
Research Article
Multiresponse Particle Swarm Optimization of
Wire-Electro-Discharge Machining Parameters of Nitinol Alloys

Mohammed Yunus and Mohammad S. Alsoufi

Department of Mechanical Engineering, College of Engineering and Islamic Architecture, Umm Al-Qura University,
Makkah, Saudi Arabia

Correspondence should be addressed to Mohammed Yunus; myhasan@uqu.edu.sa

Received 7 August 2021; Revised 19 October 2021; Accepted 6 November 2021; Published 8 December 2021

Academic Editor: Yong Zhang

Copyright © 2021 Mohammed Yunus and Mohammad S. Alsoufi. +is is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

+e conventional process of machining of nitinol alloy which possesses excess strain hardening and low thermal conductivity
makes a complex process that leads to extensive wear on the tool and inadequate surface quality. Wire-electro-discharge
machining (WEDM) is widely accepted for machining this alloy involving various input factors, namely, P (pulse-on-duration),Q
(pulse-off-duration), C, (maximum-current), and V (voltage). Using the PSO (particle swarm optimization) method, the effect of
WEDM process factors on multiresponses such as MRR (metal removal rate) and SR (surface roughness) has been investigated.
ANOVA was used to create a relationship model between input factors and response characteristics, which was then optimized
using response surface methods (RSM). ANOVA revealed that variables A and C are the most significant. When investigated
individually, the influence of WEDM process parameters on SR and MRR is contradictory, as no response provides the best
process quality. To find the optimal ideal condition for decreasing SR and maximizing MRR, the MOOPSO approach was used.
P� 25.47051 μs, Q� 10.84998 μs, C� 2.026317A, and V� 49.50757 volts were used to calculate the optimal universal solution for
machining characteristics (MRRmax � 3.536791mm3/min and SRmin � 1.822372 μm). PSO enhanced MRR and SR for every
optimal combination of variables, according to the findings. Based on the findings, a wide range of optimal settings for achieving
maximum MRR and minimum SR are given, depending on the product requirements.

1. Introduction

+e current state of science and technology necessitates the
use of modern materials that are both strong (greater
strength) and lightweight (low density). Various alloys are
available, particularly those that combine nickel and titanium.
Nitinol alloy has long been regarded as one of the most
advantageous metals with the desired properties. Shape re-
membering effect, pseudoadaptability, creep, and corrosion
resistant, among other features, are enhanced by adding other
blending materials such as Cu, which improves phase shifting
temperature levels, sudden reaction to stimulation, and cyclic
and vibration damping characteristics. +ese alloys are
unique metallic alloys that are used primarily in the aerospace
and automobile industries, as well as in themedical and dental
disciplines [1]. Apart from the aforementioned principal

fields, they are used in couplers, sealing, simulators, turbine
components, scramjet combusting chambers, and so on.
Traditional machining procedures on these alloys with a good
surface finish to a higher degree of precision for achieving
their excellent features are difficult, time-consuming, and
costly to implement. Advancedmachining plays an important
role in gauging alloy properties, reducing labor, lowering
production costs, and speeding up and simplifying the pro-
cess. Strain hardening in nickel and titanium-based alloys,
super and shape memory alloys, and other low thermal
conductivity alloys are one of their most notable character-
istics, as it makes fixed machining processes such as turning,
drilling, boring, and milling extremely difficult, as well as
causing excessive tool wear and chip sticking [2].

Various advanced machining processes such as ECM
(electro-chemical), EDM (electro-discharge), AJM (abrasive-
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jet), WEDM (wire-electro-discharge), laser, and hybrid type
have proven to be the most adaptable nonconventional ma-
chining procedures to hard metals and their alloys in any
proportions forming different alloys.WEDM is only affected by
breakdown voltage because the wire (made of Cu, brass,Mo, Al,
and graphite) is bolstered through thework piece [3]. Because of
its high melting point temperature, graphite wire has a higher
material removal rate (MRR) than Cu wire, which improves
hardness due to titanium carbide formation on the surface, but
aluminum wire has a superior surface finish. WEDM’s high-
temperature technique results in reformed and dampened
surfaces that generate residual tensile stresses that cause rupture
[4, 5]. Evenwith constant pulse energy, the surfaces createdwith
short and long discharge current pulses had the same surface
roughness, but the distribution of surface finish was found to be
different [6]. +e response properties (MRR and SR) of shape
memory alloy (Ti50Ni42.4Cu7.6) on input factors were ex-
plored. When increasing MRR, a combination of low maxi-
mum-current (C) and instant pulse-on-duration (P) is more
effective than decreasing SR with a high amount of pulse-on-
duration [7]. When milling the Ti50Ni49Co1 surface of SMA,
the effect of WEDM factors results in poor surface quality at
higher P values and a rich surface finish at high speeds [8]. +e
desirability approach was used to model and optimize WEDM
factors of nickel-based superalloys using response surface
methodology (RSM). Taguchi technique optimized the MRR,
wear, and friction characteristics of trials conducted on
Nimonic-80A utilizingWEDMprocess parameters individually
[9]. RSM optimization of SR outputs was carried out, as well as
measurement variation of theWEDM process in pure titanium
[10, 11].

For handling the intricacy in tackling regular
manufacturing optimization issues, the fuzzy controller [12, 13]
was suggested, together with its magnificent economical al-
gorithm. However, a meta-analysis showed that there have
been no systematic investigations of the input parameters
influencing the surface finish and MRR of nitinol (nickel-ti-
tanium) alloy using the WEDMmethod. As a result, the focus
of this research is on determining the impact of input variables
such as P, Q, C, and V on the machining characteristics of
nitinol alloys (MRR and SR). As a result, the current study used
CCD standards to construct an experiment to determine the
combined impact of factors on the response characteristics of
nitinol alloy consuming electrode wire composed of “molyb-
denum.” As a result, significant regressionmodels were created
using RSM to investigate the influence of P, Q, C, and V on
responses. Optimization is the process of finding the best
possible set of elements for maximizing or limiting responses
[14]. In previous work for single/multiple answers, Taguchi
design, RSM, and the grey relation technique were used to
optimize the input variables of WEDM and many other
processes. Such strategies are appropriate for single-response
optimization, but not for multifactor multiobjective optimi-
zation, as their results contradict closing statements [15]. For
the first time, Kennedy and Eberhart proposed the PSO
technique in 1995 as a tool for translating evolutionary pro-
cedures to the optimization of performance attributes [16].
After recognizing the actions of ecological swarm birds
returning to settle back, which were found in different

categories of flying creatures, the PSO method was utilized to
solve trustworthy nonlinear update problems [17]. PSO gen-
erates top score measures and a consistent mix of factors in a
short estimation time [18]. Numerous engineers/researchers
recognize the PSO system’s ability to execute the top score of the
process as a productive decision over many challenges, par-
ticularly when managing multiple-goal updating matters [19].

Advanced and evolving procedures attain success in
solving multidimensional objectives with several confined
targets. One of them is the PSO approach (stochastic op-
timization) which uses a population of random solutions to
find the best one from the numerous generations created by
the starting population, analogous to bird flock manage-
ment. As a statistical search method, it falls under the genre
of evolution algorithms. Furthermore, the PSO is being
extended to cope with multiobjective optimization (MOO)
issues, and PSO techniques are simple to apply because of
their basic mathematical and logical operators [20]. Based on
the combined performance in regionalized self-prepared
structures, swarm information is regarded a genetic and
artificial intelligence. A self-adaption technique based on
entropy/nature guidelines for regulating algorithmic pa-
rameters from both the population and every inherited place
as the answer for evaluating algorithmic state is vital within a
genetic algorithm’s performance. As a result, variables are
regulated in accordance with algorithmic status and nature
rules to avoid issues such as early growth and nonconverged
particular genes while evaluating their status and tracking
their development. Furthermore, it maintains solutions of
reasonable quality while also increasing the likelihood of
poor-quality solutions varying. +e proposed technique has
been shown to work for a variety of combinational opti-
mization problems [21].

Binary-differential-evolution with self-learning and the
unique three proposed operatives to improve their perfor-
mance are known as multiresponse attribute selection
practice. (1) Built one-bit refining search operatives im-
proved self-taught ability; (2) competent nondominated-
sorting operative (NSGA) with crowding-distance (CD)
reduces the estimation difficulties of the selection operator in
the distinction evolution; and (3) competent nondominated-
sorting operative (NSGA) with crowding-distance (CD)
reduces estimation difficulties of the selection operator in the
distinction evolution. +e expected system is more viable
than colony-based feature selection algorithms, according to
trial findings evaluated on a series of community statistics in
attaining a balance between limited modification and global
investigation [22].+e NSGA-III can be used to break one of
the attribute selection’s (AS) primary challenges in real-
world applications: lost information. To deal with missing
data, the mean imputation method is used. +e attribute
subgroups were analyzed in the trials using a classifier called
k-nearest-neighbours (K-NN). +e results of the trials show
that the expected additional-objective standard combined
with NSGA-III has effectively handled the problem [23]. In
high-dimensional data, advanced AS algorithms must deal
with dimensionality concerns. A divide-and-conquer
strategy is used in an adjustable-size cooperative copro-
gressive PSO process. To begin, an AS space division
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approach is required to identify significant qualities at a tiny
estimation figure and to maintain an appropriate size of each
subswarm when analyzing particles. Furthermore, particle
removal methods take into account fitness-driven binary
grouping as well as particle development and crossover to
ensure quality. +e proposed approach can provide good AS
with high dimensionality, according to experimental data
[24]. Machining of nickel and titanium (shape memory
alloy) from wire EDM using ANOVA empirical models
constructed to account for factors affectingMRR and Ra. For
optimization, the NSGA-II ranking and CD were used. +e
MRR and Ra were improved, and the formation of cracks,
lumps, and deposited films was reduced significantly [25].

Nitinol alloy’s excellent surface quality and high metal
removal rate are a fascinating topic in the realm of
manufacturing. +e amount of research on WEDM ma-
chining is limited. +ere is currently no study being done on
the use of PSO for multiple objectives of the nitinol alloy
WEDM technique. In this case, the primary research focus is
on determining the impact of various parameters on ma-
chining characteristics (SR and MRR). +e fitness function
to optimize responses was adjusted in the mathematical
model form using a series of strategic trials, and the im-
portance of it in the form of the RSMmodel was tested using
ANOVA. Furthermore, a multioutput/objective PSO is used
to find the top-scored optimum set of factors for maximizing
and minimizing the MRR and SR, respectively, with a ge-
netic algorithm and the Pareto font. Using a multioutput
genetic algorithm-based PSO, the optimum setup of WEDM
process factors was obtained, and the PSO performances of
Pareto front solutions were compared and confirmed.

2. Materials and Methods

WEDMwas used to prepare workpieces composed of nitinol
alloy (nickel-titanium alloy), a commercially accessible
material. +e construction of numerical models is crucial in
the manufacturing process if parts are to be developed
quickly and at a lowest machining cost. A realistic model
based on RSM can establish a compromise between input
elements and responses [12]. +e notable correlation be-
tween input elements and outcome is expressed as follows in
RSM [26]:

Z � h a1; a2; a3; . . . ; an(  + error, (1)

where Z is the output characteristic to be optimized, and h is
the objective function, which includes both dependent and
independent factors a1, a2, a3, . . ., an, as well as error
correction. +e Taguchi design approach was used to op-
timize WEDM factors involved in the machining of an
aluminum alloy 5754 produced by friction-stir-welding for
experimentation planning in an orthogonal array format to
take all conceivable various combinations of variables and
their levels [27]. Taguchi parametric design and RSM were
used to increase the quality and accuracy of the WEDM
process. Face-centered composite design (CCD) was utilized
to construct mathematical models for the MRR and SR, as
well as to explore the influence of factors on accuracy. RSM

appears to be an appropriate strategy for studying and
optimizing input factors. +is strategy improves product
authority as well as efficiency [9, 10, 28]. Pulse-on-duration
(P), pulse-off-duration (Q), maximum-current (C), and
voltage (V) are the process parameters that have a substantial
impact on MRR and SR responses. Table 1 outlines the
different ranges of process factors.

+e fitness function necessary for the PSO technique will
be developed using a mathematical model based on RSM.
+eMATLAB optimization toolbox will use the Pareto front
solver to accomplish multiobject optimization with genetic
algorithm in PSO.

2.1. Experimental Details. All of the trials on nitinol parts
using CNC wire cut EDM employed 0.2mm diameter
molybdenum (Mo) wire as the electrode material. When it
comes to making complex geometries parts for aerospace
and missiles, Mo wire has a number of benefits, including a
high melting temperature and ultimate strength. To use
deionized water as a dielectric liquid, care must be taken
with the wire diameter and the pressure of the deionized
water, which should be kept constant at roughly 2.6 kg/cm2.
Table 2 lists the trials that were collected to determine the
CCD full percentage for all factor combinations that oc-
curred at higher (3) and lower (1) levels, i.e., two levels and
multiresponses (MRR and SR) of the WEDM process.

MRR mm3/min  � volume of material removed

·
length∗width∗ depth of cut

machining time
 ,

(2)

where width of cut in mm� (2× clearance) +wire diameter.
Surface roughness is measured with a surface roughness

tester (Taylor Hobson profilometer) at three separate points
on the surface, with the average value displayed in
micrometres.

2.2. Multiobjective Optimization Using PSO. Every particle
in the group possesses velocity vj(f) with which it can flee
into the illustration region and is described by a velocity vj(f)

and a position xj(f) vector. +e numerous input factors in
the optimization process well express their components.
Modifications to the particle’s location are made using the
particle’s former position data and present velocity. +us,

Vj(f+1) � Vj(f) + c1rand1 Pbestj − Xj(f) 

+ c2rand2 Gbestj − Xj(f) ,

Xj(f+1) � Xj(f) + Vj(f+1).

(3)

Pbestj and Gbestj are the personal and global best positions
of particle j, respectively; rand, w, c1, and c2 are the random
number (from 0 to 1), the weighting function, the cognition,
and social learning rate, respectively [29, 30].

+e statistical random numbers that provide updated
velocities in PSO may cause an uncontrollable gain in
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velocity, as well as the search algorithm’s uncertainty. +is
can be avoided by employing the Pareto front algorithm in
conjunction with the genetic algorithm in a multiobjective
PSO. Converging to the Pareto front for ideal global-opti-
mized solutions group and supporting variation and scat-
tering in solutions are two goals of the MOOPSO. In
addition, the swarm/flock maintained their global best
status. MOOPSO goes through the steps listed in Figure 1.

Instead of a single solution, multiobjective states pro-
duce an optimum set of solutions for input factors. +ey
frequently incorporate opposing answers, such that one goal
is improved while causing a reduction in solution. MOO can
be accomplished in two ways: by combining each objective
function into a single compound function or by changing the
constraint group’s response fully.+e fundamental benefit of

such a “weighted-sum” strategy is that it allows for both
candid and quantitatively successful use. Establishing a
complete Pareto-front-optimum solutions group or an il-
lustrative subset is the second universal method. Non-
dominated (ND) solutions are solutions that can improve
any response by worsening one or more individual re-
sponses. +e goal of running a MOO is to get a collection of
ND solutions that stabilize the transaction amid completely
different responses, which is known as a Pareto set. +e
proposed effort entails maximizing MRR while lowering SR.

3. Results and Discussion

3.1. Influence of Input Factors on Responses MRR and SR.
+e influence of various input factors on the responses
(MRR and SR) was explored using ANOVA at the 0.05 level
significant to identify the influence of various input factors
on the responses (MRR and SR). ANOVA for MRR and SR
(refer to Tables 3 and 4) with a small probability value
suggests a higher correlation coefficient value. According to
the RSM analysis, the quadratic model utilized for MRR and
SR is statistically significant. When the “coefficient of de-
termination” R2 reaches 1, it signifies that the output features
match the real data, and it also aids in determining whether
the predicted and neighbouring R2 (i.e., Pred-R2 and Adj-R2)
have reached unity. R2 and Adj-R2 of both machining
characteristics (MRR and SR) are above 90%, indicating that
the regression-based mathematical model has a solid link
between process parameters and output results. P, square
terms-CxC, and interaction terms-PxC are determined to be
the most significant inputs. For MRR, the process param-
etersV,Q, and C are shown to be unimportant. Similarly, the
ANOVA table for SR reveals that the substantial process
parameters are C, P, and Q, as well as the square term-CxC.
For SR, V is shown to be a nonsignificant input factor.

As illustrated in Figure 2(a) for MRR and Figure 2(b) for
SR, Pareto charts also display the most and least significant
factors at the individual, square, and interaction levels of
factors.

Figure 3 depicts a 3D surface plot of output MRR as a
function of input factors, while Figures 3(a) to 3(f) depict the
impact of P, Q, C, and V interactions on MRR. With higher
C, the MRR lowers more, and with a pulse on time, it de-
clines less. As a result, increasing C (from 2 to 4A) may
significantly reduce the MRR without even increasing the
pulse on time since it promotes rapid melting and alloy
vaporization. However, the midrange value of C may im-
prove MRR up to P� 37.5 μs and then remain the same up to
45 μs, irrespective of P and C changes after 45 μs, because a
high value of C directs a large amount of energy hooked on
the targeted area to remove a higher amount of metal, as well
as impulsive forces in the dielectric fluid, to take away
molten metal from the targeted area. With a rise in C, the
MRR also increases due to changes in form as well as the size
of surface pits, pores, and other features, whereas factors Q
and V have the opposite effect, contributing to the MRR
value only if P and C are also changing. Figures 4(a) to 4(f )
show the interactions of the input components on SR.
Because low impulsive forces persist a longer duration when

Table 1: Process input factors and their levels.

S. no. Coded factor Parameters
Levels

1 2 3
1 P Pulse-on-duration μs 25 35 50
2 Q Pulse-off-duration μs 8 11 14
3 C Maximum-current A 2 3 4
4 V Voltage volts 40 45 50

Table 2: Experimental orthogonal array design and corresponding
results.

P Q C V Material removal rate
(mm3/min) Surface roughness (μm)

3 3 3 3 2.6296 2.394
3 3 3 1 2.65335 2.413
3 3 1 1 2.51275 1.52
3 1 1 3 3.3649 1.8145
3 3 1 3 2.73695 1.501
2 2 2 3 2.70275 2.28
2 2 2 2 2.7113 2.318
1 3 3 1 3.06945 2.584
1 1 3 1 3.4523 2.6125
3 2 2 2 2.64575 2.1185
2 3 2 2 2.508 2.204
2 1 2 2 2.62295 2.299
2 2 2 2 2.5916 2.318
1 2 2 2 2.8291 2.3275
2 2 2 2 2.7797 2.413
3 1 3 1 2.8196 2.508
2 2 2 2 2.78065 2.337
2 2 3 2 3.0761 2.546
1 1 3 3 3.1996 2.5935
1 1 1 1 3.25375 1.881
2 2 2 2 2.73125 2.318
2 2 2 2 2.6182 2.3275
2 2 1 2 3.11885 1.672
3 1 1 3 2.47665 1.596
2 2 2 1 2.70275 2.318
1 3 3 1 3.4694 1.786
1 3 3 3 3.5663 1.7575
3 1 3 1 2.40255 1.653
3 1 3 3 2.8196 2.489
1 3 3 3 2.8633 2.5745
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Table 3: ANOVA table for MRR.

Basis Degree of freedom Adjusted-sum of squares Adjusted-mean squares F value P value
Model 14 2.72112 0.19437 12.57 ≤0.001
Linear 4 1.53423 0.38356 24.81 ≤0.001
P 1 1.52466 1.52466 98.63 ≤0.001 Significant
Q 1 0.00820 0.00820 0.53 0.478
C 1 0.02251 0.02251 1.46 0.246
V 1 0.00004 0.00004 0.00 0.960
Square 4 0.91195 0.22799 14.75 ≤0.001
P2 1 0.00132 0.00132 0.09 0.774
Q2 1 0.03858 0.03858 2.50 0.135
C2 1 0.45050 0.45050 29.14 ≤0.001 Significant
V2 1 0.00075 0.00075 0.05 0.828
Two-way interaction 6 0.55061 0.09177 5.94 0.002
P×Q 1 0.00615 0.00615 0.40 0.538
P×C 1 0.24869 0.24869 16.09 0.001 Significant
P×V 1 0.01557 0.01557 1.01 0.332
Q×C 1 0.21787 0.21787 14.09 0.002
Q×V 1 0.00302 0.00302 0.20 0.665
C×V 1 0.05957 0.05957 3.85 0.068
Error 15 0.23187 0.01546
Lack of fitness 10 0.19949 0.01995 3.08 0.113
Fundamental error 5 0.03238 0.00648
Total 29 2.95299
R2 92.15% R2 (adjusted) 90.82% R2 (predicted) 84.38%

Table 4: Analysis of variance table for SR.

Basis Degree of freedom Adjusted-sum of squares Adjusted-mean squares F value P value
Model 14 3.64511 0.26037 149.83 ≤0.001
Linear 4 3.32368 0.83092 478.17 ≤0.001
P 1 0.15273 0.15273 87.89 ≤0.001 Significant
Q 1 0.02758 0.02758 15.87 0.001
C 1 2.98655 2.98655 1718.68 ≤0.001 Significant
V 1 0.00457 0.00457 2.63 0.126
Square 4 0.21599 0.05400 31.07 ≤0.001
P2 1 0.00365 0.00365 2.10 0.168
Q2 1 0.00077 0.00077 0.44 0.516
C2 1 0.06765 0.06765 38.93 ≤0.001 Significant
V2 1 0.00248 0.00248 1.42 0.251
Two-way interaction 6 0.01580 0.00263 1.52 0.239
P×Q 1 0.00290 0.00290 1.67 0.216
P×C 1 0.01064 0.01064 6.12 0.026
P×D 1 0.00003 0.00003 0.02 0.899
Q×C 1 0.00105 0.00105 0.60 0.449
Q×V 1 0.00006 0.00006 0.04 0.851
C×V 1 0.00085 0.00085 0.49 0.495
Error 15 0.02607 0.00174
Lack of fitness 10 0.01913 0.00191 1.38 0.380
Fundamental error 5 0.00693 0.00139
Total 29 3.67118
R2 99.29% R2 (adjusted) 98.63% R2 (predicted) 98.19%

Reset the
Particle's

population
for outputs

MRR and SR

Compute the
particles

population
fitness of each
particles for

output0 (MRR
and SR) in terms
of their position

and velocity

local and
global best

position and
velocity of

every particle
are updated

Reset the
iteration

counter t = 0
and store
the (ND)

vectors into
archive

Repeating computations of CD values
of every ND solution in the archive by 

sorting in descending order of CD values
and For i = 1 to N, random selection for the

global best guiding from a top 10% of
archive as gbest position and

compute new velocity and position.

Repeat until
the maximum

number of
iterations are

attained.

Figure 1: Steps involved in GA-PSO.
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C is low, SR decreases as P increases. However, as C rises, SR
rises with it, because large impulsive forces, sparks, and
retention for extended periods of time would damage the

surface, and therefore SR rises. Because of the rapid rate of
erosion of an alloy, pits and pores grow. Low thermal
conductivity and melting point also contribute to a higher

A
Term

Pareto Chart of the Standardized Effects
(response is MRR, α = 0.05)

Factor
A
B
C
D

Name
P
Q
C
V

2.13

CC
AC
BC
CD
BB

C
AD

B
AB
BD
AA
DD

D

0 2 4 6
Standardized Effect

8 10

(a)

C
Term

Pareto Chart of the Standardized Effects
(response is SR, α = 0.05)

Factor
A
B
C
D

Name
P
Q
C
V

2.13

A
CC

B
AC

D
AA
AB
DD
BC
CD
BB
BD
AD

0 10 20 30
Standardized Effect

40

(b)

Figure 2: Pareto charts for input factors on the response (a) MRR and (b) SR.
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Figure 3: (a)–(f) +e 3D contours of input factors on MRR.
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SR [31]. In equations (4) and (5), the decisive empirical
formed equations of machining characteristics (MRR and
SR) are described.

MRR � 6.30 − 0.0971∗P + 0.426∗Q − 1.923∗C − 0.033∗V + 0.000144∗P
2

− 0.01338∗Q
2

+ 0.4116∗C
2

+ 0.00067∗V
2

+ 0.000548∗P∗Q + 0.01060∗P∗C + 0.000523∗P∗V − 0.0390∗Q∗C − 0.00094∗Q∗V − 0.01224∗C∗V,

(4)

SR � 2.58 + 0.0067∗P + 0.0283∗Q + 1.195∗C − 0.1198∗V − 0.000240∗P
2

− 0.00189∗Q
2

− 0.1595∗C
2

+ 0.00122∗V
2

− 0.000377∗P∗Q + 0.002193∗P∗C + 0.000023∗P∗V + 0.00271∗Q∗C + 0.000136∗Q∗D + 0.00146∗C∗V.

(5)

3.2. Multiresponse Optimization Using RSM. To maximize
WEDM performance, the best factors must be chosen by
considering responses like high MRR and low SR, which are
hard to attain for a high-quality surface. +e composite
desirability (cd) approach is the most appropriate technique
for optimizing input factors to satisfy response conditions
using its function that determines the scale-free value (di) of
the responses called desirability (lies between 0 and 1) ex-
presses zero and absolute issues at their outer allowable
margins. +e weighted statistical average of the distinct
desirability of responses is called cd. By integrating the
objectives to satisfy the combined goals of all the responses,
the optimum factors with the greatest desirability will be
chosen for the mathematical models of MRR and SR.

By integrating the objectives to satisfy the combined
goals of all the responses, the optimum factors with the
greatest desirability will be chosen for the mathematical
models of MRR and SR. Higher MRR and lower SR, as well
as their expected optimum input factor values, are evalu-
ated by the optimality solution, as shown in Table 5. +e
desirability does not have to be one, but its value reveals
how close the margins on the true optimum values are.
Table 6 shows the results of evaluating the best collection of
factors using Minitab 19 software. Once the optimum
values have been determined, it is essential to validate the
results by conducting tests at these optimum values to
ensure that they are correct. Table 5 shows the percent error
for confirming the WEDM experimentation results, which
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Figure 4: (a)–(f) +e response of input attributes on SR.
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the researchers determined to be very modest and
acceptable.

+e di value achieved for each response generated be-
tween low and high values is shown in the desirability
gradient and a line graph of the WEDM process (refer to
Figure 5). If the targeted responses di value is close to 1, then
the desirability is high. +e global desirability D� 0.8748
indicates that the responses are reasonably close to the target
specified.

3.3. Results of MOOPSO. +e PSO technique was applied
with the understanding that neither should be minimized
since when the SR is reduced by minimizing the objective
function, the MRR is reduced as well. However, we need to
maximize MRR while decreasing SR. An optimal collection
of input factors must be found to minimize conflict between
MRR and SR objectives and to obtain higher MRR and lower
SR. As a result, the MRR objective function is changed to a
minimization form as shown below:

Function 1�minimize (1/MRR);

Function 2�minimize (SR).

A PSO toolbox of the MATLAB software was used to
execute the source code of the expected algorithm in order to
achieve MO optimization as per specific goals. +e Pareto
front distribution contains 100 optimum sets of factors that
satisfy both functions’ conditions. Figure 6 depicts the
Pareto front distribution of top-scored ND solutions from a
collection of 100 best populations while optimizing two
functions. +e optimal option is determined by product
requirements or an engineer’s choice for a custom-designed
procedure. Within the levels of factors, MOOPSO forecasted
the best outcomes. Top-scoring solutions are selected from a
pool of 100 global top solutions, but only the best 26 are
presented in Table 7. +e maximum value of
3.5420068mm3/min is found at pulse-on-duration of
25.1118229 μs, pulse-off-duration of 12.3503394 μs, C of
2.009124A, and V of 45.120498 volts, corresponding to
experiment no. 27 in Table 2 where the maximum
MRR� 3.5663.23mm3/min at pulse-on-duration� 25 μs,
Q� 14 μs, C� 14A, and V� 50 volts. +e MRR of the Pareto
front optimal solution shows values that are slightly lower

Table 5: Predicted and observed values of nitinol alloy.

Response Observed SE fit
Predicted

Error (%)
95% CI 95% PI

SR Minimize 1.7618 0.0331 (1.6912, 1.8324) (1.6484, 1.8753) 1.5
MRR Maximize 3.5662 0.0988 (3.3556, 3.7767) (3.2277, 3.9046) 2.5

V
50.0

[48.5859]
40.0

C
4.0

[2.0]
2.0

Q
14.0

[13.3861]
8.0

P
50.0

[25.0]
25.0

High
Cur
Low

Optimal
D: 0.8748

Composite
Desirability
D: 0.8748

SR
Minimum
y = 1.7618

d = 0.76532

MRR
Maximum
y = 3.5662

d = 0.99987

Figure 5: Desirability and optimal for input and responses.

Table 6: Optimum values of nitinol alloy.

Factors P Q C V
Levels 25 13.3861 2 48.5859
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than those of the experiment. Furthermore, the 3D MRR
output plot (see Figure 3) shows that when the pulse on time
and C grow, the MRR decreases. A better mix of input factor
levels may result in a higher MRR value. In trials with s. no.
11 at pulse-on-duration� 35 μs, Q� 14 μs, C� 3 amp, and
V� 45 volts, a minimum MRR of 2.508mm3/min (refer to
Table 2) was discovered. At pulse-on-duration� 49.83780 μs,
Q� 13.8012141 μs, C� 2.00763A, and V� 45.50042649 volts,
the Pareto front generated the lowest MRR of
2.66760113mm3/min. When comparing the minimal MRR,
the experimental result is 0.13mm3/min greater, which is
highly acceptable, and this variation is due to factor level
changes.

Similarly, Pareto front findings revealed a minimum SR
of 1.4855502 μm at P� 4549.83780 μs, Q� 13.801214 μs,

C� 2.00763A, and V� 45.500426 volts, whereas experiment
output no. 5 (see Table 2) revealed a minimum SR of
1.501 μm at P� 50 μs, Q� 14 μs, C� 2A, and V� 50 volts.
Furthermore, the 3D response plots of SR (Figure 4) reveal
that as P, V, and C increase, the SR decreases. As a result, the
right quantities of input components provide the minimal
SR, which is the hour’s need. Furthermore, for P� 25 μs,
Q� 8 μs, C� 4A, and V� 40 volts, experimental output no. 9
had a maximum SR of 2.615 μm. While the highest SR of
1.7886815 μm was seen at P� 25.1118229 μs,
Q� 12.3503394 μs,C� 2.009124A, andV� 45.1204989 volts,
the corresponding results of the Pareto front were seen with
the maximum SR of 1.7886815 μm at P� 25.1118229 μs,
Q� 12.3503394 μs, C� 2.009124A, and V� 45.12049 volts.
When comparing the maximum SR of experimental findings

Table 7: Some of the Pareto front solutions of MOOPSO.

No. P Q C V SR MRR
1 25.1118229 12.3503394 2.009124 45.120498 1.7886815 3.5420068
2 26.3527045 13.5577625 2.005825 45.559656 1.7556562 3.46765
3 40.5901393 13.556345 2.005689 45.5593612 1.6270165 2.970345
4 44.2577660 13.623444 2.004210 45.6723322 1.5748247 2.85222
5 41.372580 13.632751 2.005639 45.504659 1.615188 2.94130952
6 25.139723 13.565896 2.007550 45.6149662 1.762997 3.5107027
7 29.943054 13.552877 2.000158 45.716168 1.727940 3.3438364
8 30.842303 13.568946 2.005914 45.455762 1.725763 3.3032148
9 47.516891 13.632021 2.007591 45.6219439 1.52834 2.74627547
10 39.339483 13.582901 2.007125 45.2547781 1.643595 3.0060108
11 28.36971 13.632919 2.00671 45.4713454 1.7426199 3.3889483
12 27.66276 13.560233 2.007347 45.6554528 1.748633 3.4182121
13 43.27807 12.983334 2.000026 45.2635824 1.6037521 2.8990178
14 49.83780 13.8012141 2.00763 45.500426 1.4855502 2.66760113
15 38.35412 13.464438 2.00110 45.554622 1.6526097 3.052191
16 35.93012 13.634225 2.00632 45.626082 1.67812964 3.12372824
17 38.680602 13.589088 2.00633 45.554353 1.64955087 3.03180880
18 47.918069 13.722225 2.007098 45.327659 1.51976365 2.72664270
19 45.3503468 13.475613 2.004385 45.4988402 1.56379364 2.81986745
20 46.4554287 13.740341 2.004998 45.460131 1.540144 2.7750993
21 32.6452667 13.6179144 2.007574 45.508611 1.710838 3.2359589
22 25.1265469 12.7423078 2.008351 45.2686245 1.780761 −3.5363104
23 26.8341290 13.5680084 2.005942 45.573252 1.752719 −3.4493672
23 48.2690753 13.7415251 2.007302 45.344606 1.513625 2.71524689
25 37.0194402 13.6473782 2.007617 45.4665371 1.6678021 3.08331782
26 37.2760105 13.5648563 2.006178 45.668391 1.6654667 3.08127597
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Figure 6: Pareto optimal front diagram of two responses using MOOPSO.
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to the Pareto optimum results, the experimental results are
0.4 μm higher. +is could be due to changes in factor levels
between the two approaches. Table 8 contains a list of the top
five Pareto front solutions.

When the variables (P� 50 μs, Q� 14 μs, C� 4A, and
V� 50 volts) for the machined specimen (refer to
Figure 7(a)) are set to high P, a large quantity of globules,
micropores, and microcracks are produced, whereas, at an
optimum combination of factors, SEM plots of themachined
specimen (refer to Figure 7(b)) also create certain amounts
of micropores, deposited film, some microcracks, and bead-
shaped globules, because any setting of WEDM factors
provides a low release energy level. As a result, these flaws
cannot be totally eliminated. Input attribute optimization,
on the other hand, has greatly decreased machining surface
wear and tear, resulting in fewer fractures and flaws, as well
as improved surface integrity. If molybdenum is not de-
posited, it can be reused, even at high release energies, to
withstand enhanced chemical interactions between elec-
trodes and dielectric fluid, resulting in a high MRR and
increased productivity.

4. Conclusions

+is research used particle swarm optimization (PSO) and
RSM approaches based on a CCD experimental design for

multiresponse optimization of input parameters in the
WEDM method of nitinol alloy. Optimization was carried
out using the composite desirability approach, resulting in
an empirical model for analyzing the effect of input factors
on multiresponses (MRR and SR). +e following conclu-
sions were drawn from the outcomes of several strategies for
maximizing MRR and minimizing SR:

(1) P and C are substantially contributing elements on
machining responses with maximization of MRR/
minimization of SR, such that the minimum level of
P and C discharge quick energy (electrical type) for
alloy melting and vaporization. As impulsive forces
created are of smaller intensity, this results in
maximal MRR and least SR.

(2) +e composite desirability approach for optimizing
multiresponses yields the optimal combination for
establishing the level of factors for high MRR and
low SR with a very low percentage of error but ac-
ceptable: P� 25 μs, Q� 13.39 μs, C� 2.0 A, and
V� 48.59 volts

(3) +e response MRR increased, and SR decreased with
decreasing P and C rather than Q and V in the
MOOPSO Pareto front solution.

(4) In comparison to experimentation, the MOOPSO
supplied a large combination of input factors,

Table 8: +e best five optimum solutions of MOOPSO after confirmation test.

Run order P Q C V SR MRR
1 25.1118229 12.3503394 2.009124 45.120498 1.7886815 3.5420068
7 29.943054 13.552877 2.000158 45.716168 1.727940 3.3438364
9 47.516891 13.632021 2.007591 45.621944 1.52834 2.7462755
10 39.339483 13.582901 2.007125 45.254778 1.643595 3.0060108
14 49.83780 13.8012141 2.00763 45.500426 1.4855502 2.66760113

(a) (b)

Figure 7: SEM micrograph of the machined surface obtained (a) at high discharge energy level and (b) at optimized parameter.
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allowing us to select extremely appropriate levels of
factors to optimize MRR while minimizing SR to
improve process efficiency.

(5) MOOPSO has been used to show which combina-
tions of high and low levels P,Q, C, andV are best for
the maximum and lowest of both responses (MRR
and SR).

(6) +e MOOPSO gave a collection of optimum solu-
tions utilizing a Pareto optimal front to allow de-
signers to select the best values of elements for their
product requirements [32–34].
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