overcomes this
problem by using local integral to calculate the mean.
.eoretical proof and experiments involving signals in
manuscripts verify that the decomposition of the signal by
IMMD is orthogonal, but this needs to be verified by more
signals, especially real signals.

Sifting affects the orthogonal decomposition of the
signal by IMMD method. With the increase of the sifting
number, (1) the smoothing of the mean curve leads to the
decrease of orthogonality and (2) IMF symmetry leads to
the enhancement of orthogonality. For a certain two mode
components, the orthogonality may decrease with the
increase of sifting number, or even to the extent that the
two mode components are no longer considered to be
orthogonal, but it is precisely this way that the IMMD (or
EMD) method can separate two mode components that
are not strictly orthogonal (for example, signal Sig2).
.erefore, the role of sifting needs to be studied more
deeply.

Because the signal is orthogonally decomposed by
IMMD, mode-mixing can be alleviated. If the signal is or-
thogonally decomposed, the mode components of the signal
are orthogonal, and there is no mode-mixing between them,
so IMMD can alleviate mode-mixing. .e Monte Carlo
method of Gaussian white noise and the signal experiments
given in this study show that IMMD effectively alleviates
mode-mixing and has better multiresolution analysis
characteristics. In particular, the characteristic of IMMD
equivalent constant-Q filter bank is trisection, which is
different from EMD, EEMD, etc.

PMF from IMMD has good robustness to the sifting, but
it also needs to be verified by more signals, especially real
signals. Due to the envelope mean method, the PMF from
EMD, EEMD, and CEEMDAN is weakly convergent to the
sifting, and the PMF will continue to change with the in-
crease of sifting number and eventually become uniform in
amplitude (the problem of oversifting), and IMF loses the
substantial significance of amplitude modulation [57]. In
addition, due to the influence of auxiliary noise, any two
decomposition experiments of the same signal by EEMD or
CEEMDAN have small differences in the two decomposition
results [20]. If the signal needs to be decomposed very
accurately, this small difference is very likely to cause wrong
conclusions.

Table 15: IOjk of GSTA decomposed by IMMD.

IOjk k� 2 k� 3 k� 4 k� 5 k� 6 k� 7 k� 8 k� 9 k� 10 k� 11
j� 1 1× 10−1 −3.8×10−2 −3.4×10−2 −5.5×10−3 −3.3×10−3 −5.1× 10−3 −4.2×10−4 7.7×10−4 8.6×10−4 8.6×10−4

j� 2 1.2×10−1 −7.4×10−3 −5.0×10−3 3.9×10−3 9.1× 10−4 −1.6×10−3 −9.6×10−4 1.4×10−3 −4.1× 10−5

j� 3 1.1× 10−1 −5.3×10−3 2.2×10−2 2.9×10−2 4.2×10−3 1.1× 10−3 6.1× 10−3 2.6×10−3

j� 4 7.1× 10−2 −2.8×10−2 5.6×10−2 1.4×10−2 −1.4×10−3 5.9×10−3 2.2×10−3

j� 5 1.1× 10−1 −3.4×10−2 4.1× 10−2 2.1× 10−2 1.0×10−2 5.1× 10−3

j� 6 9.0×10−2 −9.4×10−3 2.9×10−2 1.8×10−2 4.8×10−3

j� 7 4.1× 10−2 1.3×10−2 2.4×10−2 8.6×10−3

j� 8 2.7×10−2 4.2×10−2 1.4×10−2

j� 9 5.2×10−4 5.4×10−2

j� 10 −8.2×10−2
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In short, compared with the EMD, EEMD, and
CEEMDAN methods, the decomposition of signal by the
IMMDmethod is orthogonal, and the number of IMFs from
IMMD is more, so it has better multiresolution analysis
capabilities, and the decomposition has better physical
meaning; IMF from IMMD is robust to the sifting and will
not cause oversifting problem; in addition, IMMD can ef-
fectively alleviate mode-mixing; compared to EEMD and
CEEMDAN, IMMD does not require any parameter set-
tings, and the decomposition is data-driven and adaptable;
due to the large number of IMFs produced by IMMD, the
time-consuming of IMMD-related procedures is greater
than that of EMD, but it is much less than that of EEMD and
CEEMDAN procedures, which is caused by the hundreds of
auxiliary noises of them.

6.2. Conclusions. An improved method of EMD, IMMD, is
proposed in this study. Compared with EMD, EEMD, and
CEEMDAN, IMMD has the following advantages:
smoothing of the mean curve is ignored, IMMD method
decomposes the signal orthogonally; without any input
parameters, IMMD can effectively alleviate mode-mixing;
and IMMD method has good robustness to sifting.

We suggest that IMMD is suitable for nonlinear and
nonstationary signal research fields that require multi-
resolution and high stability, such as geophysics and bio-
electric signal processing.
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