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,is paper develops the analytical form of the degrees of freedom in functional principal components analysis. Under the
framework of unbiased risk estimation, we derive an unbiased estimator with a clear analytical formula for the degrees of freedom
in the one-way penalized functional principal components analysis paradigm. Specifically, a new analytical formula incorporating
binary smoothing parameters is also derived based on the singular value decomposition and half-smoothed method regarding the
two-way penalized functional principal components analysis framework. ,e performance of our procedures is demonstrated by
simulation studies.

1. Introduction

Functional principal component analysis (FPCA) is a key
method for analyzing principal component from smoothing
data, such as the data observed from temperature curves
with sinusoidal nature. Additionally, FPCA has become a
crucial research focus in many statistical fields.,e author in
[1] proposed the principle of the roughness penalty to deal
with data curves using the smoothing spline method. ,e
authors in [1, 2] proposed the roughness penalty to analyze
functional data by decomposing variation in a two-way data
table. Utilizing the rank-one approximation to the data
matrix and penalizing only the right eigenvectors, the au-
thors in [3] considered that a sample X was observed from a
linear model consisting of the combination of original left
singular vectors, right eigenvectors, and observed noise.
Moreover, by singular value decomposition (SVD), the
authors in [4] analyzed two-way functional data by penal-
izing left and right singular vectors of a generated covariance
matrix. With functional data observed discretely, the initial
model in the research of [3, 4] can be written as

Xn×m � 􏽘
K

k�1
ukv

T
k + E, (1)

where m≤ n, E is the noise matrix following N(0, σ2In ⊗ Im),
and uk and vk denote two fixed and nonobservable vectors,

which have the sizes of n × 1 and m × 1, respectively. Based
on K � 1, the authors in [1, 3] considered the problem of
finding the best rank-one approximation of X and esti-
mating (􏽢u1, 􏽢v1) by

arg min u1 ,v1( ) X − u1v
T
1

����
����
2

+ αvT
1Ωv1􏼒 􏼓, (2)

where α and Ω denote the nonnegative penalized parameter
and the penalized matrix, respectively, and 􏽢u1 � Xv1/vT

1 v1
for any fixed v1. ,e authors in [4] further proposed a two-
way penalizing approach:

arg min u1 ,v1( ) X − u1v
T
1

����
����
2

+ P u1, v1( 􏼁􏼚 􏼛, (3)

where P(u1, v1) � uT
1αuΩu u1 · ‖v1‖

2 + ‖u1‖‖2 · vT
1αvΩvv1+

uT
1αuΩuu1 · vT

1αvΩvv1, αu and αv are penalized parameters,
and Ωu and Ωv are penalized matrices.

,e degrees of freedom (DoF), a conception used to
quantitatively measure the complexity of a given model, is of
importance in the field of FPCA and for many learning tasks.
For example, the authors in [5] derived the soft thresholding
DoF using Stein’s unbiased risk estimation theory [6] and
demonstrated that it leads toSureShrink, a procedure of
adaptive wavelet shrinkage. Besides, the author in [7]
revealed that Cp, as an unbiased estimate that is used to
measure the deviation from ture prediction, in some cases
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provides concretely more excellent accuracy than the co-
efficient of variation (CV) or related nonparametric
methods when the correct DoF was used. See more details
about the Bayesian information criterion (BIC) [8], the
Generalized Cross Validation (GCV) [9], the Akaike In-
formation Criterion (AIC) [10], the residual information
criterion (RIC) [11], and the ‘hat’ matrix [12] in their re-
spective papers. ,e author in [7] proposed that let δ be a
specific fitting approach, 􏽢μ � δ(y) denote its fit, and y be
generated according to y ∼ (μ, σ2I), where μ is the true mean
vector associated with the common variance σ2. It was
shown that the DoF of δ is

df(􏽢μ) �
􏽐

n
i�1 cov 􏽢μi, xi( 􏼁

σ2
. (4)

Nonetheless, the research of [13, 14] suggested that using
the method of perturbation for data to quantitatively cal-
culate an unbiased estimator (whether the estimator is
approximate or not) for df(􏽢μ) can be computationally
expensive when the analytical formula of 􏽢μ is unavailable. It
is an intriguing research issue based on theoretical and
practical aspects to study strict analytical formula of the DoF
of FPCA. ,e main purpose of this paper is to analyze the
DoF using SURE for one-way and two-way penalized FPCA.
,e SURE theorem [15] offers a rigorous definition for the
DoF under any fitting process. Particularly, under the
background of FPCA, the definition of DoF is

df(􏽢μ) � E 􏽘
m

i�1
􏽘

n

j�1

z􏽢μij

zxij

⎛⎝ ⎞⎠. (5)

,is definition implies that an unbiased estimator for the
DoF is

􏽢df(􏽢μ) � 􏽘
m

i�1
􏽘

n

j�1

z􏽢μij

zxij

. (6)

,e structure of the paper is organized as follows. We
show our results with respect to the setting proposed by
[3, 4] and the implications of the results in section of Main
Results. Numerical experiments are presented in section of
Simulation. ,e appendix involves all technical issues and
details. For ease of presentation, except in Appendix 1 and
Appendix 2, we use bold letters to denote vectors.

2. Main Results

For a fixed v1, plugging this 􏽢u1 � Xv1/vT
1 v1 into (2) and

transforming it as

arg minv1
vT
1 αΩ − X

T
X􏼐 􏼑v1􏼐 􏼑

vT
1 v1

, (7)

it is easy to conclude that the solution to (7) is the eigen-
vector that corresponds to the minimum eigenvalue of the
matrix αΩ − XTX. Without loss of generality, we make the
following assumptions: firstly, Ω is a symmetric matrix;

secondly, the eigenvalues of αΩ − XTX are ordered by
λ1 > · · · > λm, where |λj|≠ |λi| for any i≠ j; and thirdly, _vk is
the eigenvector of αΩ − XTX corresponding to the eigen-
value λk and is orthonormal with other eigenvectors. ,e
same assumptions apply to more general situations, which
are only more trivial in terms of notions. ,e rank-one
approximation to X is written as

􏽢X � X _vm _v
T
m. (8)

Theorem 1. For 1≤ k≤m, let _vT
k � (vik, . . . , vmk),

X � (x1, . . . , xm) denote the sample matrix, and Ω> 0. An
unbiased estimate of the DoF for (8) is

􏽢df( 􏽢X) � n − 􏽘
m

j�1
􏽘

m− 1

k�1
2xT

j xj λ2m − λ2k􏼐 􏼑
− 1

λkv
2
jk + λmv

2
jm􏼐 􏼑

− 􏽘
m

j�1
􏽘

m− 1

k�1
xT

j xj λm − λk( 􏼁
− 1

v
2
jkv

2
jm.

(9)

,eorem 1 implies that if αΩ − XTX remains positive
definite, the first principal component un×1 � Xv intuitively
should have n free elements, but 􏽢df( 􏽢X)> n in this case. Hence,
the number of free elements does not measure the complexity
of the model correctly. In other words, the number of free
elements always underestimates the true DoF and should not
be considered an accurate estimate for the DoF.

Let S1/2u � (I + αuΩu)− 1/2 and S1/2v � (I + αvΩv)− 1/2. Let
􏽥X � S1/2u XS1/2v be a data matrix with X whose rows and
columns are half-smoothed. Take u1 � S− 1/2

u u1 and
v1 � S− 1/2

v v1; in this case, (3) can be transformed into

arg min u1 ,v1( ) ‖X‖
2

− ‖ 􏽥X‖
2

+ 􏽥X − u1v1
����

����
2

􏼒 􏼓. (10)

Without loss of generality, we make following notions
and assumptions: firstly, 􏽥Xn×m is a half-smoothed data
matrix with singular values σ1 > · · · > σm > σm+1 � · · · �

σn � 0; secondly, the SVD of 􏽥Xn×m is 􏽥Xn×m � 􏽥U∇􏽥V
T where

􏽥Vm×m � (􏽥v1, . . . , 􏽥vm) and 􏽥Un×n � (􏽥u1, . . . , 􏽥un), and the ele-
ments of diagonal of∇ are σk with nondiagonal ones taken as
zero; thirdly, let Tv be a diagonal matrix such that its di-
agonal elements are the same as those of S1/2v with non-
diagonal ones taken as zero, and Tu corresponds to S1/2u

under the same settings. ,en, for any combination of 􏽢u1􏽢v
T
1

maximizing C(u1, v1), the Eckart–Young theorem suggests
that next combination of 􏽢u2􏽢v

T
2 could be driven from

minimizing

‖X‖
2

− ‖ 􏽥X‖
2

+ 􏽥X − 􏽢u1􏽢v
T
1 − u2v2

����
����
2
. (11)

,erefore, the approximation to the first-K-th principal
component is

􏽢X � 􏽘

K

l�1
􏽥ul􏽥v

T
l . (12)
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Theorem 2. An unbiased estimate for the DoF of (12) is
􏽢df( 􏽢X) � σ − 1

l tr S
1/2
v􏼐 􏼑􏽥u

T
l Tu􏽥ul + σ− 1

1 tr S
1/2
u􏼐 􏼑􏽥v

T
l Tv􏽥vl

− σ− 1
l 2􏽥v

T
l Tv􏽥vl􏽥u

T
l Tu􏽥ul

+ 􏽘
K

l�1
􏽘
k≠l

σ2l − σ2k􏼐 􏼑
− 1
σk􏽥v

T
l Tv􏽥vk􏽥u

T
l Tu􏽥uk

+ 􏽘

K

l�1
􏽘
k≠l

σ2l − σ2k􏼐 􏼑
− 1
σ − 1

l σ2k 􏽥v
T
k Tv􏽥vk􏽥u

T
l Tu􏽥ul􏼐

+􏽥v
T
l Tv􏽥vl􏽥u

T
k Tu􏽥uk􏼑.

(13)

Formula (8) categorically measures the shared weights of
(αu, αv). Let the norm and orthogonality of the vector space
be as follows:

u
T
k Tuuk �〈uk, uk〉T � 1,

u
T
l Tuuk �〈ul, uk〉T � 0,

v
T
k Tvvk �〈vk, vk〉T � 1,

v
T
l Tvvk �〈vl, vk〉T � 0.

(14)

Theorem 3. Under transformation of (14), formula (13) in
.eorem 2 can be rewritten as

􏽢df( 􏽢X) � 􏽘

K

l�1

tr S
1/2
u􏼐 􏼑 + tr S

1/2
v􏼐 􏼑 − 2

σl

+ 􏽘

K

l�1
􏽘
k≠l

2σ2k
σl σ2l − σ2k􏼐 􏼑

.

(15)

As ,eorem 3 shows, if αu � 0, under this situation, the
original model (13) degrades to a one-way penalized
problem but the left eigenvectors must still be considered.
Combining (14) with (15), it is easy to show that under the
transformation, an unbiased estimate for the DoF of a one-
rank approximation with K � 1 is

􏽢df( 􏽢X) �
tr S

1/2
v􏼐 􏼑 − 2
σ1

+ 􏽘

m

k�2

2σ2k
σ1 σ21 − σ2k􏼐 􏼑

. (16)

3. Simulation

,e settings of the simulations for,eorem 1 can be clarified
with the following detail; firstly, the definition for the true
DoF proposed by [15] under the circumstance of (6) is

df( 􏽢X) � τ− 2
􏽘

n

i�1
􏽘

m

j�1
cov 􏽢Xij, Xij􏼐 􏼑 � τ− 2Etr 􏽢X

T
X􏼒 􏼓, (17)

and we use the average of 1000 sample values to estimate the
Etr( 􏽢X

T
X) of the true DoF with a trivial value τ � 1; sec-

ondly, compared with using 1000 samples to estimate the

true DoF, we instead use the average of 50 sample values to
measure the unbiased estimate suggested in ,eorem 1
because when facing practical applications, we may not have
a sufficient sample size. ,irdly, a naive estimate for the DoF
is a constant number of free parameters which is shown in
Figure 1 with the other parameters.

Taking

A �

1 0 0 · · · 0

− 2 1 0 · · · 0

1 − 2 1 · · · 0

0 1 − 2 · · · 0

0 0 1 · · · 0

⋮ ⋱ · · · · · · 1

0 0 0 · · · − 2

0 0 0 · · · 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (18)

a popular choice for the penalty standard is
vTΩv � 􏽐

m− 1
j�2 (vj+1 − 2vj + vj− 1)

2, whose principal philoso-
phy is based on second differences of v, whichmeans that the
matrix Ω is as follows:

Ω � A
T
m×(m− 2)Am×(m− 2). (19)

Figure 1 shows the estimated differences in various
situations by adjusting the size of the matrix.

,ere are several pieces of information that can be
obtained from Figure 1. ,e naive estimator of the DoF
does not correctly assess the true DoF of the model;
furthermore, the true complexity of the model is generally
greater than the number of free elements in a given ei-
genvector; that is, the free elements of this eigenvector
underestimate the true complexity. Regardless of whether
n is much greater than m, although there is a deviation due
to the number of samples utilized, unbiased estimation (7)
generally has excellent performance with regard to the
true DoF.

Many conditions that were argued for the first simula-
tion of model (3) will continue to be utilized in the second
simulation including the argument for the sample size and
τ � 1. A few special conditions should be clear. Under the
coordinate transformation of (14), several of the crucial
taken values stated in the previous part are

Ωv � A
T
m×(m− 2)Am×(m− 2),

Ωu � A
T
n×(n− 2)An×(n− 2),

df( 􏽢X) � τ− 2
􏽘

n

i�1
􏽘

m

j�1
cov 􏽢Xij, Yij􏼐 􏼑 � τ− 2Etr 􏽢X

T
Y􏼒 􏼓,

(20)

where Y � S1/2u XS1/2v [15]. Figure 2 shows that given the
mutual constraint for the two penalty parameters, the
aforementioned unbiased estimator (15) is an excellent fit for
determining the true DoF.
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Figure 1: ,e sizes of the matrix are (a) 20 × 8, (b) 50 × 8, (c) 100 × 8, (d) 200 × 8. ,e horizontal axis represents the penalty parameter α,
and the vertical axis corresponds the DoF.
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Appendix

(A) Proof for Theorem 1

For ease of discussion, we no longer make use of bold letters
to represent a certain matrix.,e central problem of proof of
,eorem 1 can be focused on finding a way to calculate the
following:

lim
ε⟶ 0

vmv
T
m αΩ − X

T
X + εA􏼐 􏼑 − vmv

T
m αΩ − X

T
X􏼐 􏼑

ε
,

(21)

where vm is the eigenvector of aΩ − XTX corresponding to
minimum eigenvalue λm and A stands for an arbitrary
matrix with a coefficient ε> 0. As formula (12) shows, every
elements of matrix vmvT

m could be viewed as the first de-
rivative of variable aΩ − XTX, and once we take A � Iij, the
(i, j)th unit in matrix vmvT

m is

z vmv
T
m􏼐 􏼑

ij

z αΩ − X
T
X􏼐 􏼑

ij

. (22)

Recall that Stein’s unbiased estimator (2) for degrees of
freedom in our situation is

􏽘

m

j�1
􏽘

n

i�1

z 􏽢Xij

zXij

� 􏽘
m

j�1
􏽘

n

i�1

z Xvmv
T
m􏼐 􏼑

ij

zXij

� n + 􏽘
m

j�1
􏽘

n

i�1
􏽘

m

p�1
Xip

z vmv
T
m􏼐 􏼑

pj

zXij

.

(23)

,e last term of the above formula can be rewritten as

􏽘

m

j�1
􏽘

n

i�1
􏽘

m

p�1
Xip

z vmv
T
m􏼐 􏼑

pj

zXij

� − 􏽘
m

j�1
􏽘

n

i�1
􏽘

m

p�1
X

2
ip

z vmv
T
m􏼐 􏼑

pj

z αΩ − X
T
X􏼐 􏼑

pj

− 􏽘

m

j�1
􏽘

n

i�1
X

2
ij

z vmv
T
m􏼐 􏼑

jj

z αΩ − X
T
X􏼐 􏼑

jj

.

(24)

,erefore, the original formula is

􏽘

m

j�1
􏽘

n

i�1

z 􏽢Xij

zXij

� n − 􏽘
m

j�1
􏽘

n

i�1
􏽘

m

p�1
X

2
ip

z vmv
T
m􏼐 􏼑

pj

z αΩ − X
T
X􏼐 􏼑

pj

− 􏽘
m

j�1
􏽘

n

i�1
X

2
ij

z vmv
T
m􏼐 􏼑

jj

z αΩ − X
T
X􏼐 􏼑

jj

.

(25)

Write

J �
0 αΩ − X

T
X

αΩ − X
T
X 0

⎛⎝ ⎞⎠. (26)

,e authors in [16] suggest that after transformating any
given matrix to the Jordan–Wielandt matrix form, especially
for a symmetric matrix, its new eigenvalues will be
±σ1, ±σ2, . . . , ±σm with no zero number corresponding to
original eigenvalue of αΩ − XTX. Furthermore, the eigen-
vectors that correspond to singular values, σk and − σk, are
(uT

k , vT
k )T/

�
2

√
� βk and (uT

k , − vT
k )T/

�
2

√
� ck, respectively.

Without loss of generality, the following discussion shall
assume that there is no overlap among σ1, . . . , σm, and
σm > 0 in the rest of the proof. ,e same process and
conditions apply to the more general situation where a given
matrix has equal eigenvalues but only produce more only a
little difference in notation. Note that

J �
0 aΩ − X

T
X

αΩ − X
T
X 0

⎛⎜⎝ ⎞⎟⎠ � 􏽘
m

k�1
σkβkβ

T
k

+ 􏽘
m

k�1
− σk( 􏼁ckc

T
k ,

1
θI − J

� 􏽘
m

k�1

1
θ − σk

βkβ
T
k + 􏽘

m

k�1

1
θ + σk

ckc
T
k .

(27)
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Figure 2: ,e sizes of the matrix are (a) 50 × 8 and (b) 100 × 8. ,e plane coordinate axis denotes the selection of the parameters (αu, αv).
,e z axis denotes the DoF.
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By the Cauchy residue formula, it is easy to find a closed
curve Cm in the complex space to form an open set that
contains only a single eigenvalue σm of J as the only sin-
gularity. From mathematical perspective, there exists a c> 0
which allows the circle O(σm, c) to belong to open set of Cm.
,erefore, we shall have

1
2πi

􏽉
Cm

1
θI − J

dθ �
1
2πi

􏽉
Cm

􏽘

m

k�1

1
θ − σk

βkβ
T
k

+ 􏽘
m

k�1

1
θ + σk

ckc
T
kdθ.

(28)

It is easy to have

βmβ
T
m �

1
2πi

􏽉
Cm

1
θI − J

dθ �
1
2πi

􏽉
Cm

􏽘

m

k�1

1
θ − σk

βkβ
T
k

+ 􏽘
m

k�1

1
θ + σk

ckc
T
kdθ.

(29)

Similarly, we write

J + εB �
0 αΩ − X

T
X

αΩ − X
T
X 0

⎛⎝ ⎞⎠ + ε
0 A

A
T 0

􏼠 􏼡. (30)

,en,

J + εB � 􏽘
m

k�1
􏽢σk

􏽢βk
􏽢β

T

k − 􏽘
m

k�1
􏽢σk􏽢ck􏽢c

T
k . (31)

We take

M � umv
T
m,

􏽢M � 􏽢um􏽢v
T
m,

(32)

where 􏽢um and 􏽢vm correspond to αΩ − XTX + εA with similar
definitions, and we make for J. From previous discussion,
write

ε− 1 0 􏽢M

􏽢M
T 0

⎛⎝ ⎞⎠ − ε− 1 0 M

M
T 0

􏼠 􏼡 � ε− 1 􏽢βm
􏽢β

T

m − βmβ
T
m􏼒 􏼓

+ ε− 1
􏽢cm􏽢c

T
m − cmc

T
m􏼐 􏼑,

(33)

where the notations 􏽢σk, 􏽢ck, and 􏽢βk are all similar definitions
made for J. When ε is small enough, it is natural that 􏽢σk is
close to 􏽢σk; moreover, Cm defined above will contain not
only 􏽢σm, an eigenvalues of J + εB, but also σm as only two
singularities [17]. Write

􏽢βm
􏽢β

T

m �
1
2πi

􏽉
Cm

1
θI − J − εB

dθ �
1
2πi

􏽉
Cm

􏽘

m

k�1

1
θ − 􏽢σk

􏽢βk
􏽢β

T

k

+ 􏽘
m

k�1

1
θ + 􏽢σk

􏽢ck􏽢c
T
kdθ.

(34)

,erefore,

􏽢βm
􏽢β

T

m − βmβ
T
m �

1
2πi

􏽉
Cm

1
θI − J

(εB)
1

θI − J
dθ + O ε2􏼐 􏼑,

βkβ
T
k Bβmβ �

u
T
k , v

T
k􏼐 􏼑

T
u

T
k , v

T
k􏼐 􏼑B u

T
m, v

T
m􏼐 􏼑

T
u

T
m, v

T
m􏼐 􏼑

4

�
u

T
k , v

T
k􏼐 􏼑

T
v

T
k A

T
, u

T
k A􏼐 􏼑 u

T
m, v

T
m􏼐 􏼑

T
u

T
m, v

T
m􏼐 􏼑

4

�
u

T
k Avm + v

T
k A

T
um

4

∼ ∼

∼ vkv
T
m

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠,

􏽘
m− 1

k�1

1
σm − σk

βkβ
T
k Bβmβ

T
m � 􏽘

m− 1

k�1

1
σm − σk

u
T
k Avm + v

T
k A

T
um

4

∼ ∼

∼ vkv
T
m

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

� ∼ 􏽘
m− 1

k�1

u
T
k Avm + v

T
k A

T
um

4 σm − σk( 􏼁
vkv

T
m

⎛⎝ ⎞⎠.

(35)
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Similarly,

ckc
T
k Bβmβ

T
m �

u
T
k , − v

T
k􏼐 􏼑

T
u

T
k − v

T
k􏼐 􏼑B u

T
m, v

T
m􏼐 􏼑

T
u

T
m, v

T
m􏼐 􏼑

4

�
v

T
k A

T
um − u

T
k Avm

4

∼ ∼

∼ vkv
T
m

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠,

􏽘

m

k�1

1
σm + σk

ckc
T
k Bβmβ

T
m � 􏽘

m

k�1

1
σm + σk

v
T
k A

T
um − u

T
k Avm

4

∼ ∼

∼ vkv
T
m

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠.

(36)

Furthermore,

βmβ
T
mBckc

T
k � ckc

T
k Bβmβ

T
m􏼐 􏼑

T
�

v
T
k A

T
um − u

T
k Avm

4

∼ ∼

∼ vmv
T
k

⎛⎝ ⎞⎠,

βmβ
T
mBβkβ

T
k � βkβ

T
k Bβmβ

T
m􏼐 􏼑

T
�

u
T
k Avm + v

T
k A

T
um

4

∼ ∼

∼ vmv
T
k

⎛⎝ ⎞⎠.

(37)

Note 􏽢βm
􏽢β

T

m − βmβ
T
m can be decomposed as

ε
2πi

􏽉
Cm

􏽘

m− 1

k�1

1
θ − σk

βkβ
T
k + 􏽘

m− 1

k�1

1
θ + σk

ckc
T
k

⎛⎝ ⎞⎠B
1

θ − σm

βmβ
T
m􏼠 􏼡dθ,

ε
2πi

􏽉
Cm

1
θ − σm

βmβ
T
m􏼠 􏼡B 􏽘

m− 1

k�1

1
θ − σk

βkβ
T
k + 􏽘

m

k�1

1
θ + σk

ckc
T
k

⎛⎝ ⎞⎠dθ,

ε
2πi

􏽉
Cm

1
θ − σm

βmβ
T
m􏼠 􏼡B

1
θ − σm

βmβ
T
m􏼠 􏼡dθ � 0.

(38)

,us, we will have

lim
ε⟶ 0

􏽢βm
􏽢β

T

m − βmβ
T
m

ε
� 􏽘

m− 1

k�1

1
σm − σk

βkβ
T
k Aβmβ

T
m + 􏽘

m

k�1

1
σm + σk

ckc
T
k Aβmβ

T
m

⎛⎝ ⎞⎠

+ 􏽘
m− 1

k�1

1
σm − σk

βmβ
T
mAβkβ

T
k + 􏽘

m

k�1

1
σm + σk

βmβ
T
mAckc

T
k

⎛⎝ ⎞⎠

+ O(ε).

(39)
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,en, the lower right block of the matrix can be
transformed as

(LRB) � 􏽘

m− 1

k�1

u
T
k Avm + v

T
k A

T
um

4 σm − σk( 􏼁
vkv

T
m + 􏽘

m

k�1

v
T
k A

T
um − u

T
k Avm

4 σm + σk( 􏼁
vkv

T
m

+ 􏽘
m− 1

k�1

u
T
k Avm + v

T
k A

T
um

4 σm − σk( 􏼁
vmv

T
k + 􏽘

m

k�1

v
T
k A

T
um − u

T
k Avm

4 σm + σk( 􏼁
vmv

T
k .

(40)

Note that the original matrix is a symmetric matrix; the
argument we make for and result we get regarding 􏽢βm

􏽢β
T

m −

βmβ
T
m are same for 􏽢cm􏽢cT

m − cmcT
m since their lower right

block is equal; moreover, we take A � Iij and take our focus
just on (i, j)th elements; we can conclude that

􏽘

m

j�1
􏽘

n

i�1
􏽘

m

p�1
X

2
ip

z vmv
T
m􏼐 􏼑

pi

z αΩ − X
T
X􏼐 􏼑

pi

� 􏽘
m− 1

k�1
􏽘

m

p�1
2x

T
pxp

σksgn yk( 􏼁v
2
pk + σmsgn cm( 􏼁v

2
pm

σ2m − σ2k􏼐 􏼑

⎧⎨

⎩

⎫⎬

⎭

� 􏽘
m− 1

k�1
􏽘

m

p�1
2x

T
pxp

λkv
2
pk + λmv

2
pm

λ2m − λ2k􏼐 􏼑

⎧⎨

⎩

⎫⎬

⎭,

􏽘

m

j�1
􏽘

n

j�1
􏽘

n

i�1
X

2
ij

z vmv
T
m􏼐 􏼑

ij

z αΩ − X
T
X􏼐 􏼑

ij

� 􏽘
m

j�1
􏽘

n

i�1
X

2
ij 􏽘

m− 1

k�1

σmv
2
jkujmvjm + σkv

2
jmujkvjk

σ2m − σ2k􏼐 􏼑

� 􏽘
m

j�1
􏽘

n

i�1
X

2
ij 􏽘

m− 1

k�1

σmv
2
jkujmvjm + σkv

2
jmujkvjk

σ2m − σ2k􏼐 􏼑

� 􏽘
m

j�1
􏽘

m− 1

k�1
x

T
j xj

λmv
2
jkv

2
jm + λkv

2
jkv

2
jm

λ2m − λ2k􏼐 􏼑
.

(41)

Finally, we apply our conclusion to equation (21).

􏽘

m

j�1
􏽘

n

i�1

z 􏽢Xij

zXij

� n − 􏽘
m

j�1
􏽘

m− 1

k�1
2x

T
j xj

λkv
2
jk + λmv

2
jm

λ2m − λ2k􏼐 􏼑

− 􏽘
m

j�1
􏽘

m− 1

k�1
x

T
j xj

v
2
jkv

2
jm

λm − λk( 􏼁
.

(42)

(B) Proof for Theorem 2

,e method and idea we use to proof ,eorem 2 are
analogous to that in Appendix 1. First, according to our
initial definition for degrees of freedom, note that

􏽘

m

j�1
􏽘

n

i�1
z

􏽐
K
l�1 ulv

T
l􏼐 􏼑

ij

zXij

� 􏽘
m

j�1
S
1/2
v􏼐 􏼑

jj
􏽘

n

i�1
S
1/2
u􏼐 􏼑

ii
z

􏽐
K
l�1 ulv

T
l􏼐 􏼑

ij

z 􏽢Xij

.

(43)

We continue to use some notations made in Section 2,
write

M � 􏽢X � 􏽘
K

l�1
􏽢ul􏽢v

T
l ,

􏽢M � 􏽢X � 􏽘
K

l�1
􏽢ul􏽢v

T
l + εA,

(44)

where A is an arbitrary matrix. ,e transformation of the
Jordan–Wielandt matrix for M and 􏽢M is as same as what we
argue in the last appendix; write
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ε− 1 0 􏽢M

􏽢M
T 0

⎛⎝ ⎞⎠ − ε− 1 0 M

M
T 0

􏼠 􏼡 � ε− 1
􏽘

K

l�1

􏽢βl
􏽢β

T

l − βlβ
T
l􏼒 􏼓

+ ε− 1
􏽘

K

l�1
􏽢cl􏽢c

T
l − clc

T
l􏼐 􏼑.

(45)

Similarly,

(θI − J)
− 1

� 􏽘
m

k�1

1
θ − σk

βkβ
T
k + 􏽘

m

k�1

1
θ + σk

ckc
T
k

+
1
θ

I − 􏽘
m

k�1
βkβ

T
k + ckc

T
k􏼐 􏼑⎛⎝ ⎞⎠.

(46)

Take

P1 � 􏽘
m

k�2
θ + σk( 􏼁

− 1βkβ
T
k + 􏽘

m

k�1
θ − σk( 􏼁

− 1
ckc

T
k + θ− 1

I − 􏽘
m

k�1
βkβ

T
k + ckc

T
k􏼐 􏼑⎛⎝ ⎞⎠,

P2 � 􏽘
m

k�1
θ + σk( 􏼁

− 1βkβ
T
k + 􏽘

m

k�2
θ − σk( 􏼁

− 1
ckc

T
k + θ− 1

I − 􏽘
m

k�1
βkβ

T
k + ckc

T
k􏼐 􏼑⎛⎝ ⎞⎠.

(47)

Naturally,

􏽢β1􏽢β
T

1 − β1β
T
1 � (2πi)

− 1
􏽉

C1

(θI − J)
− 1

(εB)(θI − J)
− 1dθ + O ε2􏼐 􏼑

(2πi)
− 1

􏽉
C1

(θI − J)
− 1

(εB)(θI − J)
− 1dθ

� (2πi)
− 1ε􏽉 P1B θ − σ1( 􏼁

− 1β1β
T
1􏼐 􏼑dθ +(2πi)

− 1ε􏽉 θ − σ1( 􏼁
− 1β1β

T
1􏼐 􏼑BP1dθ.

(48)

Furthermore,

􏽢c1􏽢c
T
1 − c1c

T
1 � (2πi)

− 1
􏽉

C1

(θI + J)
− 1

(εB)(θI + J)
− 1dθ + O ε2􏼐 􏼑,

(2πi)
− 1

􏽉
C1

(θI + J)
− 1

(εB)(θI + J)
− 1dθ

� (2πi)
− 1ε􏽉 P2B θ + σ1( 􏼁

− 1
c1c

T
1􏼐 􏼑dθ +(2πi)

− 1ε􏽉 θ + σ1( 􏼁
− 1

c1c
T
1􏼐 􏼑BP2dθ.

(49)
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,erefore,

(2πi)
− 1

􏽉
C1

(θI + J)
− 1

(εB)(θI + J)
− 1dθ

� σ − 1
1 B c1c

T
1 + β1β

T
1􏼐 􏼑 − σ− 1

1 c1c
T
1 Bc1c

T
1 + β1β

T
1 Bβ1β

T
1􏼐 􏼑

+ 􏽘
m

k�2
σ1 − σk( 􏼁

− 1σ− 1
1 σk c1c

T
1 Bckc

T
k + β1β

T
1 Bβkβ

T
k􏼐 􏼑

− 􏽘
m

k�1
σ1 + σk( 􏼁

− 1σ− 1
1 σk c1c

T
1 Bβkβ

T
k + β1β

T
1 Bckc

T
k􏼐 􏼑

� 4− 1
∼ σ − 1

1 u1u
T
1 A − σ − 1

1 u1u
T
1 Av1v

T
1

∼ ∼
⎛⎜⎝ ⎞⎟⎠

+ 4− 1
􏽘

m

k�2
σ21 − σ2k􏼐 􏼑

− 1
σk

∼ u1v
T
1 Aukv

T
k

∼ ∼
⎛⎜⎝ ⎞⎟⎠

+ 4− 1
􏽘

m

k�2
σ21 − σ2k􏼐 􏼑

− 1
σ − 1
1 σ2k

∼ u1u
T
1 Avkv

T
k

∼ ∼
⎛⎜⎝ ⎞⎟⎠.

(50)

Same argument is applicable for 􏽢c1􏽢cT
1 − c1c

T
1 , and we

omit this trivial process and write

ε− 1 􏽢β1􏽢β
T

1 − β1β
T
1􏼒 􏼓 + ε− 1

􏽢c1􏽢c
T
1 − c1c

T
1􏼐 􏼑

� 4− 1 ∼ σ− 1
1 u1u

T
1 A + σ− 1

1 Av1v
T
1 − 2σ− 1

1 u1u
T
1 Av1v

T
1

∼ ∼
⎛⎝ ⎞⎠

+ 4− 1
􏽘

m

k�2
σ21 − σ2k􏼐 􏼑

− 1
σk

∼ u1v
T
1 Aukv

T
k + ukv

T
k Au1v

T
1

∼ ∼
⎛⎝ ⎞⎠

+ 4− 1
􏽘

m

k�2
σ21 − σ2k􏼐 􏼑

− 1
σ− 1
1 σ2k

∼ u1u
T
1 Avkv

T
k + uku

T
k Av1v

T
1

∼ ∼
⎛⎝ ⎞⎠

+ O(ε).

(51)

We take A � Iij and take our focus just on (i, j)th ele-
ments, then (51) can be written as

z u1v
T
1􏼐 􏼑

ij

z 􏽢Xij

� σ − 1
1 u

2
i1 + v

2
j1 − 2u

2
i1v

2
j1􏼐 􏼑 + 􏽘

m

k�2
σ21 − σ2k􏼐 􏼑

− 1
σkui1uikvj1vjk

+ 􏽘
m

k�2
σ21 − σ2k􏼐 􏼑

− 1
σ − 1
1 σ2k u

2
i1v

2
jk + u

2
ikv

2
j1􏼐 􏼑.

(52)

Combining the above formula with the original one, we
complete the proof:

􏽢df u1v
T
1􏼐 􏼑 � σ − 1

1 tr S
1/2
v􏼐 􏼑􏽢u

T
1 Tu􏽢u1 + σ − 1

1 tr S
1/2
u􏼐 􏼑􏽢v

T
1 Tv􏽢v1 − σ − 1

1 2􏽢v
T
1 Tv􏽢v1􏽢u

T
1 Tu􏽢u1

+ 􏽘

m

k�2
σ21 − σ2k􏼐 􏼑

− 1
σk􏽢v

T
1 Tv􏽢vk􏽢u

T
1 Tu􏽢uk

+ 􏽘
m

k�2
σ21 − σ2k􏼐 􏼑

− 1
σ− 1
1 σ2k 􏽢v

T
k Tv􏽢vk􏽢u

T
1 Tu􏽢u1 + 􏽢v

T
1 Tv􏽢v1􏽢u

T
k Tu􏽢uk􏼐 􏼑.

(53)

Note that same computational process for u1v
T
1 can be

applied for other sequent combination of right and left
singular vectors, incorporating with first-K-th principal
component to complete the proof:
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􏽢df( 􏽢X) � 􏽘
K

l�1
σ− 1

l tr S
1/2
v􏼐 􏼑􏽢u

T
l Tu􏽢ul + σ − 1

1 tr S
1/2
u􏼐 􏼑􏽢v

T
l Tv􏽢vl − σ − 1

l 2􏽢v
T
l Tv􏽢vl􏽢u

T
l Tu􏽢ul

+ 􏽘

K

l�1
􏽘
k≠l

σ2l − σ2k􏼐 􏼑
− 1
σk􏽢v

T
l Tv􏽢vk􏽢u

T
l Tu􏽢uk

+ 􏽘
K

l�1
􏽘
k≠l

σ2l − σ2k􏼐 􏼑
− 1
σ− 1

l σ2k 􏽢v
T
k Tv􏽢vk􏽢u

T
l Tu􏽢ul + 􏽢v

T
l Tv􏽢vl􏽢u

T
k Tu􏽢uk􏼐 􏼑.

(54)
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