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Dynamic programming is difficult to apply to large-scale Bayesian network structure learning. In view of this, this article
proposes a BN structure learning algorithm based on dynamic programming, which integrates improved MMPC
(maximum-minimum parents and children) and MWST (maximum weight spanning tree). First, we use the maximum
weight spanning tree to obtain the maximum number of parent nodes of the network node. Second, the MMPC algorithm is
improved by the symmetric relationship to reduce false-positive nodes and obtain the set of candidate parent-child nodes.
Finally, with the maximum number of parent nodes and the set of candidate parent nodes as constraints, we prune the
parent graph of dynamic programming to reduce the number of scoring calculations and the complexity of the algorithm.
Experiments have proved that when an appropriate significance level α is selected, the MMPCDP algorithm can greatly
reduce the number of scoring calculations and running time while ensuring its accuracy.

1. Introduction

In recent years, big data, machine learning, and deep
learning have become hot spots of common concern in
academia and industry, such as computer science, medicine,
statistics, economy, and social sciences [1–5]. However,
artificial intelligence scholars proposed at the annual con-
ference of artificial intelligence that future artificial intelli-
gence research should be oriented to uncertain
environments and oriented to human-like mechanisms, and
focus on dealing with complex problems and limited data
learning problems.0e “black box” design of the deep neural
network model makes it difficult to explain its internal
operating mechanism, and training the network requires a
large number of labeled samples. It is not the only way to
achieve future intelligence [6]. 0e methods that can deal
with uncertainty and combine domain knowledge to model
complex problems, such as fuzzy neural network [7, 8],
Bayesian network [9], and DS evidence theory [10, 11], have
attracted people’s attention again.

Among them, the Bayesian network has many advan-
tages that other modeling methods do not have. With its
rigorous mathematical foundation, graphical topology that
is easy to understand intuitively, and the natural expression
of real problems, it has become the powerful tool for un-
certain information processing and posterior probabilistic
reasoning, which has been widely used in genetic analysis
[12], medical diagnosis [13], reliability analysis [14], and
threat assessment [15].

2. Related Work

When BN is used to deal with real problems, the structure
and parameters of the model need to be given as inputs. 0e
task of learning Bayesian network parameters is performed
with the model structure obtained in advance, so it is crucial
to learn the correct BN structure from the data. However,
BN structure learning (BNSL) has been proved to be a
nondeterministic polynomial hard problem. For a BN
network with n nodes, the number of possible structures is
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o(n!2(n/2)) [16]. In DAG search space, BNSL can be divided
into approximate learning algorithm and accurate learning
algorithm according to learning accuracy. 0e former uses
heuristic algorithms (ant colony algorithm [17], genetic
algorithm [18], particle swarm optimization [19], etc.) for
structure search, which is easy to fall into local optimum,
and the structure finally obtained by learning is an ap-
proximate structure. 0e latter can guarantee the optimal
network through the following methods: integer linear
programming (ILP) [20], A∗ algorithm [21], and dynamic
programming (DP) [22]. 0e ILP algorithm decomposes BN
structure learning into the problem of linear programming
and then uses the SCIP solver to solve it. 0e core problem is
how to choose cutting planes. A∗ algorithm expresses BNSL
as the shortest path programming problem [23–25], which
uses the h value of nodes as the basis of path expansion to
reduce the search space and the memory consumption of the
algorithm. 0e DP algorithm decomposes BNSL into a
problem of finding the best subnetworks, which recursively
traverse the order space and parent space. It has been proved
to be applicable to the network with no more than 26 nodes
[26].

Dynamic programming algorithm is effective in small-
and medium-scale BNSL, but it still has considerable
complexity. To solve this problem, scholars at home and
abroad have performed relevant research. Silander [26]
proposed the SMDP algorithm, which reduces its running
time by constructing P-caches storage structure and expands
the computable network scale, but local scores are still re-
quired to be calculated for n2n− 1 times. Malone [27] pro-
posed the memory-efficient dynamic programming
algorithm (MEDP), which uses the properties of scoring
functions to constrain the maximum number of parent
nodes of a node and then adopts layer-by-layer storage
calculation for dynamic programming, thus improving its
efficiency by reducing a small number of scoring times.
Singh [28] proposed an algorithm called dynamic pro-
gramming based on depth-first search (DFSDP), which
performs pruning operations to reduce storage space easily,
but it has low computational efficiency. Ye [29] proposed a
dynamic programming structure learning method inte-
grating prior information. 0is method introduces edge
constraints and path constraints to prune the order graph,
thus reducing its time consumption. But it has low fault
tolerance because its accuracy depends on the correctness of
prior information. Tan et al. [30] proposed an algorithm of
dynamic programming constrained with Markov blanket
(DPCMB), which uses the Markov blanket calculated by the
IAMB algorithm to constrain the scoring calculation process
to reduce the number of scoring calculations. However, the
significance level ε will affect its accuracy and efficient.
Combining the hierarchical idea and dynamic program-
ming, Yang [31] proposed a hierarchical optimal BN
structure learning algorithm, which uses conditional inde-
pendence to layer nodes and considers that the parent node
of each node only comes from its node layer and the layer
with higher priority. Behjati and Beigy [32] proposed to use
the strongly connected graph to obtain the node block order,
then use the DP algorithm to obtain the complete node

order, and finally obtain the BN structure through the K2
algorithm. Xu et al. [33] proposed a Bayesian network
structure learning algorithm based on full permutation and
extensible ordering-based search, which uses the local
learning and pruning method to process the dataset with
small and large number of variables, respectively, and ob-
tains the candidate parent sets of each variable efficiently.
Wang et al. [34] proposed a novel approach to improve the
capability of a local search by determining the search di-
rection, which can accelerate the convergence of the local
search and acquire the higher quality structure. Gao et al.
[35] proposed an improved K-means block learning
Bayesian network structure algorithm, which uses the
K-means algorithm fused with mutual information to block
the network.0en, it adopts DP to learn the structure of each
block and finally uses combination rules to obtain the best
network. Yuan et al. [36] proposed to apply an improved A∗

algorithm in the dynamic programming space to reduce the
complexity of space and time; Liu [37] proposed a new
optimal path selection based on a hybrid improved A∗ al-
gorithm and reinforcement learning method and obtained
stable and efficient application effects in the optimal path
selection of intelligent driving vehicles; Tan et al. [38]
proposed a bidirectional heuristic search algorithm (BiHS)
based on one-way heuristic search, and the results showed
the BiHS algorithm is more efficient than the one-way
heuristic search algorithm. Wang et al. [39] proposed the
ancestor constrained ordered graph (ACOG), which im-
proves the efficiency of precise search by introducing an-
cestor constraints.

To sum up, the existing literature has improved the DP
algorithm by adding constraints or adopting spatial search
strategies to reduce the time consumption to varying de-
grees. However, how to keep a balance between time con-
sumption and algorithm accuracy is still a problem to be
studied. In this article, the dynamic programming structure
learning algorithm of Bayesian network integrating MWST
and improved MMPC is proposed. By analyzing the con-
nection relationship of nodes in maximum weight spanning
tree, we take the maximum number of node connections in
the tree structure as the maximum parent number t of nodes
and prune the parent graph of nodes in the DP algorithm
horizontally. Consequently, the upper limit of the parent
number of nodes is reduced from n-1 to t. 0en, we take the
candidate parent-child node set CPC obtained by the
MMPC algorithm as the candidate parent set PS of the
corresponding node and prune the parent graph of nodes in
the DP algorithm longitudinally. Meanwhile, to avoid the
false-positive nodes in CPC (candidate parents and chil-
dren), the MMPC algorithm is improved by the symmetry
principle. With the above two operations, the time con-
sumption and complexity of the algorithm can be lowered
because the local scoring calculation times are reduced.

3. Principle of Dynamic Programming

From a mathematical point of view, the BN is a graph model
representing the probability relationship among different
random variables V � X1, X2, . . . , Xn􏼈 􏼉, which consists of

2 Mathematical Problems in Engineering



structure G and distribution parameter θ. Structure G �

(V,E) is a directed acyclic graph (DAG). Random variableV
is regarded as a node set. Directed edge set
E � eij|Xi⟶ Xj􏽮 􏽯 shows the dependency relationship
between Xi and Xj: Xi is the parent set of Xj, that is,
Xi ∈ pa(Xj); Xj is the subset of Xi, that is, Xj ∈ ch(Xi).
Parameter θ � θi􏼈 􏼉i�1,2,...,n is a set of conditional probability
distributions, and θi � P(Xi|pa(Xi)) represents conditional
probability distributions of Xi when pa(Xi), the parent set of
Xi, is given. Based on the conditional independence hy-
pothesis, the Bayesian network decomposes the joint
probability distribution and decomposes into

P X1, X2, . . . , Xn( 􏼁 � 􏽙
n

i�1
P Xi|Pa Xi( 􏼁( 􏼁, (1)

where n is the number of nodes andXi is the i-th node, which
can take discrete and continuous values.

0e BN structure learning algorithm based on dynamic
programming is developed based on the following idea. If
datasetD � D1, D2, . . . , DN􏼈 􏼉 is given, find a structure in the
search space G∗:

G∗ � argmax
G∈Gn

score(G), (2)

where Gn represents all possible structures of the variable set
V � X1, X2, . . . , Xn􏼈 􏼉 in DAG search space. score(·) is a
decomposable scoring function. In this article, BIC scoring
function is adopted, as shown in the following equation:

BIC(G|D) � 􏽘
n

i�1
􏽐
qi

j�1
􏽐
ri

k�1
Nijklog θijk −

1
2

􏽘

n

i�1
qi ri − 1( 􏼁log N,

(3)

where qi indicates the number of all possible parent node
sets pa(Xi) of node Xi, and Nijk is the number of samples
when the k-th value of node Xi and the j-th value of its
parent node are taken. In θijk � Nijk/Nij(0≤ θijk ≤ 1,

􏽐kθijk � 1, Nij � 􏽐kNijk), the second term is a penalty
term added to avoid overfitting.

Dynamic programming algorithm recursively traverses
DAG space to search the optimal BN structure. Since the
structure is acyclic, at least one node of the final structure has
no output arc, which is called the leaf node. Assume that the
optimal BN structure has a leaf node X and the state
transition equation of dynamic programming is

max Score(V) � max
X∈V

Score BIC
V
X

􏼒 􏼓 + Best Score
X,V

X
􏼒 􏼓􏼚 􏼛, (4)

Best Score
X, V

X
􏼒 􏼓 � max

PS∈V/ X{ }
Local Score(X|PS). (5)

0eorder graph composed of subsets inV and the parent
graph of each node can represent the whole process of
dynamic programming. Figure 1 shows the order graph with
the number of nodes n� 4 and the parent graph of X1. When
the DP algorithm calculates from top to bottom, first de-
termine the root node, and then gradually add leaf nodes
until the remaining nodes are full sets. Conversely, when the
DP algorithm calculates from bottom to top, first determine
leaf nodes, and then gradually add root nodes until the
remaining nodes are empty sets. In Figure 1, bolded lines
indicate that the node order is X4≺X1≺X3≺X2.

It can be seen from Figure 1 that the BNSL algorithm
based on dynamic programming needs to calculate and store
all the local scores in advance. For the BN with n nodes, any
node Xi has 2n−1 possible parent sets, requiring n2n−1 times
of local score calculation in total. 0erefore, the time
complexity and space complexity of the dynamic pro-
gramming algorithm are both o(n2n−1).

4. Algorithm Idea

0e main idea of the proposed algorithm is to use the
maximum number of parents obtained with the maximum
weight spanning tree and the CPC of the node obtained with
the MMPC algorithm as the candidate parent set PS of the
node to lay double constraints on the scoring process based
on the dynamic programming algorithm. It further reduces
the number of local scoring calculations and the time
consumption of the algorithm. In addition, we also propose
the S-MMPC algorithm, which uses the symmetry principle
to reduce the occurrence of false-positive nodes in CPC.
Before explaining the detail of this algorithm, the relevant
concepts are given first.

Definition 1 (mutual information [40]). 0e mutual infor-
mation between two random variables Xi, Xj can be cal-
culated by the following equations:
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I Xi, Xj􏼐 􏼑 � 􏽘

ri

i�1
􏽘

rj

j�1
P Xi � xi, Xj � xj􏼐 􏼑 × lg

P Xi � xi, Xj � xj􏼐 􏼑

P Xi � xi( 􏼁P Xj � xj􏼐 􏼑

⎧⎨

⎩

⎫⎬

⎭, (6)

I Xi, Xj􏼐 􏼑 � I Xj, Xi􏼐 􏼑, (7)

where ri is the number of node states and the value range of
Xi is Xi1, Xi2, Xi3, . . . , Xiri

􏽮 􏽯. If I(Xi, Xj)> 0, it represents
that an undirected edge directly exists between variable Xi
andXj.0e larger the I(Xi, Xj) is, the higher the dependence
degree between the two variables. If I(Xi, Xj) � 0, it rep-
resents variable Xi and variable Xj are independent of each
other. Equation (7) shows that the mutual information
matrix In×n is a symmetric matrix whose diagonal is 0.

Theorem 1 (d-separate and conditional independence). In
BN, if all paths between node Xi and node Xj are blocked by
node set Z, then we can say set Z d-separates Xi and Xj, or Xi
and Xj are independent of each other under the given Z. It is
expressed as Xi, Xj|Z or I D(Xi, Xj|Z).

Definition 2 (assoc(X,T|S)). It indicates the association
degree of X and Tunder the given S. Its value is determined
by G2 statistics under the null hypothesis of conditional
independence. Assume that Nabc is the number of times
when X� a, T� b, and S� c in the sample data. 0en, G2

statistical variable is defined as

G
2

� 2 􏽘
a,b,c

N
abc ln

N
abc

N
c

N
ac

N
bc

􏼠 􏼡. (8)

Given a significance level α, if the p-value calculated by
the G2 test is less than α, the hypothesis is denied; that is,
variable X and variable T are conditionally dependent.
Otherwise, they are conditionally independent.

Definition 3 (MinAssoc(X, T|Z)). If all subsets of a given
condition set Z are condition sets, take the minimum value
of the association degree of target variables X and T:

MinAssoc(X, T|Z) � min assoc
S⊆Z

(X, T|S). (9)

Theorem 2 (false-positive node). In any subset of the
candidate node set V \ X, if the conditional independence test
of two nodes shows that they are conditional dependent, then
the two nodes are adjacent. Otherwise, one node is called the
false-positive node of the other.

4.1. MWST Algorithm. 0e steps of the MWST algorithm
[41] are as follows: first, start from the node set Y� { Xi }.
0en, find node Xj from the set V \ Y, which has the largest
mutual information with any node y in set Y and uses
undirected edges to connect y and Xj. Repeat this operation
until Y � V. At this point, the sum of mutual information
between nodes is the largest. Figure 2 shows the structure of
Asia network and its MWST structure when data amount
N� 1000.

It can be seen that there are undirected edges in the tree
structure. 0erefore, it is impossible to determine the exact
parent set and child set of one node. 0e weight of edges in
the tree structure represents the dependency between two
variables. Mapped in the BN structure, it shows the rela-
tionship between parent nodes and child nodes. In this case,
the maximum number of node connections in the tree
structure can be considered the maximum number of parent
nodes in the network structure. In the Asia network, the
maximum number of node connections is 4; that is, the
maximum parent number of the network can be set to 4.
0en, the candidate parent set of X6 can be regarded as
{X3,X4,X7,X8}. It is worth noting that if the number of nodes
n is large, the tree structure will lose edges. 0erefore, the

{}

{X2} {X3} {X4}{X1}

{X1,X2,X3} {X1,X2,X4} {X1,X3,X4} {X2,X3,X4}

{X1,X2,X3,X4}

{X1,X2} {X1,X3} {X2,X3} {X1,X4} {X2,X4} {X3,X4}

(a)

{}

{X2} {X3} {X4}

{X2,X3} {X2,X4} {X3,X4}

{X2,X3,X4}

(b)

Figure 1: Order graph with n� 4 (a) and parent graph of X1 (b).
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maximum number of parent nodes of each node cannot be
determined according to the tree structure. For example, if
the maximum number of parent nodes ofX3 is 2, and the lost
edge happens to the edge between X3 and a certain node, it
will affect the search for the optimal parent set of X3. 0en,
the accuracy of the algorithm cannot be guaranteed.

Based on the above analysis, we use the maximum
number of parent nodes obtained from the maximum
weight spanning tree structure to prune the parent graph of
the DP algorithm horizontally and reduce the upper limit of
the parent number from n-1 to t, thus decreasing local
scoring times. Figure 3 is an example of horizontal pruning
of the parent graph by using value t in the Weather network,
where the gray sets do not need to be calculated. If t� 1, only
two layers of scores need to be calculated. If t� 2, only three
layers of scores need to be calculated. If and only if t� n, the
constraints are invalid, and the local scoring calculation
times of the proposed algorithm are the same as those of the
DP algorithm.

In generality, when the network has n nodes, the parent
graph of the DP algorithm has n layers. After constraints
with value t, n-t-1 layers of the parent graph are pruned, and
t+1 layers are remaining. In this case, the number of local
scores to be calculated is n 􏽐

t
i�0 Ci

n−1(t≤m≤ n − 1). After
constraints, the local score calculation equation of X is
expressed as

max
PS∈V/ X{ }

Local Score(X|PS)⇒ max
PS∈V/ X{ }∩|PS|≤t

Local Score(X|PS).

(10)

4.2. S-MMPC Algorithm. Before introducing the S-MMPC
algorithm proposed in this article, we would briefly explain
the MMPC algorithm. 0e MMPC algorithm is divided into
two stages: in the first stage, it uses the max-min heuristic
strategy to make variables enter the CPC set of target var-
iable T. In the second stage, it removes the edges that should
not enter theCPC in the first stage by the followingmethods:
for target variable T, if there is a subset S and a variable X in
its CPC set that make Tand X are conditionally independent
with the given S, we can have Ind(T,X|S). 0en, it removes X
from the CPC of T. But the parent-child node set of the

target node Tobtained by theMMPC algorithmmay contain
false-positive nodes. As shown in Figure 4, to obtain the
parent-child node set of the target node T, the nodes B and T
are independent if the size of the condition set is 0. 0en,
delete node B fromADJ(T). However, node Tand node C are
conditionally independent under condition set {A,B}.
0erefore, deleting node B too early will lead to the failure to
test the conditional independence of T and C in subsequent
conditional independence tests. 0e result might be that
node C still exists in the parent-child node set of T after the
MMPC processing.

To solve this problem, this article proposes the S-MMPC
algorithm, which uses the principle of symmetry to improve
theMMPC algorithm; that is, two nodes must be in the set of
parent and child nodes of each other; otherwise, they are
false-positive nodes and can be deleted. As shown in Fig-
ure 4, process node Twith the MMPC algorithm and we can
obtain the parent-child node set, CPC(T)� {A,C}. Call
MMPC processing on C to get the parent-child node set,
CPC(T)� {A,B}, C ∈ CPC(T) but T ∉ CPC(C), which does
not satisfy the symmetric relationship between nodes.
0erefore, C is a false-positive node of T, and C should be
deleted from the parent-child node set of T. 0e pseudocode
of the S-MMPC algorithm, in which lines 16–20 adopt the
symmetry principle to delete false-positive nodes, is shown
as follows:

After the constraint of the maximum weight spanning
tree, the possible parent set is still V \ X. Besides, only PS ∈V
\ X and | PS |≤ t are required for the candidate subset of X,
which only reduces a small number of scoring calculations.
0erefore, this article uses the S-MMPC algorithm to
constrain the candidate parent set of nodes. After constraint,
the local score calculation equation of X is

max
PS∈V/ X{ }

Local Score(X|PS)⇒ max
PS∈CPC(X)

Local Score(X|PS). (11)

According to equation (11), only the following should be
met for each node: |CPC(X)|≤ n-2. It means that delete at
least one element that does not belong to the candidate
parent-child set from the candidate parent set of each node,
and then only the local scores of elements in CPC(X) need to
be calculated, thus reducing the score calculations. 0e
number of score calculations at this time is n2|CPC(X)|.

1 2

3 4 5

6

7 8

(a)

Node1

Node2

Node3

Node4

Node5

Node6

Node7 Node8

(b)

Figure 2: Asia network (a) and its MWST structure (b).
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Figure 5 is an example of the Weather network pruning
parent graph with CPC(X1). If CPC(X1)� { X2,X3}, it means
the node sets containing X4 can be omitted from calculation.
0ey are represented with the gray sets in Figure 5. By
comparing Figures 3 and 5, it can be seen that in theWeather
network, the DP algorithm needs to calculate local scores 32
times. After the constraint with t� 2, local scores need to be
calculated 28 times. After the constraint with the S-MMPC
algorithm, local scores need to be calculated only 16 times.

4.3. MMPCDP Algorithm. 0e core idea of the MMPCDP
algorithm is to use the maximum number of parent nodes
obtained by the maximum weight spanning tree and the
candidate parent set obtained by the MMPC algorithm to
constrain the dynamic programming process, thereby re-
ducing the search space and improving the efficiency of the
algorithm. 0e block diagram of MMPCDP is shown in
Figure 6, and the complete steps of the algorithm are as
follows:

Step 1. Use formula (6) to calculate the mutual information
matrix between nodes according to the data.

Step 2. Using the size of mutual information as the weight,
use the prim algorithm to build the maximum weight
spanning tree.

Step 3. Traverse the maximum weight spanning tree to get
the maximum number of connections of the node, and use it
as the maximum number of parent nodes of the node.

Step 4. Use formula (8) for conditional independence test,
the MMPC algorithm improved by the symmetry principle
is used to obtain the candidate parent set CPC of the node
and use it as the candidate set PS of the node.

Step 5. Recursively traverse the node order space for dy-
namic programming according to formulas (4), (5), use the
maximum number of parent nodes and the candidate set PS
to constrain the planning process of dynamic programming,
and calculate the structure score according to formula (3).

Step 6. 0e structure with the highest score is the final BN
structure.

Pseudocodes of the MMPCDP algorithm are shown in
Algorithm 2. In Algorithm 2, Function3 is used to cal-
culate and store all the local scores that need to be cal-
culated. Lines 1–3 are to obtain the maximum number t of
parent nodes of the network by using the tree structure.
Line 4 calls Function1 of the S-MMPC algorithm in
Section 3.2 and adopts the G2 test to verify the conditional
independence between nodes to get the candidate parent
set of nodes. Lines 5–7 call Function4 to calculate the
possible parent sets and corresponding scores for each
node. In Function4, lines 1–3 are the possible parent set
combinations generated by function nchoosek. 0ey are
stored in set pa_comb. Lines 5–13 use double-layer cir-
culation to get the corresponding scores of possible parent
sets of all nodes. In line 5, value t is recycled to prune the
parent graph horizontally. In line 6, the candidate parent
set CPC is recycled to prune the parent graph longitu-
dinally. Line 14 sorts the resulting key-value pairs [Score,
cpccodei] by score in descending order, supporting the
search of node order graph.

In this article, after biconstraints with the above method,
the final local score calculation equation of X is

max
PS∈V/ X{ }

Local Score(X|PS)⇒ max
PS∈CPC(X)∩|PS|≤t

Local Score(X|PS).

(12)

{}

{X2} {X3} {X4}

{X2,X3} {X2,X4} {X3,X4}

{X2,X3,X4}

{}

{X2} {X3} {X4}

{X2,X3} {X2,X4} {X3,X4}

{X2,X3,X4}

t=1 t=2

{}

{X2} {X3} {X4}

{X2,X3} {X2,X4} {X3,X4}

{X2,X3,X4}

t=3

Figure 3: Schematic diagram of pruning the parent graph of variable X1 with value t. (a) t� 1. (b) t� 2. (c) t� 3.

T

A B

C

Figure 4: Schematic diagram of symmetry principle.
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Function1 CPC � s MMPC(data, ns, n, α, t, I)

Input: D-Data set, T -Target variable, α-Significance level

Output: CPC-Candidate parent-child node set
(1) CPC � ϕ
(2) while true//Forward-add nodes to CPC
(3) 〈F, assocF〉 � MaxMinHeuristic(T, CPC)

(4) if assocF≠ 0
(5) CPC � CPC∪F

(6) else
(7) break
(8) end if
(9) end while
(10) for each variable X ∈ CPC //Backward-remove nodes from CPC
(11) if there exists a subset S⊆CPC so that X⊥T|S

(12) CPC � CPC/ X{ }//If the disjoint sets of X and T are found in CPC, remove X from the CPC
(13) end if
(14) end for
(15) for all X ∈ CPC

(16) if T ∉ CPC(X)

(17) CPC � CPC/ X{ }

(18) end if
(19) end for
(20) return CPC

Function2 〈F, assocF〉 � MaxMinHeuristic(T,CPC)

Input: T-Target variable, CPC-candidate parent-child node set

Output: Node F in the greatest association degree with T and association degree assocF

(1) assocF � maxX∈VMinAssoc(X,T|CPC)

(2) F � argmaxX∈VMinAssoc(X, T|CPC)

(3) return F, assocF

ALGORITHM 1: 0e pseudocode of S-MMPC.

{}

{X2} {X3} {X4}

{X2,X3} {X2,X4} {X3,X4}

{X2,X3,X4}

Figure 5: Schematic diagram of pruning the parent graph of (X)1 with CPC((X)1).

Standard
network

Sample
training

data
from

network 

Maximum number
of parent nodes

MMPC algorithm

calculate
mutual

informa-
tion

matrix 

Obtain
the

optimal
BN

structure

MWST algorithm
Generate

order
graph

Prune
parent
graph

PS setSymmetry principle

S-MMPC algorithm
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It can be seen that the proposed algorithm reduces the
overall score calculation times from n2n−1 to
􏽐

n
j�0 􏽐

t
i�0 Ci

|CPC j{ }|
(t≤m≤ n − 1).

4.4. Algorithm Time Complexity Analysis. 0e time com-
plexity of the algorithm is measured by the number of
executions of the basic operations required during the ex-
ecution of the algorithm. Assuming that n is the number of
network nodes and N is the number of samples, the time
complexity of calculating the mutual information of a
certain group of nodes is o(N), a total of n(n − 1)/2 mutual
information calculations are required, and the time com-
plexity of calculating the mutual information of the entire
network is o(Nn2).0e time complexity of using mutual
information to construct the maximum weight spanning
tree structure is o(n2), the time complexity of searching the
weight spanning tree to get the maximum parent number of
nodes t is o(1), and therefore, the time complexity of
searching the tree to obtain the maximum parent number of
nodes is o(n2(1 + N)); the time complexity of dynamic
programming constrained with t and CPC is o(n2t);
therefore, the time complexity of the MMPCDP algorithm is
o(n(2t + Nn + n)).

5. Simulation Experiment

5.1. Experiment Conditions. To verify the effectiveness of the
MMPCDP algorithm, self-constructed networks with data
amountN of 10,000 and different scales (https://pan.baidu.com/

s/1FbrobC5j7y5bVlz1WutY4Q) are adopted to analyze its
performance based on Bayesian toolbox FullBNT-1.0.7 [42].
0e software environment is Windows 10 64bit operating
system, Intel(R) Core TM) i7-3615QM CPU@ 2.30GHz pro-
cessor, and MATLAB R2014a. In order to avoid the ran-
domness of data sampling, which leads to the great difference of
t values and affects the algorithm accuracy, the experiment
samples 10 groups of data each time, and each group of data
runs independently for 10 times to take the average. It means
the t values are averaged and rounded up, and the running time
is averaged.0e self-constructed network parameters are shown
in Table 1. n is the number of nodes, E is the number of edges, P
indicates the parameter quantity, and λ represents the maxi-
mum in-degree.

5.2. Performance of S-MMPC Algorithm. According to
Definition 2, significance level α will affect the performance
of the MMPC algorithm to a great extent. If α decreases, the
result will be stricter, and the obtained |CPC(T)| will be
smaller. If α increases, the result will be broader, and the
obtained |CPC(T)| will be higher. In this article, sensitivity
and specificity are used to evaluate the performance of |
CPC(T)| of target variables T obtained by algorithms
S-MMPC and MMPC, and to analyze the influence of
different values of α on their accuracy. Sensitivity is defined
as the number of variables in the CPC set of a target variable,
which are correctly identified by the algorithm and belong to
the real parent-child node set of the target variable. Speci-
ficity is defined as the number of variables that do not belong

Function3 [ScoreCache cpccode] � calculate scores(data, ns, I)

Input: data-data, ns-node status number, I-Mutual information matrix
Output: scorecache-candidate parent sets and its score, cpccode-decimal encoding of candidate parent set

(1) [n, N] � size(data)

(2) [link, T1] � prim link(I, n)

(3) t � Max lim pa(T1)

(4) CPC � s MMPC(data, ns, n, α, t, I)

(5) for X ∈ V
(6) [score cache xi{ }, cpccode(xi)] � calculates cores(xi, data, n, N, CPCi, t)

(7) end for
Function4 [score cache xi{ }, cpccode(xi)] � calculate scores(xi, data, n, N, CPCi, t)

Output: Score–candidate parent sets and its scores,cpccodei- decimal encoding of candidate parent set
(1) for k←0 to t

(2) pa comb k{ } � nchoosek(CPCi, k)

(3) end for
(4) [Score, cpccodei]←∅
(5) for layer←0 to t

(6) for each node xi such that P ∈ pa comb&|P| � layer
(7) Best Score(X, P) � max

Y∈P
Best Score(X, P/ Y{ })

(8) if score(X, P)>Best Score(X, P)

(9) Best Score(X, P)←score(X, P)

(10) append [Score, cpccodei] with [Score(X, P), bitnarize(p)]

(11) end if
(12) end for
(13) end for
(14) sort [Score, cpccodei] with score in descending
(15) return [Score, cpccodei]

ALGORITHM 2: Partial pseudocode of MMPCDP algorithm.
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to the CPC set of the target variable, and variables that
belong to the target real parent-child node set correctly
identified by the algorithm.

Assume that num pc(Xi) represents the number of
variables in the parent-child node set of Xi in a standard

network. mmpc(Xi) and pc(Xi) represent the parent-child
node set of Xi obtained by the algorithm and that of Xi in the
standard network, respectively. L(σ) indicates the number of
nodes that make σ true. 0e sensitivity and specificity are
defined as follows:

sensitivity �
1
n

􏽘

n

i−1

L mmpc Xi( 􏼁 ∈ pc Xi( 􏼁􏼂 􏼃

num pc Xi( 􏼁
,

specificity �
1
n

􏽘

n

i�1

L mmpc Xi( 􏼁 ∉ pc Xi( 􏼁􏼂 􏼃

n − 1 − num pc Xi( 􏼁
.

(13)

0e two statistics together provide relevant measures for
evaluating the algorithm performance of S-MMPC and
MMPC, and either statistic alone is not sufficient. In this
article, Euclidean distance is used as a combination measure
to characterize the approximate degree between the sensi-
tivity and specificity of the algorithm and the optimal
sensitivity and specificity:

d �

�����������������������������

(1 − sensitivity)
2

+(1 − specificity)
2

􏽱

. (14)

0e smaller the distance d is, the closer the output of the
algorithm is to the true parent-child node set.

In this article, Asia network, Sachs network, Child
network, and Insurance network are selected from BN re-
pository to evaluate the performance of the S-MMPC al-
gorithm, and N� 10,000. Figure 7 shows the sensitivity,
specificity, and Euclidean distance of S-MMPC and MMPC
under four different values of α.

In Figure 7, it can be seen that in the above four standard
networks of different scales, when the amount of data is
constant, the Euclidean distance increases with the signifi-
cance level α. When the four networks have the same sig-
nificance level α, the Euclidean distance of the proposed
S-MMPC algorithm is smaller than that of the MMPC al-
gorithm, which means the S-MMPC algorithm has a better
performance. It can ensure that the output parent-child set
of nodes is close to the real one and reduce the error rate of
longitudinal pruning of the parent graph by the S-MMPC

algorithm. 0e reason for the performance improvement is
that the S-MMPC algorithm can improve the specificity by
deleting false-positive nodes according to the symmetry
principle with the same sensitivity as the MMPC algorithm,
thus reducing Euclidean distance.

5.3. Performance of MMPCDP Algorithm. In order to avoid
traversing equivalent structures, we evaluate the accuracy of
the algorithm by the percentage of the error between the
network structure score calculated by the algorithm and the
original network structure score. 0e calculation equation is

D �
score(G′) − score(G)

score(G)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
× 100%, (15)

where G′ is the network structure learned by the proposed
algorithm, G represents the original network structure, and
function score uses BIC. Equation (15) shows that the smaller
the scoring error percentage, the higher the accuracy of the
algorithm.

5.3.1. Analysis of Transverse Pruning. Different networks
have different generated spanning tree structures and t
values. 0is section compares the size of the maximum in-
degree λ of the network and t obtained with MWST.0en, it
judges whether the accuracy of the DP algorithm will be
influenced by horizontally pruning the parent graph with
MWST. 0e statistical results are shown in Figure 8.

Table 1: Introduction of network parameters.

n E p λ
10 20 131 3
11 17 267 3
12 24 316 3
13 26 529 3
14 28 465 3
15 30 544 3
16 32 596 3
17 34 388 3
18 36 317 3
19 38 456 3
20 40 768 3
21 42 338 3
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It can be seen that by comparing the values of λ and t, we
have λ≤ t≤ n − 1. It means each parent graph after hori-
zontal pruning with value tmust contain the optimal parent
set of the node, and the algorithm accuracy will not be
affected. 0erefore, the accuracy of the proposed algorithm
depends on longitudinal pruning.

5.3.2. Analysis of Longitudinal Pruning. In this article, the
CPC obtained by the S-MMPC algorithm is used as the
candidate parent set of nodes, and the parent graph is
pruned longitudinally. However, according to Definition 2,
it can be seen that significance level α will affect the

performance of the S-MMPC algorithm to a great extent. A
detailed analysis is shown in Table 2.

0erefore, this section takes a network with n� 14 as an
example (Figure 9). 0en, it analyzes the influence of different
values of α on the accuracy of the MMPCDP algorithm. Fig-
ure 10 shows the network structure obtained by the MMPCDP
algorithm when α � 0.5.

It can be seen from Figure 11 that the running time of the
MMPCDP algorithm increases rapidly with the significance
level α. Score error percentage decreases as α tends to 1. It
finally stabilizes and reaches 0. 0erefore, accuracy and time
are two indexes that cannot be achieved simultaneously in the
algorithm. To strike a balance between the accuracy and time
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Figure 7: Sensitivity, specificity, and Euclidean distance curves of the two algorithms under different values α. (a) Asia. (b) Sachs. (c) Child.
(d) Insurance.
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Table 2: 0e effect of parameters α on algorithm performance.

Condition Result |CPC(T)| Accuracy of MMPCDP Time consumption of MMPCDP
α ↓ Stricter ↓ ↓ ↓
α ↑ Broader ↑ ↑ ↑

1

2

3

4

5

6

7

8

9

10

11

12

13
14

Figure 9: Network structure diagram with (n)� 14.
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Figure 10: Network structure obtained α � 0.5.
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of the algorithm, Section 5.3.3 takes α � 0.5 to measure the
performance of the proposed algorithm.

5.3.3. Analysis of Time Consumption and Accuracy. Set
N � 10000, α � 0.5, and apply the proposed algorithm, stan-
dard DP algorithm, SMDP algorithm, MEDP algorithm, and
DPCMB algorithm to the network in Section 5.1. Here, the
importance threshold ε of the DPCMB algorithm is set to 0.50.
0en, compare the algorithms’ running time to reflect time
consumption, and compare their scoring error percentages to
show accuracy. 0e results are given in Table 3, where “—”
indicates that the storage space required by the algorithm ex-
ceeds the memory of our computer. Figure 12 shows the time
consumption ratio of SMDP, MEDP, DPCMB, and MMPCDP
based on the time consumption of the DP algorithm.

For the part marked in bold, such as n� 13, 14, 16, and
21, the accuracy of theMMPCDP algorithm proposed in this
article has become lower, and it has not reached the situation
that the accuracy of the SMDP algorithm is consistent and
close to 0, and then research separately, conduct experi-
ments, and gradually increase the value of α to make the
accuracy approach the accuracy of the SMDP algorithm; the
results of various indicators are shown in Table 4.

Compared with the other four algorithms, the
MMPCDP algorithm not only ensures the accuracy, but also
reduces the time consumption. In Figure 12, the average
running time of the five algorithms is roughly ranked as
follows: MMPCDP≤DPCMB≤MEDP≤ SMDP≤DP. With
the increase of n, the effectiveness of the constraints becomes
more and more obvious. As shown in Table 4, by increasing
the importance threshold α, the score error percentage of the
MMPCDP algorithm is mostly increased to the same point
as the score error percentage obtained by the SMDP algo-
rithm; that is, when α gradually approaches 1, the accuracy
of theMMPCDP algorithm approaches the SMDP algorithm
and eventually stabilizes.

5.4. Discussion. From the perspective of local scoring times,
constructing P-caches storage structure with SMDP algo-
rithm still needs n2n−1 times. 0e MEDP algorithm uses
MDL scoring function to reduce the maximum number of
parent nodes from n-1 to m. Its required local scoring times
are n 􏽐

m
i�0 Ci

n−1(m � log(2N/log N)). 0e sample size will
affect the final structure accuracy. 0e DPCMB algorithm
uses Markov blanket to constrain the calculation process,
and the required number of local scoring times is
􏽐X∈V2|MB(X)|. In this article, the proposed algorithm uses
double constraints to reduce the total score calculation times
from n2n−1 to 􏽐

n
j�0 􏽐

t
i�0 Ci

|CPC j{ }|
(t≤m≤ n − 1). It can be

seen that our algorithm reduces its time consumption and
complexity by reducing the number of scoring times. 0e
algorithm accuracy is subject to the significance level α, but
not affected by the horizontal pruning with t.

6. UAV Intelligent Decision-Making
Application Based on MMPCDP

6.1. Air Combat Scene Description. First, give the mission
scenario: there are multiple enemy air targets invading, and
our side dispatches manned aircraft and drones for air
combat. Due to strong electromagnetic interference from
the enemy, the communication between the manned air-
craft and the drone is interrupted. In order to ensure the
safety of the manned aircraft, we decided to withdraw the
manned aircraft and let the unmanned aerial vehicle
(UAV) conduct autonomous operations to complete the
task of air combat. At this time, when a UAV faces multiple
enemy targets, it has to choose one target to attack, so it
needs to make an attack decision. 0e task scenario is
shown in Figure 13:

Different UAVs are equipped with different sensors, so
the situation information that can be obtained is different.
0is article assumes that UAV can acquire target information
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Figure 11: Influence of significance level α on indexes of the proposed algorithm. (a) Time consumption of different α. (b) Scoring error
proportion of different α.
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of the following: height (H), distance (Dis), velocity (V), angle
(A), radiation (R), radar reflection area (RCS), track state
(TS), warning information (WI), type (T), intention (I),

capacity (C), importance (Im), and task point (TP), as well as
virtual node threat value(TV) and decision variable(D). 0e
following is the discretization of the above variables:

6.2. Intelligent Decision-Making Structure Construction.
0is article uses a simulation platform to simulate the
combat process to obtain data, and the data are processed
according to the discretizationmethod shown in Table 5.0e
portion of the processed data is shown in Table 6.

0en, use the MMPCDP algorithm proposed in this article
to learn the Bayesian network structure, thereby constructing a
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Figure 12: running time of the five algorithms.

Table 3: Time consumption and accuracy of five algorithms

n
Running time (s) Scoring error percentage (%)

DP SMDP MEDP DPCMB MMPCDP DP SMDP MEDP DPCMB MMPCDP
10 15 2 2 1 2 1.0367e-14 1.6415e-14 1.4829e-13 4.1813e-13 1.0354e-13
11 24 4 4 2 3 2.1546e-12 2.2428e-12 2.7766e-12 2.8182e-12 2.9145e-12
12 99 24 11 5 9 5.1105e-13 1.1126e-12 3.2659e-12 0.3510 2.3863e-12
13 262 115 26 12 12 5.9007e-13 1.0534e-12 1.2339e-12 2.1302e-12 0.6110
14 782 253 60 19 15 1.4377e-13 2.9742e-13 3.0249e-13 0.3085 0.3262
15 3128 638 148 27 18 2.2582e-14 7.0055e-14 7.9981e-14 0.0208 7.0080e-14
16 7658 2534 303 41 23 1.5372e-13 1.7624e-13 1.6863e-13 1.2875e-12 0.2656
17 57770 9326 621 103 38 1.0081e-13 1.0435e-13 1.2154e-12 1.0734e-12 1.0307e-12
18 98492 24200 1635 561 45 2.9685e-14 4.7709e-14 8.0055e-14 0.0163 1.2658e-13
19 — — 5302 734 67 — — 1.3837e-12 2.0963e-12 1.7139e-12
20 — — 18525 5447 103 — — 1.1327e-13 1.3587e-12 1.2378e-12
21 — — 93363 10328 153 — — 1.9672e-14 0.6803 0.6036

Table 4: Time consumption and accuracy of the MMPCDP al-
gorithm of the network bold marked in Table 3.

n Running time (s) Scoring error percentage α
13 19 2.0317e-12 0.6
14 30 3.1261e-13 0.7
16 41 1.1605e-12 0.75
21 524 2.0731e-12 0.85
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Figure 13: Schematic diagram of air combat missions.

Table 5: Discretization of the target information variables.

Node number Target information Discretization
1 Decision {1,2}� { Don’t attack, attack }
2 0reat value {1,2}� { low,medium, high }
3 Type {1,2,3}� { jammer, bombers, fighter aircraft }
4 Intention {1,2}� { interference, attack }
5 Capacity {1,2,3}� { low,medium, high }
6 Importance {1,2,3}� { low,medium, high }
7 Task point {1,2}� { attack the machine, not attack the machine}
8 Height {1,2}� Height≥ 3Km,Height< 3Km􏼈 􏼉

9 Distance {1,2,3}� Distance< 20Km, 20Km≤Distance< 50Km, 50Km≤Distance{ }

10 Velocity {1,2,3}� Velocity < 1Ma, 1Ma≤Velocity< 2Ma, 2Ma≤Velocity􏼈 􏼉

11 Angle {1,2,3}� Angle< π/3, π/3≤A≤ 2π/3, 2π/3<A􏼈 􏼉

12 Radiation state {1,2}� {close, open}
13 RCS {1,2}� { small reflection area, large reflection area }
14 Track {1,2}� {no,yes}
15 Warning information {1,2}� {no,yes}

Table 6: Portion of the processed data.

D TV Ty I C Im TP H Dis V A R RCS TS WI
1 1 1 1 1 2 1 2 2 1 2 3 1 1 2 1
2 1 2 2 2 1 2 2 1 3 1 2 2 1 2 1
3 2 2 3 2 2 3 1 2 1 2 1 1 2 1 2
4 2 3 1 1 3 2 1 2 1 2 2 2 1 1 2
5 2 3 2 2 3 3 1 1 2 2 2 1 2 2 1
6 2 1 1 1 1 3 1 2 3 1 3 2 1 2 1
7 2 2 3 2 3 2 1 2 1 3 2 1 1 2 2
8 1 1 2 1 2 2 2 2 3 2 3 2 2 1 1
9 1 1 3 1 1 3 2 2 1 3 2 1 2 2 1
10 2 2 2 2 3 1 2 2 2 2 1 2 1 1 1
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structure for UAV intelligent decision-making. Figure 14 is the
BN structure constructed by expert knowledge. 0e final
structure is shown in Figure 15. As the method of dynamic
programming is adopted, this structure is the global optimal
solution of the data.

By comparing the two structures, it can be found that
while retaining expert knowledge, Figure 15 excavates
more variable information, which is more in line with the
objective facts. For example, the parent node of the decision
node increases the target intention and the threat value in
addition to the threat value included in the expert
knowledge; the parent node of the target threat value node,
in addition to the target task orientation of expert
knowledge, adds the t target intention and target ability.
From this, we can see the practical feasibility of the al-
gorithm in this article.

7. Conclusion

DP algorithm is an accurate algorithm for learning BN
structure, but it has high complexity, which limits its appli-
cation. 0erefore, this article proposes the dynamic pro-
gramming structure learning algorithm of Bayesian network
integrating MWSTand improved MMPC.0is algorithm uses
mutual information to build the MWST and takes the maxi-
mum number of node connections in the MWST structure as

the maximum number t of parent nodes of the network. 0e
CPC set obtained by the S-MMPC algorithm is used as the
candidate parent set PS of nodes. By pruning the parent graph
horizontally and longitudinally, the parent sets that need to be
visited are reduced, thus reducing local scoring calculation
times, the memory of scores, and the running time of the
algorithm. Compared with the SMDP algorithm, the
MMPCDP algorithm uses constraints to reduce the time
consumption of the DP algorithm, whereas the SMDP algo-
rithm uses a new storage structure; compared with the MEDP
algorithm and DPCMB algorithm, this article has the same
improvement ideas as these two algorithms, both by reducing
local scores to reduce the time consumption of the DP algo-
rithm, and the MMPCDP algorithm requires the least number
of local scores by theoretical analysis. And simulation exper-
iments show that when an appropriate significance level α is
selected, the MMPCDP algorithm can reduce scoring times
and running time while ensuring accuracy. If and only if t� |
CPC|� n-1, the constraints are invalid. In future work, we will
study how to effectively adjust the value of α effectively to meet
the accuracy requirements.

Data Availability

Data used in the experiments are synthetically generated
from the networks.
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