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,is paper studies joint algorithms of order picking and distribution in new retail enterprises. ,e problem will consider many
factors, such as the type of goods, picking time, batch capacity of distribution, distribution time, and distribution cost. First of all,
the research problems are summarized as mathematical programming problems. ,en, a genetic algorithm and comparison
algorithms are proposed. Finally, the rationality of the model and the effectiveness of the algorithms are verified by computational
experiments, and management enlightenments are revealed.

1. Introduction

In the first quarter of 2020, communities in China were
closed for management, and since then, the public has been
buying fresh food and daily necessities online because of the
outbreak of COVID-19. ,e number of customers in tra-
ditional stores has reduced, and orders from new fresh
e-commerce have increased rapidly. ,e new mode of door-
to-door delivery has become popular. “It’s not the alarm
clock that wakes me up every day, but the desire for fresh
vegetables.” After the outbreak of the epidemic, many people
living at home chose to stay away from the grocery market
temporarily and “embrace” the Internet, so “online shop-
ping” has become the main choice for supplying daily ne-
cessities. ,is has led to the rise of various online fresh food
retail platformmerchants against the trend, with the number
of users, orders, and sales reaching a new height. According
to public information, Dingdong (an APP for online fresh
food shopping) saw a 291.42% increase in the number of new
users and an overall volume growth of approximately 80%;
the order volume of Meituan (an APP for online fresh food
shopping) increased by more than 200% in some sites in
Shanghai; and the number for HEMA (an APP for online
fresh food shopping) was 290%. While the business volume
of each online retail platform is booming, the supply chain

including logistics and distribution is also under great
pressure.

On January 15, 2016, HEMA opened its first store in
Shanghai Jinqiao Square and quickly became an “Internet
celebrity.” HEMA is a new retail format completely
reconstructed by Alibaba for offline supermarkets that is
different from other fresh e-commerce. It is a supermarket, a
restaurant, and a vegetable market. However, such de-
scriptions seem to be inaccurate. Consumers can buy goods
in-store or place orders through HEMA APP. ,is feature is
also known as “warehouse-store-integration,” and HEMA’s
warehouse is also its store. Compared to traditional ware-
house, the interior merchandise is placed differently. ,e
traditional warehouse stores goods in the standard shelf-
stacking pattern. However, each customer can see all goods
in HEMA. ,e display and placement of commercial
products are different according to the preferences of
consumers in the area where the store is located.

By observing online orders’ picking process of HEMA,
we found that once a customer places an order in HEMA
APP, the information processing center will divide the order
into several suborders according to commodity types, such
as river fresh, fruit, pasta, and daily necessities. (�is is
determined by the goods location and attributes of the
commodity. For example, fresh river food products need to be

Hindawi
Mathematical Problems in Engineering
Volume 2021, Article ID 9308071, 13 pages
https://doi.org/10.1155/2021/9308071

mailto:wyzhong@i.shu.edu.cn
https://orcid.org/0000-0002-7766-4193
https://orcid.org/0000-0001-8385-8472
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/9308071


dehydrated and processed. It must also be sealed and packed
to prevent contamination of other goods.) ,e information of
each suborder is first sent to the handheld device of the staff
in the area where the goods are located. ,e staff selects
goods and puts them into a bag.,e bag is hung on the hook
at the starting position of a conveyor belt, which transfers the
bag to the packaging area. In the packaging area, items from
the same order are assembled together and passed on to the
deliverymen, who distribute customers’ orders in batches.
One of the biggest characteristics of HEMA is fast delivery:
within 3 kilometers around the store, it takes only
30minutes to deliver goods to your door.

From the above description, we can see that, in the order
processing system, the flow of information drives the flow of
goods: receiving information from the information pro-
cessing center, sending instructions to the staff, and sending
the goods to the customers by deliverymen. Each of the
above steps is important in order to achieve the goal of rapid
delivery. In this paper, we formulate the above order pro-
cessing as a joint scheduling problem of online order picking
and distribution.

Order picking is a process of picking the required
products from the shelves accurately and quickly, according
to the information of customers’ orders. It is one of the most
important operations in the distribution center. An ap-
propriate order picking system helps improve working ef-
ficiency and customer satisfaction [1]. Many literatures have
studied such problems, mainly involving design of goods
location [2], picking routes [3], order batching [4, 5], and
partition picking [6]. In the “online shopping” mode, lo-
gistics distribution business poses a lot of new challenges.
Researchers have studied the decision-making and route
optimization of e-commerce logistics distribution, such as
[7, 8]. In order to deliver goods to customers quickly, it is
necessary to manage order picking and distribution as a
whole. ,is is because the starting time of vehicle distri-
bution is directly related to the completion time of order
picking.Wang et al. [9] constructed a joint scheduling model
of picking and distribution to minimize orders’ fulfillment
time. Peng [10] studied a joint scheduling problem of order
batching and distribution routing and took the shortest total
fulfillment time from order picking to distribution com-
pletion as the goal of B2C e-commerce distribution center.
Zhang et al. [11] studied the online integrated order picking
and delivery problem with the multizone routing method to
minimize the sum of the maximum delivery completion
time and the total delivery cost.

,e order picking in this paper is different from the
traditional warehouse order picking. A HEMA offline store is
also a warehouse, which increases the difficulty of order
fulfillment due to the variety of commodity demand and small
batch sizes. All orders submitted through HEMA app are
picked by the staff in the sales area.,e placement of goods in
the sales area is different from that in traditional warehouses.
,ere is no unified standard shelf. ,e display and the
placement of goods varies from shop to shop according to the
preferences of consumers in the area where the store is lo-
cated. ,erefore, we study the picking and distribution
problem of orders generated in HEMA APP from a different

view. It is assumed that, in a certain period of time, there are
some orders to be picked out and distributed to customers.
,ese orders are regarded as jobs, the staff and conveyor belts
in HEMA stores are regarded as machines, and the deliv-
erymen are regarded as vehicles. We analyze the combined
problem of order picking and distribution and establish the
model with the goal of minimizing the sum of orders’ total
completion time and total delivery cost.

From the view of scheduling research, we study a ma-
chine scheduling problem with transportation of finished
jobs. Hall and Potts [12] were the first to propose a joint
machine scheduling problem with job transportation. Chen
[13] gave a detailed review on the joint problems of machine
scheduling and product transportation published before
2008. Zhong et al. [14] and Fu et al. [15] studied scheduling
problems of outsourcing the transportation of products to
third-party logistics companies. Ullrich [16] considered
machine scheduling and job transportation problems with
path planning. In this paper, we consider orders’ picking and
distribution in HEMA as a joint scheduling problem with
distribution coordination. Orders are first processed in
dedicated flow shops followed by assembly lines and then are
distributed to the customers by deliverymen. To the best of
our knowledge, this machine scheduling problem has not
been covered in any previous literature.

,e remaining sections of this paper are organized as
follows: In Section 2, we give the problem description; in
Section 3, we construct a MP model for the case with one
machine at each stage and one deliveryman; in Section 4, we
devise algorithms to solve the problem; in Section 5, nu-
merical experiments are carried out to verify the rationality
of the model and the effectiveness of the algorithms; in
Section 6, we conclude this paper.

2. Problem Descriptions

Suppose that, during a certain period of time, there are several
orders waiting to be processed in the online order system of
HEMA. Each order is composed of several types of suborders
and processed in four stages in sequence.,e first and second
stages are order processing within the shop: a subjob is first
processed on a stage 1 machine (the staff picks out the
products and put them into a bag) and then processed on a
stage 2 machine (the conveyor belt transfers the bag to
packing area); then, in the packing area, suborders belonging
to the same order are assembled together for distribution; this
is stage 3. In stage 4, completed orders are distributed to their
customers in batches by deliverymen with electric power
carts. ,e full process is shown in Figure 1.

We regard each order as a job, and a suborder as a subjob
(order and job, and suborder and subjob will be used in-
terchangeably in the following). ,e staff and conveyor belts
are regarded as machines, and the deliverymen are regarded
as vehicles.

Next, we describe the above process of orders’ picking
and distribution as a joint machine scheduling and trans-
portation problem. At the beginning of the planning hori-
zon, n orders O1, O2, . . . , On􏼈 􏼉 are placed by n customers.
Job Oi may contain one or more subjobs Ol

i (item type-l),
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i � 1, 2, . . . , n, l � 1, 2, . . . , k, where each type of suborders is
processed by a dedicated two-stage flow-shop machine
Fl(1, 1). For l � 1, 2, . . . , k, each subjob Ol

i is first processed
by a stage 1 machine Ml

1 with processing time pl
i1 (time

needed for staff’s picking) and then processed by a stage 2
machine Ml

2 with processing time pl
i2 (time needed for belt

conveying). When subjobs Ol
i , i � 1, 2, . . . , n, l � 1, 2, . . . , k

are all finished, they need to be assembled together for
distribution. ,e processing time for job Oi’s assembling
operation is p3

i . Each vehicle contains a batch of jobs when it
departs from the store. It delivers the jobs to the customers
one by one and returns to the store after it delivers the last
job.,en, it is ready for the next batch’s delivery. It can carry
no more than Q jobs in one batch. In this paper, a complete
undirected graph G � (V, E) with n + 1 vertices is used to
represent the geographical locations and distances between
the HEMA store and n customers, V � V0, V1, V2, . . . , Vn􏼈 􏼉,
E � eij, i≠ j, i,􏽮 j � 1, 2, · · · , n}, where V0 is the HEMA
store, andV1, V2, . . . , Vn represent n customers. It takes time
of tij(i, j � 1, 2, . . . , n) for the vehicle travelling between Vi

and Vj. ,e vehicle starts from V0, distributes the orders in
the current batch to their customers one by one, and returns
to V0. We assume that the triangle inequality is satisfied
between any three points in the distribution network. Since a
batch may contain a variety of orders (e.g., requiring re-
frigeration or additional packaging), each order occurs a
distribution cost di. If several orders are contained in one
batch, the distribution cost of this batch equals the arith-
metic mean of the cost of all orders in the batch.

Our goal in this paper is to design a solution for the
above joint machine scheduling and distribution problem,
such that the total arrival time (sum of the times when the
customers receive their orders) and the total distribution
cost are minimized.

We need to make the following decisions: (1) subjobs’
arrangement on the dedicated flow-shop machines and the
assembly machines; (2) batching decision before distribution,
including the number of batches and jobs contained in each
batch; (3) the time when each batch leaves the machine and
the routes of distributing orders in each batch.

3. MP Model for a Special Case

In this section, we study the case when each job contains
two subjobs (subjob A and subjob B denote fresh goods and
nonfresh goods, respectively), and there are one assembly
machine and one vehicle. We construct a mathematical
programming model for this problem. It seems that it is a
bit special; however, we can see that it reveals the meaning
for the coordinated consideration of order picking and
distribution. We first list parameters and variables for this
model.

Parameters
N: the set of jobs, N � O1, O2, . . . , On􏼈 􏼉

Oi: the ith job
OA

i : subjob A of job Oi

OB
i : subjob B of job Oi

pA
i1 : processing time of subjob A of job Oi at the first

stage
pB

i1: processing time of subjob B of job Oi at the first
stage
pA

i2: processing time of subjob A of job Oi at the second
stage
pB

i2: processing time of subjob B of job Oi at the second
stage
pi3: processing time of job Oi on the assembling
machine
V: the set of vertices in the distribution network
tij: transportation time for a vehicle travelling between
Vi and Vj

Q: capacity constraint of a distribution batch
di: distribution cost for each job
yi yi � 1 if job Oi contains subjob A; otherwise, yi � 0
zi zi � 1 if job Oi contains subjob B; otherwise zi � 0
Variables
sA

i1: starting time of subjob A of job Oi at the first stage

Order
distribution

Buffer

Packing and 
assembling

…

…

Fresh goods picking and belt conveyor

Back-office order 
processing

Orders

…

…

…

Non-fresh goods picking and belt conveyor

Figure 1: Order processing and distribution.
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cA
i1: finishing time of subjob A of job Oi at the first stage

sB
i1: starting time of subjob B of job Oi at the first stage

cB
i1: finishing time of subjob B of job Oi at the first stage

sA
i2: starting time of subjob A of job Oi at the second
stage
cA

i2: finishing time of subjob A of job Oi at the second
stage
sB

i2: starting time of subjob B of job Oi at the second
stage
cB

i2: finishing time of subjob B of job Oi at the second
stage
si3: starting time of job Oi on the assembling machine
ci3: finishing time of job Oi on the assembling machine
si4: departure time of job Oi (departure time of the
batch that job Oi belongs to)
ci4: completion time of job Oi (when it is delivered to its
customer)
sf: starting time of the distribution of batch Bf

cf: finishing time of the distribution of batch Bf (when
the last job is delivered, and the vehicle returns to the
store)
F: the number of batches, ⌈n/Q⌉≤F≤ n

B: the set of distribution batches, B � B1, B2, . . . , BF􏼈 􏼉

bf: number of jobs in batch Bf, f � 1, 2, . . . , F

eA1
ij � 1 if OA

i precedes OA
j at the first stage, else � 0

eA2
ij � 1 if OA

i precedes OA
j at the second stage, else � 0

eB1
ij � 1 if OB

i precedes OB
j at the first stage, else � 0

eB2
ij � 1 if OB

i precedes OB
j at the second stage, else � 0

e3ij � 1 if Oi precedes Oj at the third stage, else � 0
v

f

ij � 1 if vehicle travels from Vi to Vj in batch Bf, else � 0
xif � 1 if job Oi is allocated to batch Bf, else � 0
vij � 1 if vehicle travels from Vi to Vj in some batch,
else � 0 (For ease of presentation, let vjj � 1)
Df: distribution cost for batch Bf

Mathematical programming model is as follows:

min 􏽘
n

i�1
ci4 + 􏽘

F

f�1
Df, (1)

s.t. s
A
i1 ≥ 0, i � 1, 2, . . . , n, (2)

s
B
i1 ≥ 0, i � 1, 2, . . . , n, (3)

c
A
i1 � s

A
i1 + p

A
i1􏼐 􏼑 × yi, i � 1, 2, . . . , n, (4)

c
A
i2 � s

A
i2 + p

A
i2􏼐 􏼑 × yi, i � 1, 2, . . . , n, (5)

c
A
i1 − s

A
i2 ≤ 0, i � 1, 2, . . . , n, (6)

c
B
i1 − s

B
i2 ≤ 0, i � 1, 2, . . . , n, (7)

c
B
i1 � s

B
i1 + p

B
i1􏼐 􏼑 × zi, i � 1, 2, . . . , n, (8)

c
B
i2 � s

B
i2 + p

B
i2􏼐 􏼑 × zi, i � 1, 2, . . . , n, (9)

ci3 � si3 + pi3, i � 1, 2, . . . , n, (10)

max c
A
i2, c

B
i2􏽮 􏽯 − si3 ≤ 0, i � 1, 2, . . . , n, (11)

s
A
j1 ≥ c

A
i1 − 1 − e

A1
ij􏼐 􏼑M, i, j � 1, 2, . . . , n, i≠ j, (12)

s
B
j1 ≥ c

B
i1 − 1 − e

B1
ij􏼐 􏼑M, i, j � 1, 2, . . . , n, i≠ j, (13)

s
A
j2 ≥ c

A
i2 − 1 − e

A2
ij􏼐 􏼑M, i, j � 1, 2, . . . , n, i≠ j, (14)

s
B
j2 ≥ c

B
i2 − 1 − e

B2
ij􏼐 􏼑M, i, j � 1, 2, . . . , n, i≠ j, (15)

sj3 ≥ ci3 − 1 − e
3
ij􏼐 􏼑M, i, j � 1, 2, . . . , n, i≠ j, (16)

􏽘

F

f�1
xif � 1, i � 1, 2, . . . , n, (17)

􏽘
Oi∈Bf

xif ≤Q, f � 1, 2, . . . , F,
(18)

⌈n
Q
⌉ ≤F≤ n, (19)

sf � max
i∈ 1,2,...,n{ }

ci3 − 1 − xif􏼐 􏼑M􏽮 􏽯, f � 1, 2, . . . , F, (20)

si4 � max
i∈ 1,2,...,n{ }

sf − 1 − xif􏼐 􏼑M􏽮 􏽯, f � 1, 2, . . . , F, (21)

Df �
􏽐

n
i�1 xifdi

bf

, f � 1, 2, . . . , F, (22)

sf − cf−1 ≥ 0, f � 2, 3, . . . , F, (23)

xif � 􏽘
j∈N⋃ 0{ }\ i{ }

v
f
ij, i � 1, 2, . . . , n, f � 1, 2, . . . , F, (24)

􏽘

F

f�1
􏽘

n

i�0
v

f

ij � 1, j � 1, 2, . . . , n, (25)

􏽘

F

f�1
􏽘

n

j�0
v

f
ij � 1, i � 1, 2, . . . , n, (26)

􏽘

n

j�1
v

f
0j � 1, f � 1, 2, . . . , F, (27)
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􏽘

n

j�1
v

f

j0 � 1, f � 1, 2, . . . , F, (28)

cf � sf + 􏽘
n

i�0
􏽘

n+1

j�1
tijv

f
ij, f � 1, 2, . . . , F, (29)

ci4 + tijv
f
ij − M 1 − v

f
ij􏼐 􏼑≤ cj4, i � 1, ..., n, j � 1, . . . , n,

f � 1, 2, . . . , F,

(30)

sf + t0jv
f
0j − M 1 − v

f
0j􏼐 􏼑≤ cj4, j � 1, . . . , n, f � 1, 2, . . . , F.

(31)

Objective function (1) is to minimize the sum of the total
completion time and the total distribution cost of jobs.
Constraints (2) and (3) ensure that each subjob starts pro-
cessing after time zero. Constraints (4) and (5) denote the
finishing time of type A subjobs at the first stage and second
stage. Constraints (6) and (7) indicate that a subjob can be
started on stage 2 machine only after it has been finished on
the corresponding stage 1 machine. Constraints (8) and (9)
denote the finishing time of type B sub jobs at the first stage
and second stage. Constraint (10) denotes the finishing time
of the jobs at the third stage. Constraint (11) ensures that a job
can be assembled only after its two subjobs have been
completed. Constraints (12) to (16) ensure that, at any time,
only one job can be processed on a machine. Constraint (17)
ensures that a job is contained in exactly one batch. Constraint
(18) ensures that the number of jobs in one batch is no larger
than the capacity constraint. Constraint (19) denotes the
bound for the number of distribution batches. Constraint (20)
ensures that the vehicle can start travelling only after all jobs
in one batch are completed. Constraint (21) indicates that, for
each job, the departure time is the starting time of corre-
sponding batch distribution. Constraint (22) denotes the cost
of distribution for each batch. Constraint (23) ensures that the
vehicle starts a new distribution batch only if he has dis-
tributed all the jobs in the last batch and returns to the store.
Constraints (24) to (26) indicate that each customer is visited
exactly once. Constraints (27) and (28) indicate that the
vehicle travels from/to the store exactly F times. Constraint
(29) denotes the time when the vehicle returns to the store
equal to its starting time of the current batch plus the total
travel time in the routing. Constraints (30) to (31) denote the
delivery time of job Oi in batch Bf.

4. A Genetic Algorithm

Note that the two-stage assembly scheduling problem with
two parallel machines in the first stage and no delivery is
strongly NP-hard [17]. ,erefore, the problem in this paper
with two dedicated flow shops in the first stage and delivery
coordination is obviously strongly NP-hard. Only relatively
small instances can be optimally solved in reasonable
computational time. Consequently, in this section, we de-
velop a genetic algorithm to find good solutions [18].

For a given sequence of O1, O2, . . . , On􏼈 􏼉, we first devise
algorithm CA-D (Algorithm 1) to arrange the jobs’ pro-
cessing and distribution.

Note that algorithm CA-D generates a feasible schedule
for our problem; however, this schedule is not that good.
,is is because the processing sequence and delivery se-
quence are the same in one batch. Next, we propose algo-
rithm LGP (Algorithm 2) to improve this problem. LGP
does not change the batching decisions but tries to reduce
the completion time on the machines as well as the total
transportation time of each batch.

Next, we list the details of our genetic algorithm:

(1) Coding and encoding
A chromosome represents a sequence of orders’
picking and distribution based on the above algo-
rithm CA-D. Figure 2 shows an example of a
chromosome with ten genes indicating that there are
ten jobs to be processed. 1, 5, 4, 2, 7, 10, 9, 8, 3, 6{ } is
the input of algorithm CA-D in order to determine
the processing sequence on each machine and the
distribution batches with routing consideration.

(2) Fitness function

We define the fitness function of a chromosome as
the inverse of the objective function:
1/(􏽐

n
i�1 ci4 + 􏽐

F
f�1 Df).

(3) Genetic operators

Genetic operators used in this paper include selec-
tion, crossover, mutation, reversal, and reinsertion.
First, parent chromosomes are selected from the
initial population, then the offspring chromosomes
are generated by crossover operator, and then mu-
tation operation is performed. In order to improve
the local search ability, reverse operation is carried
out. Finally, in order to handle the reduction of the
number of chromosomes caused by the selection
operator, reinsertion operation is carried out:

(3.1) Selection
In this paper, Roulette wheel selection is used
to select offspring from the parent population.
Roulette wheel selection is similar to the rou-
lette wheel used in gambling. Table 1 shows the
probability of selection of an individual based
on the fitness functions for a population of ten
individuals, where the probability of selection
of an individual equals (the fitness of the
individual÷ the sum of the fitness of all indi-
viduals in the population of the individual)×

100%.
Each time, we randomly generate two numbers
between [0, 1], which is equivalent to turning
the wheel twice to get the position of the
pointer (the sector to which the pointer stops is
the selected individual), and the two selected
individuals are the parents. As shown in Fig-
ure 3, we plot the probability of each individual
being selected on a roulette wheel for the
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population in Table 1 and then select the parent
individuals in turn by roulette selection.

(3.2) Crossover
In this paper, Partially Matched Crossover
(PMX) method is used in the crossover. In
PMX, we first select two crossover points
randomly, exchange the genes between the two
crossover points, and then replace the repeated
genes through allele mapping. In Figure 4, we
show the process of creating two offspring from
a pair of parents by PMX crossover and

mutation, using individuals 9 and 10 from
Table 2: first, the crossover region of the parent
individual is selected, and the genes of the two
chromosomes within the crossover region are
crossed over. As the new chromosome contains
duplicated genes, we replace the duplicated
genes by mapping the alleles of the parent
individuals (4 − 7 − 10, 2 − 5, 7 − 6, 9 − 3). A
random number in [0, 1] is generated, and if it
is smaller than the crossover probability c,
crossover is run.

Step 1: process type A subjobs on each stage of the dedicated flow-shop in the sequence of OA
1 , OA

2 , . . . , OA
n􏼈 􏼉 and process type B

subjobs on each stage of the dedicated flow-shop in the sequence of OB
1 , OB

2 , . . . , OB
n􏼈 􏼉. Assemble the jobs in the sequence of

O1, O2, . . . , On􏼈 􏼉.

Step 2: jobs are delivered in F � ⌈n/Q⌉ batches. For f � 2, . . . , F − 1, batch Bf contains O(f−1)×Q+1, O(f−1)×Q+2, . . . , Of×Q􏽮 􏽯, and the
last batch BF contains O(F−1)×Q+1, O(F−1)×Q+2, . . . , On􏽮 􏽯.
Step 3: the vehicle distributes the batches in the sequence of B1, B2, . . . , BF􏼈 􏼉, and the routing inside each batch is in the same
sequence as that on the assembly machine. (,e jobs are delivered in the sequence of O1, O2, . . . , On􏼈 􏼉.)

ALGORITHM 1: CA-D.

Input: a feasible solution of generated from CA-D with delivery batches of B1, B2, . . . , BF􏼈 􏼉.
Output: an improved feasible solution.
Initialization: f � 1.
Step 1: for batch Bf, select two jobs randomly from this batch. Swap the two jobs in the processing sequence, i.e., on each machine,
corresponding subjobs are swapped. Compute the completion time of the last job in Bf on the assembly machine. Repeat such
swapping operation 50 times and select the processing sequence with the minimum completion time of the last job in Bf.
Step 2: for batch Bf, select two jobs randomly from this batch. Swap the two jobs in the delivery sequence and compute the total
delivery time of this new sequence. Repeat such swapping operation 50 times and select the delivery sequence with theminimum total
delivery time.
Step 3: if f< F, f � f + 1, go to Step 1; otherwise, stop.

ALGORITHM 2: LGP.

1 5 4 2 7 10 9 8 3 6

Figure 2: An example of a chromosome with ten genes.

Table 1: Calculation of selection probabilities based on individual fitness.

Individual Chromosome Fitness Probability of selection Cumulative probability
1 10, 8, 9, 5, 6, 3, 2, 1, 4, 7 5 0.060976 0.060976
2 10, 8, 9, 5, 4, 7, 6, 3, 2, 1 4 0.048780 0.109756
3 9, 5, 6, 3, 10, 8, 2, 1, 4, 7 9 0.109756 0.219512
4 4, 8, 9, 5, 6, 3, 2, 1, 10, 7 7 0.085366 0.304878
5 9, 5, 6, 10, 8, 3, 2, 1, 4, 7 8 0.097561 0.402439
6 9, 5, 6, 2, 1, 4, 7, 10, 8, 3 8 0.097561 0.500000
7 8, 3, 2, 1, 4, 7, 9, 5, 6, 10 5 0.060976 0.560976
8 3, 2, 1, 10, 8, 4, 7, 9, 5, 6 10 0.121951 0.682927
9 1, 5, 4, 2, 7, 10, 9, 8, 3, 6 15 0.182927 0.865854
10 2, 9, 7, 5, 6, 4, 3, 8, 10, 1 11 0.134146 1.000000
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(3.3) Mutation
In the mutation operation, for the two indi-
viduals after the crossover operation, we ran-
domly select two positions in an individual to
exchange genes at these two positions, as
shown in Figure 5. A random number in [0, 1]

is generated, and if it is smaller than the mu-
tation probability m, mutation is run.

(4) Iteration termination conditions

,e minimal fitness function value of the last gen-
erated population is denoted as LB, where the initial
value of LB is the minimum fitness function value of
the initial population. ,e minimal fitness function

value of the current population is denoted as CR. If
(|LB − CR|/LB)≤ ε (ε is a given positive number) or
the number of iterations reaches 500, stop.

Now we are ready to devise a genetic algorithm DU-GA
(Algorithm 3) for the integrated order picking and distri-
bution problem.

5. Numerical Experiments and Analysis

In order to verify the rationality of the above model and test
the performance of algorithm DU-GA, we conduct nu-
merical experiments and analyze the results based on Python
3.8. All numerical experiments are performed on a personal

1
2

3

4

5

67

8

9

10

Figure 3: Roulette wheel selection.

1 5 4 2 7 10 9 8 3 6

2 9 7 5 6 4 3 8 10 1

Parent 1

Parent 2

Crossover region

1 5 7 5 6 4 3 8 3 6

2 9 4 2 7 10 9 8 10 1

Crossover

1 2 7 5 6 4 3 8 9 10

5 3 4 2 7 10 9 8 6 1

Remove duplicates

Figure 4: Partially matched crossover operation.

Table 2: Parameters for 60 instances.

Group Instance pA
i1 pA

i2 pB
i1 pB

i2 pi3 di tij

X 1–20 [5, 10] [2, 3] [3, 9] [1, 2] [2, 8] [7, 13] [4, 7]

Y 21–40 [0, 10] [0, 3] [0, 9] [0, 2] [2, 8] [7, 13] [4, 7]

Z 41–60 [0, 10] [0, 3] [0, 9] [0, 2] [2, 8] [7, 13] [40, 70]
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computer with 8GB memory and 2.70-GHz Intel Core i5
CPU.

5.1. Parameter Setting

5.1.1. Parameters for Instances. According to different sit-
uations of these parameters, we carry out three groups of
numeral experiments, where each group randomly generates
20 instances. Each instance contains 50 jobs, and the vehicle
capacity is Q � 8.

Table 2 shows the parameter intervals for 20 instances of
each Group. For example, parameters for Group-X are set as
pA

i1 ∈ [5, 10], pA
i2 ∈ [2, 3], pB

i1 ∈ [3, 9], pB
i2 ∈ [1, 2], pi3 ∈ [2, 8]

and di ∈ [7, 13] (pA
i1 ∈ [5, 10] means that pA

i1 is a random
integer uniformly generated in interval of [5, 10] and the
other parameter settings are similar to this).

Group-X (Instances 1–20) considers the case when or-
ders contain both fresh and nonfresh products, where the
processing time is always larger than zero. ,e picking time
for fresh products is generally longer than that for nonfresh
products due to the additional steps (i.e., dewatering and
weighing) during the picking process. Group-Y (Instances
21–40) and Group-Z (Instances 41–60) allow orders con-
taining only fresh products or only nonfresh products, in
recognition of the fact that customers may need to buy only
fresh or nonfresh products, where the processing time may
be zero, which is more realistic. Group-Z (Instances 41–60)
examines cases where the delivery time of orders is signif-
icantly longer than processing time.

5.1.2. Parameters for Genetic Operators. Before the genetic
algorithm is applied, the following parameters need to be
determined: population size P, crossover probability c, and
mutation probability m. P is set to be one of 50, 100, 150{ }

and maintains the same size for each iteration.,e crossover
probability c is set to be one of 0.7, 0.8, 0.9{ }. ,e mutation
probability m is generally set to be in [0.05, 0.1]; however,
considering the strong NP-hardness of the problem, m is set
to be one of 0.1, 0.2, 0.3{ } to expand the search space. Since
the actual performance of genetic algorithm is closely related

to these parameters, we first test different combinations of
(P, c, m). For each group, an instance is generated. For
different parameters of GA, the algorithm is run five times
for each instance. Table 3 lists the average objective value for
the instances (i.e., 13477.71 online 2 column 2 denotes the
average objective value of the instance of Group-X with
parameter (50, 0.7, 0.1), and the others are similar to this).

We observe the following:

(1) If (c, m) ∈ (0.7, 0.1), by comparing (P, c, m) ∈ {(50,
0.7, 0.1), (100, 0.7, 0.1), (150, 0.7, 0.1)}, when P � 150,
DU-GA terminates with the best objective value

(2) If P � 150, by comparing (P, c, m) ∈ {(150, 0.7, 0.1),
(150, 0.8, 0.1), (150, 0.9, 0.1)}, when c � 0.8, DU-GA
terminates with the best objective value

(3) Based on (1) and (2), we let P � 150 and c � 0.8. If
(P, c, m) ∈ {(150, 0.8, 0.1), (150, 0.8, 0.2), (150, 0.8,
0.3)}, when m � 0.8, the objective value is best

,erefore, we set the parameters (P, c, m) for DU-GA to
be (150, 0.8, 0.1).

5.2. Analysis of Experimental Results

5.2.1. Stability Test. To evaluate the stability of algorithm
DU-GA, for Groups X, Y and Z, we run each instance five
times to assess the span between the minimal solution
(denoted as SB) and the average value (denoted as SA), which
is referred to as Relative Deviation (denoted as RD), cal-
culating by RD � ((SA − SB)/SA) × 100%.

Table 4 shows that the span between SA and SB is small,
with an average RD of 1.46% for Group-X, 1.97% for Group-
Z, and 2.05% for Group-Y. ,erefore, DU-GA is stable in all
three groups of instances.

5.2.2. Comparison Algorithm. To evaluate the effectiveness
of the algorithm DU-GA, we design comparison algorithms
DU-1 (Algorithm 4) and DU-2 (Algorithm 5). Algorithm
DU-1 is a genetic algorithm that is different from DU-GA in
that it calculates the fitness function based on the departure

Table 3: Parameter settings.

Group (50, 0.7, 0.1) (100, 0.7, 0.1) (150, 0.7, 0.1) (150, 0.8, 0.1) (150, 0.9, 0.1) (150, 0.8, 0.2) (150, 0.8, 0.3)
X 13455.71 12737.29 12725.33 12410.71 12411.79 12225.33 13156.88
Y 9991.83 9948.67 10067.88 10049.04 10202.08 9691.38 9739.04
Z 73821.38 73692.67 73705.42 73221.75 73667.25 72058.00 73418.88

Child 1

Child 2

1 2 7 5 6 4 3 8 9 10

5 3 4 2 7 10 9 8 6 1

Selected mutation genes

Mutation

1 2 8 5 6 4 3 7 9 10

5 3 8 2 7 10 9 4 6 1

Figure 5: Mutation operation.
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time of each job si4. Algorithm DU-2 processes and dis-
tributes jobs in a random order.

5.2.3. Algorithm Effectiveness Analysis. In Tables 5–7, the
results for instances of Groups X, Y and Z by applying DU-
GA, DU-1, and DU-2 are listed. For ease of presentation, we
denote the objective value of the solution obtained fromDU-
GA, DU-1, and DU-2 as CDU−GA, CDU−1 and CDU−2, re-
spectively. We run each instance five times and record the
mean of the objective values. ,e first column shows the
index of the 20 instances; the second and third columns
show the results of DU-2 and DU-1; the fourth column
shows the objective values of the solutions obtained from
DU-GA.We record the reduction of CDU−GA over CDU−1 and
CDU−2in the fifth and sixth columns and show the percentage
improvement of CDU−GA over CDU−1 and CDU−2 in the
seventh and eighth columns.

We also observe that DU-GA takes the longest time in
most instances, but the maximal does not exceed 11.83
seconds; the running time of DU-1 is shorter than that of
DU-GA, while the running time of DU-2 is the shortest.
Compared with DU-1, DU-GA not only considers the de-
livery times in fitness function but also adds further opti-
mization of the production and distribution stages based on
the basic GA algorithm:

(1) Compare DU-GA with DU-1
According to Tables 5–7, the average improvement
of CDU−GA over CDU−1 for Groups X, Y and Z in-
stances is 1.94%, 4.00%, and 5.12%.

(1.1) It is shown that the improvement of CDU−GA
over CDU−1 of Group-Y is better than that of
Group-X. Note that the processing times of jobs
in Group-Y are smaller than those of Group-X,
and thus the distribution time is relatively
larger in Group-Y. DU-GA differs from DU-1
in that it considers the delivery times as well as
processing times in the fitness function;

therefore, the larger the delivery times, the
more the improvement of CDU−GA over CDU−1.

(1.2) ,e improvement of CDU−GA over CDU−1 of
Group-Z is better than that of Group-Y. Note
that the transportation times of instances in
Group-Z are obviously higher.,e same reason
as in (1.1) can explain this observation.

(1.3) ,e results of Group-Z are significantly better
than those of the other two groups, meaning
that, compared to algorithm DU-1, algorithm
DU-GA is highly effective for the practical case
when orders may only contain fresh items or
nonfresh items and take longer for distribution
than processing.

(2) Compare DU-GA with DU-2
According to Tables 5–7, the average improvement
of DU-GA over DU-2 for Groups X, Y and Z in-
stances is 5.35%, 9.70%, and 10.38%.

(2.1) It is shown that the average improvement of
CDU−GA over CDU−2 of Group-Y is better than
that of Group-X. DU-2 is a FIFO strategy, and
no optimization skill is applied. DU-GA is a
genetic algorithm, and it considers the pro-
cessing times and the delivery times in the
fitness function. Note that there is only one
vehicle for distribution, andmultiple orders are
contained in one batch; thus, the optimization
of the distribution stage plays amore important
role than that of the production stages. Recall
that the processing times of jobs in Group-Y
are smaller than those of Group-X, and thus the
distribution time is relatively larger in Group-
Y. ,erefore, the larger the delivery times, the
more the improvement of CDU−GA over CDU−2.

(2.2) ,e improvement of CDU−GA over CDU−2 of
Group-Z is better than that of Group-Y. Note
that the transportation times of instances in

Table 4: Stability test of DU-GA.

Group Min RD (%) Max RD (%) Average RD (%)
X 0.35 2.48 1.46
Y 1.41 3.71 1.97
Z 0.90 4.94 2.05

Step 1: determine the population size P, the crossover probability c, the mutation probability m, and the termination condition of the
algorithm, followed by initializing the population (i.e., randomly generating P individuals).
Step 2: for each individual, apply algorithm CA-D. Evaluate fitness values of the chromosome and select two individuals as parents.
Step 3: perform crossover and mutation operators on the selected parents to obtain offspring individuals.
Step 4: update the population by adding the newly generated individuals to the population. Step 2 and Step 3 are repeated until the
termination condition is met, and the iteration is stopped.
Step 5: select the best solution from the current population, and let it be the input of algorithm LGP. Run algorithm LGP, and output
the resulted solution.

ALGORITHM 3: DU-GA.
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Group-Z are obviously higher. ,e same rea-
son as in (2.1) can explain this observation.

(2.3) ,e results of Group-Z are significantly better
than those of the other two groups, meaning
that, compared to algorithm DU-2, algorithm
DU-GA is highly effective for the practical case
when orders may only contain fresh items or
nonfresh items, and the time for distribution is
longer than processing.

(3) For each instance, CDU−GA − CDU−2 is always larger
than CDU−GA − CDU−1. DU-2 is a FIFO strategy, and
no optimization skill is applied, while DU-1 is a
genetic algorithm, which considers jobs’ processing

times in the fitness function. DU-1 is also an ac-
ceptable algorithm, but not as good as DU-GA.

5.2.4. �e Enlightenment for the Management of New Retail
Enterprises. ,e orders’ processing sequence in each stage
directly affects the order delivery time, which in turn has an
impact on customer satisfaction. In order to improve cus-
tomer satisfaction, we must consider different practical
scenarios. ,e results of numerical experiments show that
the genetic algorithm DU-GA is relatively stable for all
instances. We also design comparison algorithms DU-1 and
DU-2 to evaluate the effectiveness of DU-GA. ,e results
show that algorithm DU-GA outperforms algorithm DU-1

Step 1: same as Step 1 of DU-GA;
Step 2: for each individual, apply algorithm CA-D. Calculate the fitness value for individuals in the population by taking
1/􏽐

n
i�1 si4 􏽐

F
f�1 Df as the fitness function.

Step 3-Step 4: same as Step 3 - Step 4 of DU-GA;
Step 5: output the processing sequence, batching decision, and delivery routings of the best solution based on fitness function
1/􏽐

n
i�1 si4 􏽐

F
f�1 Df. Calculate the corresponding objective function 􏽐

n
i�1 ci4 + 􏽐

F
f�1 Df.

ALGORITHM 4: DU-1.

Step 1: run algorithm CA-D in a random order;
Step 2: output the processing sequence, batching decision and delivery routings. Calculate the corresponding objective
􏽐

n
i�1 ci4 + 􏽐

F
f�1 Df.

ALGORITHM 5: DU-2.

Table 5: Experimental results of 20 instances in Group-X.

Instance CDU−2 CDU−1 CDU−GA CDU−GA − CDU−1 CDU−GA − CDU−2
(CDU−GA − CDU−1)/CDU−1

(%)
(CDU−GA − CDU−2)/CDU−2

(%)

ins1 13189.63 13025.50 12841.38 184.13 348.25 1.41 2.64
ins2 13173.00 12871.25 12680.50 190.75 492.50 1.48 3.74
ins3 13038.75 12852.13 12748.13 104.00 290.63 0.81 2.23
ins4 13380.00 12702.63 12537.75 164.88 842.25 1.30 6.29
ins5 13078.50 12928.00 12580.50 347.50 498.00 2.69 3.81
ins6 13361.75 12919.38 12837.88 81.50 523.88 0.63 3.92
ins7 13320.00 12870.25 12645.13 225.13 674.88 1.75 5.07
ins8 13145.75 12945.25 12643.50 301.75 502.25 2.33 3.82
ins9 13145.75 12945.25 12643.50 301.75 502.25 2.33 3.82
ins10 12851.88 12311.13 12168.38 142.75 683.50 1.16 5.32
ins11 12892.88 12153.13 11974.25 178.88 918.63 1.47 7.13
ins12 12898.50 12189.50 12022.50 167.00 876.00 1.37 6.79
ins13 13040.50 12281.88 11918.13 363.75 1122.38 2.96 8.61
ins14 13160.38 12254.00 12063.38 190.63 1097.00 1.56 8.34
ins15 13223.25 12294.25 11984.00 310.25 1239.25 2.52 9.37
ins16 12559.75 12365.63 12011.75 353.88 548.00 2.86 4.36
ins17 12969.50 12118.25 11956.50 161.75 1013.00 1.33 7.81
ins18 12733.00 12410.63 11903.25 507.38 829.75 4.09 6.52
ins19 13716.88 13627.00 13225.13 401.88 491.75 2.95 3.59
ins20 13561.63 13295.00 13046.88 248.13 514.75 1.87 3.80
Average 13122.06 12668.00 12421.62 246.38 700.44 1.94 5.35
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and algorithm DU-2 for all instances of three different
groups.

From the above analysis, we can observe the following:

(1) Algorithm DU-2, based on “first-arrive-first-pro-
cess” method, is easy for operation. ,e manager of
the new retail enterprise merely processes the orders
according to the arrival sequence, and the distri-
bution cost and delivery time can be relatively high.

(2) Compared to DU-2, DU-1 takes the departure time of
each job into consideration and results in a lower total
order delivery time and delivery cost. ,is algorithm
may be run in the development stage of optimizing the
operation: the manager outsources the distribution to
3PL companies and focuses on the departure times and
distribution costs of orders. However, when the cus-
tomers receive their orders, it is out of control, and the
manager has no idea of the customers’ satisfaction level.

Table 6: Experimental results of 20 instances in Group-Y.

Instance CDU−2 CDU−1 CDU−GA CDU−GA − CDU−1 CDU−GA − CDU−2
(CDU−GA − CDU−1)/CDU−1

(%)
(CDU−GA − CDU−2)/CDU−2

(%)

ins21 11729.13 10633.63 10130.88 502.75 1598.25 4.73 13.63
ins22 10821.00 10077.50 9880.63 196.88 940.38 1.95 8.69
ins23 11544.13 10683.75 10340.50 343.25 1203.63 3.21 10.43
ins24 10883.38 10361.63 9816.38 545.25 1067.00 5.26 9.80
ins25 11455.38 11073.75 10707.88 365.88 747.50 3.30 6.53
ins26 11369.00 10325.00 9640.75 684.25 1728.25 6.63 14.45
ins27 10544.88 10399.63 9849.88 549.75 695.00 5.29 6.59
ins28 10915.63 10407.13 9877.88 529.25 1037.75 5.09 9.51
ins29 11418.13 10445.88 10103.13 342.75 1315.01 3.28 11.52
ins30 10843.63 10672.50 10224.00 448.50 619.63 4.20 5.71
ins31 10968.00 10574.00 9778.50 795.50 1189.50 6.58 9.93
ins32 11800.88 11006.00 10764.13 241.88 1036.75 2.20 8.79
ins33 11745.13 10813.63 10273.13 540.50 1472.00 5.00 12.53
ins34 11127.50 10227.13 9613.50 613.63 1514.00 6.00 13.61
ins35 11716.50 10931.00 10694.25 236.75 1022.25 2.17 8.72
ins36 11339.25 10513.88 10042.38 471.50 1296.88 4.48 11.44
ins37 11205.25 10787.50 10539.50 248.00 665.75 2.30 5.94
ins38 11774.25 10763.75 10635.75 128.00 1138.50 1.19 9.67
ins39 11000.25 10820.38 10659.00 161.38 341.25 1.49 3.10
ins40 11548.38 10616.75 10009.38 607.38 1539.00 5.72 13.33
Average 11287.48 10606.72 10179.07 427.65 1108.41 4.00 9.70

Table 7: Experimental results of 20 instances in Group-Z.

Instance CDU−2 CDU−1 CDU−GA CDU−GA − CDU−1 CDU−GA − CDU−2
CDU−GA − CDU−1/CDU−1

(%)
CDU−GA − CDU−2/CDU−2

(%)

ins41 80295.00 74138.63 70463.13 3675.50 9831.88 4.96 12.24
ins42 80016.75 75866.75 71510.38 4356.38 8506.38 5.74 10.63
ins43 83567.00 78034.38 73665.00 4369.38 9902.00 5.60 11.85
ins44 80826.63 74994.88 70743.88 4251.00 10082.75 5.67 12.47
ins45 78806.63 74775.63 71372.88 3402.75 7433.75 4.55 9.43
ins46 83283.63 75297.75 71529.50 3768.25 11754.13 5.00 14.11
ins47 79538.88 76558.63 71696.88 4861.75 7842.00 6.35 9.86
ins48 81573.50 77321.38 73266.75 4054.63 8306.75 5.24 10.18
ins49 78296.25 74942.13 71648.13 3294.00 6648.13 4.40 8.49
ins50 81076.25 75760.25 72000.00 3760.25 9076.25 4.96 11.19
ins51 82371.63 78569.38 73763.38 4806.00 8608.25 6.12 10.45
ins52 79815.38 74644.25 71110.25 3534.00 8705.13 4.73 10.91
ins53 78848.38 75671.13 71391.25 4279.88 7457.13 5.66 9.46
ins54 80431.75 76728.88 73497.88 3231.00 6933.88 4.21 8.62
ins55 80261.38 75413.88 70473.25 4940.63 9788.13 6.55 12.20
ins56 79548.88 76709.63 73692.50 3017.13 5856.38 3.93 7.36
ins57 84032.75 78333.25 74515.25 3818.00 9517.50 4.87 11.33
ins58 77052.38 75897.00 71994.00 3903.00 5058.38 5.14 6.56
ins59 84053.75 76164.25 73829.63 2334.63 10224.13 3.07 12.16
ins60 78999.75 76957.00 72623.38 4333.63 6376.38 5.63 8.07
Average 80634.83 76138.95 72239.36 3899.59 8395.46 5.12 10.38
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(3) Compared to DU-1, algorithm DU-GA takes both
order delivery time and delivery cost into consid-
eration.,emanager determines orders’ picking and
delivery as a whole and can monitor the customers’
satisfaction level and total delivery cost at the same
time.

DU-2, DU-1, and DU-GA represent the degrees of at-
tention to order picking and distribution at different stages:

(1) DU-2 indicates the initial stage of enterprise estab-
lishment, and the variety of goods and the number of
customers are relatively small. ,erefore, the en-
terprise starts processing orders as soon as receiving
them.

(2) DU-1 represents the development stage of the en-
terprise. As the scale of business becomes larger, the
number of orders increases. At this stage, the new
retail enterprises may cooperate with 3PL compa-
nies; thus, the business managers only need to ar-
range the production to ensure orders’ departure
times.

(3) DU-GA indicates a stable period after expansion.
New retail enterprises start to focus on lean man-
agement of operation. ,ey build their own logistics
instead of resorting to 3PL companies. Hence, they
need to jointly consider orders’ picking and
distribution.

6. Summery and Prospects

Based on the characteristics of orders’ picking and delivery
in new retail enterprises, this paper builds a joint sched-
uling and distribution model. An MP model is established
for a fundamental case, and we devise a genetic algorithm
as well as comparison algorithms. ,e results of compu-
tational experiments show the rationality of the model and
the effectiveness of the algorithms. Furthermore, we sim-
ulate different practical situations to verify the applicability
and performance of the algorithm. It is shown that our
genetic algorithm is stable and outperforms comparison
algorithms.

Our study provides management insights, showing that
joint scheduling algorithms can significantly improve the
efficiency of order picking and distribution in new retail
enterprises. Reasonable coordination of order picking and
distribution can effectively reduce business operation costs
and improve customer satisfaction.

,e research in this paper can be further extended, such
as cases with more than three types of suborders and dif-
ferent types of vehicles. ,e research model in this paper is
an offline scheduling problem, and future research can
consider online problems.
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