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)e two-dimensional neuron model can not only reproduce abundant firing patterns, but also satisfy the research of dynamical
behavior because of its nonlinear characteristics. It is the most simplified model that includes the fast and slow variables required
for neuron firing. In this paper, the dynamic characteristics of two-dimensional neuronmodel are described by both analytical and
numerical methods, and the influence of model parameters and external stimuli on dynamic characteristics is described.)e firing
characteristics of the Prescott model under external electrical stimulation are studied, and the influence of electrophysiological
parameters on the firing characteristics is analyzed. )e saddle-node bifurcation and Hopf bifurcation characteristics are studied
through the distribution of equilibrium points. It is found that there are critical saddle-node bifurcation and critical Hopf
bifurcation in the Prescott model. And the value range of the key parameters that cause the critical bifurcation of the model is
obtained by analytical methods.

1. Introduction

Neurons are the basic unit of the nervous system, so only by
understanding the characteristics and activities of single
neurons can we further understand the mystery of neuronal
networks and even the operation of the brain [1]. Quanti-
tative mathematical models are an indispensable tool for this
purpose [2]. For quantitative models, a large number of
detailed descriptions are needed to explain the complex
dynamics of a single neuron, and the complexity of the
model should be reduced as much as possible while retaining
its basic characteristics to achieve the feasibility of model
calculations [3]. )ese two conditions need to achieve a
balance.

At present, most theoretical research on neurons is based
on two types of models, namely, phenomenological models
(such as Integrate-and-Fire model [4, 5] and Izhikevich
model [6, 7]) and physiological models (such as Hodg-
kin–Huxley model [8–10] and Morris–Lecar model [11]).
)e phenomenological models only consider the external
input-output relationship and do not consider the internal

details. While the detailed physiological models contain
abundant biophysical details, it is difficult to describe the
dynamic characteristics due to the high dimensions, which is
not conducive to calculation and analysis. )e two-di-
mensional differential equations can be studied in an in-
tuitive and visual way through phase plane analysis, which
can not only reproduce rich firing patterns, but also satisfy
the nonlinear characteristics of dynamic behaviors [12]. It is
the most simplified model including the fast and slow
variables required for neuronal spiking [13].

Neurons are the basic unit of neural information pro-
cessing, and the generation and conduction of neural in-
formation contains rich firing characteristics [14]. If two
neurons have the same input, the resulting firing response
characteristics are different because of their different dy-
namic rules. If the membrane conductances of two neurons
are different and the input currents are different, they may
have the same dynamic rules; therefore they will have the
same firing characteristics. Conversely, two neurons with
different dynamic rules may have different firing charac-
teristics even if the input currents are the same. )erefore,
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the characteristics of the neuron dynamic system determine
the firing characteristics of the neuron under the given
conditions of external input [15–17].

Changing the amplitude of the external stimulus will
change the phase trajectory and firing state of the neuron.
)e qualitative change of the phase trajectory of the system is
due to the bifurcation process of neuron dynamics [18]. For
example, the type of bifurcation determines the excitability
of neurons [19]. Chen et al. studied the dynamics of a
stochastic Morris–Lecar model of both Type I and II ex-
citability [20]. Li et al. proposed a more realistic hybrid
impulsive neuron model based on the Izhikevich model [21].
)ey analyzed the properties of the equilibrium points and
subthreshold bifurcation behavior of the model. Finally, they
illustrate themain results of numerical simulations. Bao et al.
carried out bifurcation analyses of chaotic and periodic burst
firings through constructing the fold and Hopf bifurcation
sets of fast spiking subsystem in a 3D autonomous mem-
ristor synapse-based Morris–Lecar model [22]. Bao et al.
proposed a three-dimensional autonomous Morris–Lecar
neuron model to explore periodic bursting behaviors using
bifurcation plots, phase plots, and time sequences [23]. Jin
et al. proposed a novel class of Caputo-type uncertain
random fractional-order model that focuses on the reliability
analysis of a fractional-order RC circuit system [24].
However, few researchers studied critical saddle node or
critical Hopf bifurcation.

Furthermore, the study of the mechanisms of external
electrical stimulation on the human brain has become the
focus of attention in recent years. On the one hand, external
electromagnetic stimulation can change the dynamic be-
havior of the nervous system. For example, external stim-
ulating currents or external electric fields can affect the
excitability of nervous system and the generation and
conduction of nervous system information [25–27]. On the
other hand, electrical stimulation has become an emerging
means of treating neuropsychiatric diseases [28, 29]. More
and more bodies of evidence show that regulation and
improvement of brain function can be achieved by changing
the amplitude, frequency, and other parameters of stimu-
lation [30, 31].

)e human brain is exposed to an electromagnetic field,
which can change the firing characteristics of neurons,
which in turn affects neuronal activity. )ere is an inter-
conversion relationship between stimulation parameters and
neuron firing patterns. On the one hand, stimulation pa-
rameters can be quantified by different neuron firing pat-
terns. On the other hand, the firing sequence of various
patterns can be regarded as the expression of stimulation
parameter values. It is the purpose of this paper to confirm
that external electrical stimulation can change the dynamic
behavior of the nervous system and then electrical stimu-
lation can be used in the field of neurological disease
treatment. )erefore, the dynamic characteristics of a two-
dimensional neuron model under external electrical stim-
ulation are studied in this paper. )e impact of important
electrophysiological parameters and external stimulus
changes on response firing characteristics, equilibrium point
distribution, saddle-node bifurcation, Hopf bifurcation, and

critical bifurcation of the neuron model are analyzed by a
combination of analytical and numerical methods. )e
contents of this paper are arranged as follows: a two-di-
mensional neuron model and its two classes of firing
characteristics of excitatory neurons under electrical stim-
ulation are given in Section 2.)e equilibrium point analysis
of the model is given in Section 3. In Sections 4 and 5, the
saddle-node bifurcation and Hopf bifurcation at equilibrium
points are investigated, respectively. Finally, conclusions and
discussions are made in Section 6.

2. The Prescott Model and Its
Firing Characteristics

)e Morris–Lecar model is one of the common biophysical
models, which is derived from the experimental study of the
electrical activity characteristics of the muscle fibers of the
Arctic penguins [32]. Prescott et al. [33] improved the ML
model and obtained the dynamic equations composed of a
fast variable V and a slow recovery variable w:

Cm

dV

dt
� I − gL V − EL(  − gNam∞(V) V − ENa(  − gKw V − EK( ,

(1)

dw

dt
� φw

w∞(V) − w( 

τw(V)
, (2)

where V is the neuron cell membrane voltage, w is the slow
ion channel recovery variable, and I is the external stimu-
lating current, gNa, gK, and gL are the maximum conduc-
tance of sodium ion channel, the maximum conductance of
potassium ion channel, and the leakage conductance, re-
spectively, ENa, EK, and EL are the corresponding reversal
potential for sodium, potassium, and chlorine ions, Cm is the
cell membrane capacitance of neurons, m∞(V) is the steady
state value of the sodium channel activation variable,w∞(V)

is the steady state value of the potassium channel recovery
variable, and τw(V) is the time constant of the recovery
variable. )ey are all functions of the neuron membrane
voltage:

m∞(V) � 0.5 1 + tanh
V − βm( 

cm

  ,

w∞(V) � 0.5 1 + tanh
V − βw( 

cw

  ,

τw(V) �
1

cosh V − βw( /2cw( 
,

(3)

where βm and cm are the influencing factors of fast ion
channel activation variable and βw and cw are the influ-
encing factors of slow ion channel recovery variable.
Changing βw can simulate various firing patterns of neuron
models, so βw is selected as the key parameter of the model.

)e values of the model parameters in this paper are as
follows [33]: cm � 2 μF/cm2, φw � 0.15, gL � 2mS/cm2,
gNa � 20mS/cm2, gk � 20mS/cm2, EL � − 70mV,
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ENa � 50mV, EK � − 100mV, βm � − 1.2mV, cm � 18mV,
βw � − 10mV, and cw � 10mV.

Neurons can be divided into two classes according to
excitability: neurons of class I excitability can produce firing
sequences of any low frequency under different intensities of
external stimulation, and their f − I curves are continuous.
Neurons of class II excitability cannot produce firing se-
quences of any low frequency, and their f − I curves are
discontinuous. Repetitive spiking can be produced only
when the stimulus intensity reaches above the critical value.
)e Hodgkin–Huxley model can only reproduce the firing
characteristics of class I neurons, and the Morris–Lecar
model can only reproduce the firing characteristics of class II
neurons. However, in the Prescott model, these two classes
of excitability can be reproduced by changing the key pa-
rameter βw.

When βw � − 10mV, the firing characteristics are shown
in Figure 1 as the input external current increases from I �

33.13 μA/cm2 to I � 34 μA/cm2. )e neuron model shows
no spike, single spike, and periodic spiking, respectively.
Neurons can generate arbitrary low frequency firing se-
quence, so it is Class I excitability at this time. When

βw � − 20mV, input an external current ranging from I �

50 μA/cm2 to I � 55.9 μA/cm2, and its firing characteristics
are shown in Figure 2. )e neuron model shows no spike at
the beginning. Periodic firing only begins when the stim-
ulating current intensity reaches a certain threshold, and the
frequency of initial spiking is high, indicating that the
neuron cannot produce any low-frequency firing sequence,
which represents class II excitability. Generally speaking,
class I excitability is caused by saddle-node bifurcation, and
class II excitability is caused by Hopf bifurcation. )e latter
part will analyze these two bifurcation characteristics in
detail.

3. Equilibrium Point of the Prescott Model

)e different firing characteristics of neurons are related to
the type and stability of the equilibrium point of the model
equation.)e equilibrium point of the Prescott model can be
determined by its dynamic equations. Let (dV/dt) � 0 and
(dw/dt) � 0 in formulas (1) and (2); we can get the corre-
sponding zero line equations:

w �
− gL V − EL(  − 0.5gNa 1 + tanh V − βm( /cm( (  V − ENa(  + I

gK V − EK( 
, (4)

w � w∞(V) � 0.5 1 + tanh
V − βw

cw

 . (5)

When the two zero lines intersect, that is, when w

satisfies formulas (4) and (5) at the same time, the equi-
librium point of the system equation is obtained. )e cor-
respondingmembrane voltage V and recovery variable w are
the equilibrium point (V0, w0) of the Prescott model.

Let

f � I − gL V − EL(  − gNam∞(V) V − ENa( 

− gKw V − EK( .
(6)

)en, f is the total current of neuron cell membrane:

f � I − gL V − EL(  − 0.5gNa 1 + tanh
V − βm

cm

  V − ENa( 

− 0.5gK 1 + tanh
V − βw

cw

  V − EK( .

(7)

Let the external current I be the variable parameter to
draw the f − V curve (V is the abscissa, f is the ordinate).
)e intersection point of the curve with the horizontal axis is
the equilibrium point (V0, w0) of the neuron model.

)e change of the electrophysiological parameters of
neurons leads to the change of the shape and relative po-
sition of the zero line of the model equation, thus changing
the number and type of the equilibrium point of the
equation. In the Prescott model, the key parameter βw

mainly affects the position of the zero line w, as shown in
Figure 3. When βw decreases, w zero line shifts to the left,
and when βw increases, w zero line shifts to the right.)e left
and right translation of the w zero line changes the position
of its intersection with the V zero line, thereby changing the
membrane voltage at the equilibrium point. With the change
of βw � − 20mV ∼ 0mV, the type of equilibrium point
changes from a single focus to the coexistence of a focus, a
saddle, and a node, and finally evolves into a single node.
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Figure 1: Class I firing characteristics of the Prescott model. When βw � − 10mV, as the input external current increases from
I � 33.13 μA/cm2 to I � 34 μA/cm2, the neuron model shows no spike, single spike, and periodic spiking, respectively.
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Figure 2: Continued.
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4. Analysis of Saddle-Node Bifurcation at
Equilibrium Point

With the change of the bifurcation parameters, the stable
node and the unstable saddle gradually approach. When the
bifurcation parameter is equal to the bifurcation value, the
saddle and the node collide with each other and disappear,
and the saddle-node bifurcation occurs.)e newly generated
equilibrium point is neither a saddle nor a node. It is called a
saddle node, which is characterized by the fact that one of the
two real eigenvalues is zero. )e saddle node is stable in half
of its neighborhood, and unstable in the other half of its
neighborhood [18].

4.1. Determination of the Saddle Node. For neurons, a stable
equilibrium point corresponds to the resting state. When
the stable equilibrium point and the unstable equilibrium
point collide and disappear, the resting state will disappear,
and the phase trajectory of the system will become a stable
limit cycle. )e neuron begins to fire periodically. As the
stimulus intensity increases, the V zero line moves upward.
When the stimulus intensity reaches the threshold (the
minimum stimulus intensity that can cause a spike), the
stable node among the original three intersection points
collides with the unstable saddle and disappears. A stable
limit cycle is generated and the neuron produces repetitive
firing.
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Figure 2: Class II firing characteristics of the Prescott model. When βw � − 20mV, as the input external current increases from I �

50 μA/cm2 to I � 55.9 μA/cm2, the neuron model shows no spike at the beginning. Periodic firing only begins when the stimulating current
intensity reaches a certain threshold.
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Figure 3: )e evolution process of equilibrium points in the Prescott model at different βw: (a) total current of neuron cell membrane;
(b) phase plane.
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It can be seen from the above that when the V zero line of
the neuron model is tangent to the w zero line, that is, when
the total current f is tangent to the horizontal axis, saddle-
node bifurcation will occur. )erefore, (df/dV) � 0 at the
saddle node:

df

dV
� − gL − gNam∞′ (V) V − ENa(  − gNam∞(V)

− gKw∞′ (V) V − EK(  − gKw∞(V) � 0.

(8)

After obtaining the membrane potential VSN at the
saddle node, letting f � 0 in formula (7) can determine the
external stimulating current ISN when the saddle-node bi-
furcation occurs:

I � gL V − EL(  + 0.5gNa 1 + tanh
V − βm

cm

  V − ENa(  + 0.5gK 1 + tanh
V − βw

cw

  V − EK( . (9)

Figure 4 shows the derivative curve df/dV of the right
function of the model equation. )e membrane potential at
the saddle node can be obtained from _f(V) � 0:
VSN1 � − 38.8483mV, VSN2 � − 33.7954mV. From formula
(9), the stimulating current at the saddle node can be ob-
tained as follows: ISN1 � 33.1855 μA/cm2, ISN2 � 32.7822 μA
/cm2.

When ISN1 � 33.1855 μA/cm2, the total current f and
the phase plane of the neuron model are shown in Figure 5.
f is tangent to the horizontal axis at VSN1 � − 38.8483mV,
where the saddle and the node collide and disappear, and a
saddle-node bifurcation occurs. When
ISN2 � 32.7822 μA/cm2, the total current f and the phase
plane of the neuron model are shown in Figure 6. f is
tangent to the horizontal axis at VSN2 � − 33.7954mV, where
the saddle and the node collide and disappear, and another
saddle-node bifurcation occurs.

)e characteristic coefficient distribution q − p corre-
sponding to the equilibrium point of the Prescott model is
shown in Figure 7, where p is the first order coefficient of the
characteristic equation of the equilibrium point and q is the
constant term of the characteristic equation of the equi-
librium point. In the figure, the black “+” line, the blue “×”
line, and the pink “o” line represent the node, the saddle, and
the focus, respectively. )e blue diamond represents the
saddle node, and the red curve represents p2 − 4q � 0, which
is the dividing line between focus and node of the equi-
librium point. It can be seen from the figure that the blue
curve q< 0, so it is the saddle. )e black curve satisfies
p2 − 4q> 0, so it is the node. )e pink curve satisfies
p2 − 4q< 0, so it is the focus.)ere is a very small distance of
node between the pink curve and the blue curve. )erefore,
the neuronmodel has two saddle-node bifurcations at ISN1 �

33.1855 μA/cm2 and ISN2 � 32.7822 μA/cm2.

4.2.MultivaluedEquilibriumPoint Region andCritical Saddle
Node. From the analysis and calculation in the previous
section, it can be seen that the derivative of the total current
is not a monotonic function. )ere are two tangent points

between the total current f and the horizontal axis, indi-
cating that the neuron model has two saddle nodes. Let
ΔVSN � VSN2 − VSN1 be the difference between the mem-
brane potentials of the two saddle nodes and ΔISN � ISN1 −

ISN2 be the difference between the external currents cor-
responding to the two saddle nodes, as shown in Figure 8.

When the external current is between ISN1 and ISN2, the
number of equilibrium points of the neuron model is not
unique, which means it is a multivalued equilibrium point
region. When βw changes, the range of the multivalued
equilibrium point region also changes. As βw decreases,
ΔVSN and ΔISN gradually decrease until they equal zero, and
the multivalued equilibrium point region disappears. It can
be seen from Figure 9 that ΔV and ΔI show a nonlinear
decrease as βw decreases. When βw � − 10.4176mV,
ΔVSN⟶ 0, andΔISN⟶ 0, the two saddle nodes meet and
disappear. At this time, regardless of the value of the external
current, the neuron model has only one equilibrium point,
and no more multivalued equilibrium point region is
generated.)e boundary point of the single and multivalued
equilibrium point region is called the critical saddle node in
this paper.

)e total current and phase plane of the Prescott model
at the critical saddle node are shown in Figure 10. At this
time, the membrane potential is VSN0 � 36.66mV, and the
corresponding external stimulating current is
ISN0 � 33.57 μA/cm2.

)e value of βw at the critical saddle node is calculated
below. At the critical saddle node, the total current f is
tangent to the horizontal axis and there is only one tangent
point, as shown in Figure 10(a), so the second derivative of f

is equal to zero; that is, (df/dV) � (d2f/dV2) � 0:

d2f
dV

2 � − gNa
dm∞′ (V)

dV
V − ENa(  − 2gNam∞′ (V)

− gK
dw∞′ (V)

dV
V − EK(  − 2gKw∞′ (V) � 0.

(10)

)erefore,
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− gNa
dm∞′ (V)

dV
V − ENa(  − 2gNam∞′ (V) − gK

dw∞′ (V)

dV
V − EK(  − 2gKw∞′ (V)

� − gL − gNam∞′ (V) V − ENa(  − gNam∞(V) − gKw∞′ (V) V − EK(  − gKw∞(V).

(11)

After calculation, we get

− gNa
sh V − βm( /cm( 

c
2
mch

3
V − βm( /cm( 

V − ENa(  +
0.5
cm

1
ch2 V − βm( /cm( 

V − ENa − 2(  + m∞(V) 

� gK
sh V − βm( /cm( 

c
2
wch

3
V − βm( /cm( 

V − EK(  +
0.5
cw

1
ch2 V − βm( /cm( 

V − EK − 2(  + w∞(V)  + gL.

(12)

)us, the calculation formula of βw corresponding to the
critical saddle node can be obtained. Figure 11(a) shows the
curves of the first derivative and the second derivative of f

when βw � − 10.4176mV, which correspond to the critical
saddle node. Figure 11(b) shows the curves of the first
derivative and the second derivative of f when
βw � − 15mV. It can be seen from the figure that (df/dV) �

(d2f/dV2) � 0 when the neuron model is at the critical
saddle node. While βw < − 10.4176mV, (d2f/dV2)≠ 0
when (df/dV) � 0, the neuron model will no longer have
saddle-node bifurcation and there will be no multivalued
equilibrium point region.

5. Analysis of Hopf Bifurcation at
Equilibrium Point

As the bifurcation parameters change, the stability of the
equilibrium point of the nonlinear system changes. )e
stable focus turns into an unstable focus and a limit cycle is
generated near it, and the Hopf bifurcation phenomenon
occurs. At this time, the equilibrium point becomes the

center point, and its eigenvalues become pure imaginary
number. When the bifurcation parameter changes to the
bifurcation value, the unstable limit cycle shrinks to a stable
equilibrium point and turns it into an unstable equilibrium
point.

5.1. Hopf Bifurcation of Two-Dimensional Prescott Model.
For a two-dimensional nonlinear system, the necessary
prerequisite for Hopf bifurcation is that the corresponding
linear system has center points. )e two eigenvalues of the
equilibrium point of a two-dimensional system are

λ1,2 �
1
2

− p ±
������

p
2

− 4q



 . (13)

When p � 0 and q> 0, the eigenvalues λ1,2 � ± ���
− q

√ are
pure imaginary numbers, and the equilibrium point is center
point. )erefore, the conditions for the Hopf bifurcation of
the system are obtained: (1) p � 0; and (2) q> 0.

For the Prescott model:

(1) p � 0, in the Prescott model:
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Figure 10: )e (a) total current and (b) phase plane at the critical saddle node.
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p �
gL + gNam∞′ (V) V − ENa(  + gNam∞(V) + gKw 

Cm

+ φwcosh
V − βw

2cw

  � 0. (14)

)erefore,

w �
− Cmφwcosh V − βw( /2cw(  − gL − gNam∞′ (V) V − ENa(  − gNam∞(V) 

gK
. (15)

If the equilibrium point (V0, W0) of the model
satisfies formula (15), then the coefficient of the first-
order term of the characteristic equation of the
equilibrium point is zero.

(2) q> 0:
According to condition (1), p � a + d � 0, so
q � a d − bc � − a2 − bc> 0, that is, a2 + bc< 0.
)erefore, this condition is equivalent to ① bc< 0,
that is, b and c are opposite signs, and② |bc|> a2 or
|bc|>d2.

In the Prescott model, b � [− gK(V − EK)]/Cm and
EK � − 100mV. Usually, the membrane voltage is not less

than − 100mV, so V>EK. To command V>EK at this time,
only let c> 0; that is,

c �
φw w∞′ (V)τw(V) − w∞(V) − w( τw

′ (V) 

τw(V) 
2 > 0. (16)

When the system is at equilibrium, w � w∞(V), thus

φww∞′ (V)τw(V)> 0. (17)

Substituting w∞′ (V) � (0.5/cw)(1/cosh2((V − βw)/cw)),
τw(V) � (1/cosh((V − βw)/2cw)), we have

φw

2cw

1
cosh2 V − βw( /cw(  · cosh V − βw( /2cw( 

is always greater than 0. (18)

)at is, when the neuron model equation is under given
parameters and the coefficient of its characteristic equation
p � 0, condition ① is automatically satisfied.

Condition ②: |bc|> d2, that is,

− gK V − EK( φww∞′ (V)

Cmτw(V)




>φ2

wcosh
2 V − βw

2cw

 . (19)

)e hyperbolic cosine function is a constant positive
function, so we can get

− gK V − EK( 

2Cmcwφwcosh
2

V − βw( /cw( cosh V − βw( /cw( 




> 1.

(20)
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Figure 11: )e first and the second derivative of the total current f when βw is different: (a)βw � − 10.4176mV; (b)βw � − 15mV.
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)erefore, when the equilibrium point of the Prescott
model satisfies both formulas (15) and (20), Hopf bifurcation
occurs in the system.

5.2. Critical Hopf Bifurcation. )e key parameter βw has an
important influence on Hopf bifurcation. When βw is dif-
ferent, the characteristic equation coefficients of the equi-
librium point are also different. Only when p � 0 and q> 0
can the model produce Hopf bifurcation.

When βw is different, the characteristic equation coef-
ficient q − p of the equilibrium point is shown in Figure 12.
It can be seen from the figure that when βw � − 25mV, there
is no intersection point between the p curve and the vertical
axis. At this time, the model will not have Hopf bifurcation.
And when βw < − 25mV, the value of p will no longer be
equal to zero, so the model will not have Hopf bifurcation
when βw < − 25mV. When βw � 0mV and βw � − 5mV, if
p � 0, q< 0, the model will not have Hopf bifurcation.
)erefore, Hopf bifurcation occurs only when the value of
βw is within a certain range. )e boundary of which the
model will have no Hopf bifurcation is called critical Hopf
bifurcation in this article. )e value of βw at the critical Hopf
bifurcation point is calculated below.

)rough the above qualitative analysis, we can see that
there are two critical Hopf bifurcation points. When p � 0,
q< 0, the model no longer has Hopf bifurcation. In this case,

this boundary point is called the upper critical Hopf bi-
furcation point. )erefore, the critical condition is when
p � 0, q � 0; that is,

p �
− gL − gNam∞′ (V) V − ENa(  − gNam∞(V) − gKw∞(V) 

cm

− φwcosh
V − βw

2cw

  � 0,

q � − φ2
wcosh

2 V − βw

2cw

  +
gK V − EK( φww∞′ (V)

cmτw(V)
� 0.

(21)

)e value of βw and the membrane voltage at the upper
critical Hopf bifurcation point can be obtained from above.
Figure 13 depicts the variation curves of characteristic co-
efficients p and q with membrane voltage V. )e pink line is
the p − V curve, and the blue line is the q − V curve. When
βw1 � − 9.8461mV and VHo1 � − 39.1726mV, the model

satisfies p � 0 and q � 0; hence it is the upper critical Hopf
bifurcation point of the model.

When the p curve no longer intersects the zero axis, the
model no longer has Hopf bifurcation. )is boundary point
is called the lower critical Hopf bifurcation point. )erefore,
the critical condition is that the p − V curve is tangent to the
zero axis; that is,

p �
− gL − gNam∞′ (V) V − ENa(  − gNam∞(V) − gKw∞(V) 

Cm

− φwcosh
V − βw

2cw

  � 0,

dp

dV
� −

− gNam∞″ (V) V − ENa(  − 2gNam∞′ (V) − gKw∞′ (V) 

Cm

−
φw

2cw

sh
V − βw

2cw

  � 0,

(22)

where m∞″ (V) � − (sh((V − βm)/cm)/c2
mch

3((V − βm)/
cm)), m∞′ (V) � (0.5/cm)(1/ch2((V − βm)/cm)), w∞′ (V) �

(0.5/cw)(1/ch2((V − βw)/cw)).
)e value of βw and membrane voltage at the lower

critical Hopf bifurcation point are calculated as
βw2 � − 22.9899mV, VHo2 � − 32.52mV, and the

corresponding input current is IHo � 180.0713 μA/cm2. )e
p curve, dp/dV curve, q curve, and input current I curve at
the lower critical bifurcation point are shown in Figure 14,
and the I curve in the figure is drawn at a ratio of 1%.

When βw1 � − 9.8461mV and βw2 � − 22.9899mV, the
characteristic equation coefficient q − p curves

2

1.5
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0.5

0

-0.5

-1

q

-6 -4 -2 0 2
p

βw=-10 mV
βw=-12 mV

βw=-15 mV

βw=-20 mV

βw=-25 mV

βw=-5 mV

βw=0 mV

Figure 12: )e q − p curve of the characteristic equation of the
equilibrium point when βw is different. When βw ≤ − 25mV, there
is no intersection point between the p curve and the vertical axis. At
this time, the model will not have Hopf bifurcation. When
βw ≥ − 5mV, if p � 0, then q< 0, the model will not have Hopf
bifurcation.

Mathematical Problems in Engineering 11



corresponding to the upper and lower critical Hopf bifur-
cations of the model are shown in Figure 15. )e value of βw

corresponding to the area between the two curves is the
range of the value of βw where Hopf bifurcation can occur;
that is, − 22.9899mV< βw < − 9.8461mV.

6. Conclusions

)is paper uses both analytical and numerical methods to
study the dynamic characteristics of a two-dimensional
neuron model and uses the changes of key parameters to
describe the relationship between the input and output
characteristics of the neuron and the internal parameters
and input stimuli. )e firing characteristics of the two-di-
mensional Prescott model under external electrical stimu-
lation are studied. )rough the analysis of the equilibrium
point of the model, it is found that the electrophysiological
parameters have an important influence on the distribution
and bifurcation of the equilibrium point. )e critical saddle
node of the Prescott model is related to the key parameters
βw. When βw < − 10.4176mV, the saddle-node bifurcation
disappears. At this time, regardless of the value of the ex-
ternal current, the model has only one equilibrium point and
no more multivalued equilibrium point region is generated.
)e Prescott model also has critical Hopf bifurcation. Only
when βw is within a certain parameter range will the model
have Hopf bifurcation, and there are upper and lower critical
values. When − 22.9899mV< βw < − 9.8461mV, the model
can undergo Hopf bifurcation.

In saddle-node bifurcation, when external electrical
stimuli of different intensities are input, the saddle and the
node approach each other, then collide, and disappear,
resulting in a stable limit cycle, which produces a periodic
firing that has a continuous f − I curve. In the Hopf bi-
furcation, the stable equilibrium point loses its stability and
gives birth to a stable limit cycle, resulting in a periodic firing
mode of the discontinuous f − I curve. )is paper analyzes
the saddle-node bifurcation and Hopf bifurcation of the
Prescott model under electrical stimulation. In particular,
the critical saddle-node bifurcation and the critical Hopf
bifurcation are obtained by the combination of numerical
analysis and analytical methods. )ese two bifurcations
correspond to different firing patterns of neurons, and the
microscopic basis of many neuropsychiatric diseases is the
abnormal firing of brain neurons, which in turn leads to
changes in neural information coding. )erefore, the results
of this article are helpful to the research of electromagnetic
field in the neurological disease treatment to change the
firing rhythms of morbid neurons. And it is also of great
significance in the research of nerve control and nerve
electrical stimulation, which can provide a certain theo-
retical basis for understanding the influence of electro-
magnetic fields on brain neurons.

Data Availability

)e data used to support the findings of this study are
available from the corresponding author upon request.
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