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With the completion of the Beidou-3 system (BDS) in China, INS/BDS integration will become a promising navigation and
positioning strategy. However, due to the nonlinear propagation characteristic of INS error and inevitable involvement of
inaccurate measurement noise statistics, it is difficult to achieve the optimal solution through the INS/BDS integration.*is paper
proposes a method of cubature Kalman filter (CKF) with the measurement noise covariance estimation by using the maximum
likelihood principle to solve the abovementioned problem. It establishes an estimation model for measurement noise covariance
according to the maximum likelihood principle, and then, its estimation is calculated by utilizing the sequential quadratic
programming. *e estimated measurement noise covariance will be fed back to the procedure of CKF to improve its adaptability.
Simulation and comparison analysis verify that the proposed method can accurately estimate measurement noise covariance to
effectively restrain its influence on navigation solution, leading to improved navigation performance for the INS/BDS integration.

1. Introduction

Nowadays, the inertial navigation system (INS) plays an
important role in the vehicle navigation community due to its
autonomy and comprehensive navigation information [1, 2].
However, its navigation error will increase unboundedly with
time because the drift is involved in the inertial measurement
units [2, 3]. By contrast, the global navigation satellite system
(GNSS) is a satellite-based system, providing the highly ac-
curate information on velocity and position of a vehicle in a
long time [3, 4]. However, it is difficult to achieve the con-
tinuous localization by the GNSS since satellite signals may be
lost and corrupted in the environmental conditions such as
high buildings, tunnels, and mountains [4, 5]. Recently, the
Beidou-3 system (BDS) of China has been successfully built
and become a typical GNSS. It will be the backbone of global
positioning and navigation [6, 7]. However, it still suffers from
the problems of commonly used GNSS [6].

*e INS is commonly integrated with the GNSS or BDS
to take advantages of the two techniques [8, 9]. It overcomes
the limitations of two standalone systems, that is, long-time
drift of the INS and easy to inference for the GNSS. It also
sufficiently exploits the advantages of both systems, such as
the consistently high accuracy of the GNSS and the short-
term stability of the INS [9, 10]. Consequently, INS/GNSS
integration is a promising solution to improve the naviga-
tion and positioning accuracy by utilizing the GNSS in-
formation to compensate the error of the INS. Due to these
reasons, this integration has been widely used in many real
applications, such as aircraft landing, autonomous under-
water vehicle, air-space-ground integrated network, un-
manned aerial vehicle, and so on [8–10].

*e state estimation problem is of importance for the
INS/GNSS or INS/BDS integration. It is still one of the most
significant open research problems and attracted wide in-
terest in the research community [11, 12]. *e Kalman filter
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is an optimal filter in the sense of the minimummean square
error criterion for the linear system [12]. However, the INS
error propagation always reflects nonlinear characteristics,
thus adopting the nonlinear INS error model which can
better describe the propagation characteristic of INS error
[12, 13]. *e commonly used linear system model is only a
theoretical approximation to the actual nonlinear system
with limited approximation accuracy, leading to decreased
navigation performance for INS/GNSS integration [13, 14].

*e unscented Kalman Filter (UKF) has received in-
creased attention for INS/GNSS integration due to the ability
of dealing with strongly nonlinear systems [12–14]. *is
filter uses a set of deterministically selected sigma points to
approximate the probability distribution of system state and
further propagates them directly through nonlinear system
functions. It avoids system model linearization and has
higher-order approximation accuracy than the traditional
extended Kalman filter (EKF) [14, 15]. However, the UKF is
considered to be unstable, especially for high-dimensional
(more than 3) nonlinear systems [15, 16].

As an emerging nonlinear filtering technology, the cu-
bature Kalman filter (CKF) is an improvement to the tra-
ditional nonlinear filters such as the EKF and UKF [16, 17].
It uses a third-degree spherical-radical cubature rule to
approximate the involved Gaussian-weighted integrals in a
nonlinear Gaussian filter framework and can approximate
the posterior mean and covariance of system state vector for
any nonlinear system in second-order accuracy, which is
higher than the EKF in first-order accuracy and has better
numerical stability than the UKF for high-dimensional
nonlinear systems such as a multisensor integrated navi-
gation system [16–18]. Furthermore, the CKF only contains
2n cubature points, which is smaller than the UKF with
2n+ 1 sigma points. *us, the CKF has a better computa-
tional real-time performance than the UKF [19]. However,
all the abovementioned nonlinear filters are dependent on
the accurate prior statistical information for process and
measurement noise [3, 11]. If the noise statistics are inac-
curate to be used, the performance will be deteriorated. In
the INS/GNSS integration, the precision of the system state
equation can be ensured by using laser or optical inertial
measurement units of ultrahigh accuracy [2, 20]. Never-
theless, the GNSS and BDS are always affected by the ex-
ternal environment such as urban canyons, tunnels, and
foliage conditions, leading to biased measurement noise
statistics and further failure to provide superior navigation
result [4, 20].

Various methods were reported to handle the inaccurate
measurement noise statistics for the CKF state estimation.
Zhang et al. developed an H-infinity strategy-based robust
CKF by minimizing the estimation error in the worst case
[17]. However, it may break down in the presence of ran-
domly occurring inaccurate noise statistics [21]. For the
non-Gaussian measurement noise, Liu et al. proposed a
maximum correntropy-based square-root CKF (MCSCKF)
[12]. However, the construction of the estimation error
covariance matrix in this method is not based on theoretical
analysis [22], making the improvement of this method
questionable. *e M-estimation can also be combined with

the CKF to curb the influence of inaccurate measurement
noise statistics on system state estimation [18]. Nevertheless,
the achievement of the robustness for this method is based
on the cost of accuracy of the nonlinear transformation itself
[23].

*emaximum likelihood principle provides a promising
solution to address the parameter estimation problem for a
statistical model [24, 25]. It can estimate the measurement
noise statistics by maximizing the likelihood function of
unknown measurement noise statistics based on a set of
known measurements. *e maximum likelihood principle
can achieve the unique and converged solution in the
probabilistic sense [25, 26]. *us, this method has been
gradually used for the noise statistics estimation of a dy-
namic system in recent years [24, 26]. However, the most
existing maximum likelihood method is only for the Kalman
filter in a linear system, there has been very limited research
focusing on the use of the maximum likelihood principle for
system noise statistic estimation in a nonlinear CKF.

*is paper presents a method of CKF with the mea-
surement noise covariance estimation by using the maxi-
mum likelihood principle to improve the adaptability of
INS/BDS integration. *e proposed method establishes a
theory of an estimation model for the measurement noise
covariance based on the maximum likelihood principle.
Subsequently, the sequential quadratic programming is used
to calculate the estimation of measurement noise covariance,
and it is fed back to the CKF procedure to improve the
adaptability of the filter. Simulations and comparison
analysis have been conducted to comprehensively evaluate
the performance of the proposed method for INS/BDS
integration.

2. System Model for INS/BDS Integration

*e INS/BDS integration used for vehicle navigation in this
paper is to utilize the accurate velocity and position by the
BDS to correct the navigation error of the INS. An error
model with nonlinear characteristics is established based on
the additive quaternion, and the differences of velocity and
position information between INS and BDS are taken as the
measurement of the integrated system. *us, the system
model for INS/BDS integration is developed and described
in the following.

2.1. System State Equation. We denote the navigation frame
(n-frame) as the E-N-U (East-North-Up) geography frame
(g-frame). *e body frame, inertial frame, and earth frame
are abbreviated as b-frame, i-frame, and e-frame, respec-
tively. By using the attitude error quaternion, the INS’s
attitude error equation can be described as [27]

δ _Qn

b �
1
2
Ωu ωb

ib δQn
b −

1
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Ωd ωn

in( δQn
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where δQn
b � δq0 δq1 δq2 δq3 

T and Qn
b � q0 q1 q2 q3  are

the attitude error quaternion and attitude quaternion;
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*e INS’s velocity error equation is [27]
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where δ _V
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is the velocity error and

Vn � vE vN vU 
T is the velocity in east, north, and up;

δCn
b is an attitude error coupling term, which has strongly

nonlinear characteristics about δQn
b as described in [28]; δQ

n
b

is the rotation matrix; fb is the specific force, δfb is the
accelerometer error; ωn

ie � 0 − δLωie sin L ωie sin L 
T is

the projection of the Earth rotation rate ωie; ωn
en �

− (vN/(RM + h)) (vE/(RN + h)) (vE tan L/(RN + h)) 
T is

the angular rate of the n-frame with respect to the e-frame;
where RM and RN denote the meridian and transverse radii
of curvature and L and h represent the latitude and altitude
of the vehicle; and δωn

ie and δωn
en are the corresponding

errors.
*e INS’s position error is described as [28]
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*e IMU error includes the errors of the gyro and ac-
celerometer. *e gyro error and accelerometer error both
can be described as

δωb
ib � εb + wg, (6)

_εb � 0, (7)

δfb
� =b + wa, (8)

_=b � 0, (9)

where εb � εbx εby εbz 
T

and _=b � ∇bx ∇by ∇bz 
T

represent the constant drift of the gyro and the zero bias of
the accelerometer; wg � wgx wgy wgz 

T
and wa �

wax way waz 
T
are the white noises for the gyro and

accelerometer.
*e system state variable is

X(t) � δQn
b( 

T δVn( )
T δPn( )

T εT
b =T

b
 

T
. (10)

Figure 1 describes the constitute component of the
system state equation for INS/BDS integration. As described
in Figure 1, combining (1), (3), (4), (6), and (8), the system
state equation of the INS/BDS integration can be obtained as

_X(t) � f(X(t)) + W(t), (11)

where f(·) is the continuous-time nonlinear function de-
scribing the system state equation and W(t) is the system
state noise.

To use the discrete-time CKF, (11) should be discretized
via the improved Euler method [29].

Xk � f Xk− 1(  + Wk, (12)

where f(·) is the discrete-time nonlinear function de-
scribing the system state equation and Wk is the discrete-
time system state noise.
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2.2. Measurement Equation. Taking the differences of ve-
locity and position information between the INS and BDS as
the system measurement vector,

Zk � vEI − vEB vNI − vNB vUI − vUB λI − λB LI − LB hI − hB 
T
,

(13)

where vEI vNI vUI 
T and λI LI hI 

T or
vEB vNB vUB 

T and λB LB hB 
T are the vehicle’s ve-

locity and position information from the INS or BDS.
*en, the measurement equation for the INS/BDS in-

tegration can be established by the measurement vector

Zk � HkXk + Vk, (14)

where Hk �
Hv

Hp
  is the measurement matrix, Hv �

03×4diag(1,1,1) 03×9 , Hp � 03×7diag(RM,RNcosL,1)03×9 ,

and Vk �
Vv

Vp
  is the measurement noise vector, which obeys

the zero-mean Gaussian distribution with covariance R.

3. Maximum Likelihood-Based Measurement
Noise Covariance Estimation Using
Sequential Quadratic Programming for the
Cubature Kalman Filter

In this section, a method of maximum likelihood-based mea-
surement noise covariance estimation is developed via the se-
quential quadratic programming for the nonlinear CKF applied
in INS/BDS integration to hinder the influence of inaccurate
measurement noise statistics on the navigation solution.

3.1. Cubature Kalman Filter. *e nonlinear discrete-time
system is commonly described as (12) and (14).

Xk � f Xk− 1(  + Wk,

Zk � HkXk + Vk,
 (15)

whereXk represents the system state and the Zk is the system
measurement; f(·) is the nonlinear function describing the
system state equation and Hk is the measurement matrix;
and Wk and Vk are the process noise and measurement
noise, respectively. *ey are uncorrelated zero-mean
Gaussian white noises, and their covariances are
E[WkWT

k ] � Q and E[VkVT
k ] � R.

Based on this nonlinear system, the procedure of state
estimation using the CKF is given as follows.

Step 1. Initialization: the state estimate X0 and its error
covariance P0 are initially set as

X0 � E X0 ,

P0 � E X0 − X0  X0 − X0 
T

 .

⎧⎪⎨

⎪⎩
(16)

Step 2. Cubature point calculation: suppose that the pre-
vious time’s state estimate Xk− 1 and its error covariance
matrix Pk− 1 are given. *en, the cubature points are cal-
culated as

Pk− 1 � Sk− 1S
T
k− 1, (17)

χi,k− 1 � Xk− 1 + Sk− 1ξi, (18)

where Sk− 1 �
����
Pk− 1


; ξi is chosen as

ξi �

�
n

√
ei, i � 1, 2, . . . , n,

−
�
n

√
ei− n, i � n + 1, n + 2, . . . , 2n,

 (19)

where ei represents the ith column of the n × n identity
matrix.

System
state

equation 

Attitude error quaternion equation : δQn
b

IMU error equation : εb (gyro’ constant
drift) and ∇b (accelerometer’s zero bias)

Position error equation : δPn

Velocity error equation : δVn 

 

δωb
ib δωn

in

Ωu (ωb
ib), Ωd (ωn
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f b, δf b 

Vn, δωie, δωn
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ωn
ie, ωn
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M

N

δVn

δCn
b, Cn

b

Figure 1: Constitute component of system state equation for INS/BDS integration.
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Step 3. Time update: the selection of cubature points is
propagated by the system state equation.

χi,(k/k− 1) � f χi,k− 1  (i � 1, 2, . . . , 2n) (20)

*en, the state mean and covariance are predicted as

Xk/k− 1 �
1
2n



2n

i�1
χi,(k/k− 1), (21)

Pk/k− 1 �
1
2n



2n

i�1
χi,(k/k− 1)χ

T
i,(k/k− 1) − Xk/k− 1

XT

(k/k− 1) + Q. (22)

Step 4. Measurement update: the measurement update is
performed same as the Kalman filter due to the linear
measurement equation.

Zk/k− 1 � Hk
Xk/k− 1, (23)

PZk/k− 1
� HkPk/k− 1H

T
k + R, (24)

PXk/k− 1
Zk/k− 1

� Pk/k− 1H
T
k , (25)

Kk � PXk/k− 1
Zk/k− 1

P− 1
Zk/k− 1

, (26)

Xk � Xk/k− 1 + Kk Zk − Zk/k− 1 , (27)

Pk � Pk/k− 1 − KkPZk/k− 1
KT

k . (28)

Step 5. We repeat Steps 2 and 4 for all the samples.
It can be seen that when the measurement noise co-

variance R is incorrect, the innovation covariance PZk/k− 1
will

be worsened and further making the filter gain Kk is biased.
*us, the state estimation accuracy will be decreased. Due to
this reason, studying a way to estimate the measurement
noise covariance and improve the system’s state estimation
accuracy is necessary and urgent.

3.2. Maximum Likelihood-Based Measurement Noise Co-
variance Estimation. Assuming that the measurement noise
covariance R is unknown, we denote the R as a parameter.
According to the maximum likelihood framework, the es-
timation model for the parameter R based on the mea-
surement data can be established as [24, 26]

RML � argmax
R

ln L R |Z1: k(   , (29)

where L(R|Z1: k) is the likelihood function of parameter R
with respect to the measurement data Z1: k.

From the definition of likelihood function, we have

L R |Z1: k(  � p Z1: k|R( , (30)

where p(Z1: k|R) represents a suitable conditional proba-
bility density function (pdf) defined using the data Z1: k.

We denote the innovation of the CKF as

Zj � Zj − Zj/j− 1 � Zj − Hj
Xj/j− 1, (j � 1, 2, . . . , k).

(31)

For the nonlinear Gaussian system described by (15), the
innovation zj obeys the multivariate Gaussian distribution
N(0,PZj/j− 1

), where

PZj/j− 1
� E Zj

ZT

j  � HjPj/j− 1H
T
j + R. (32)

*e innovations form of the likelihood function for the
parameter R can be written as

L R |Z1: k(  � p Z1: k|R(  ≈ 
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p Zj |R ,

� 
k
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(2π)
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1/2 exp −

ZT

j P
− 1
Zj/j− 1

Zj

2

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
.

(33)

Taking the logarithm of both sides of (33) and ignoring
the constant term, it can be obtained that

ln L R|Z1: k(   ≈ −
1
2



k

j�1
ln PZj/j− 1




+ ZT

j P
− 1
Zj/j− 1

Zj . (34)

Substituting (34) into (29), the estimation model of
parameter R based on maximum likelihood principle can be
achieved.

RML � argmin
R



k

j�1
ln PZj/j− 1




+ ZT

j P
− 1
Zj/j− 1

Zj ⎡⎢⎢⎣ ⎤⎥⎥⎦. (35)

To reduce the computational burden of noise statistic
estimation, R is usually taken as a diagonal matrix, i.e.,

R � diag r1, r2, . . . , rm , (36)

considering the following condition:

R> 0. (37)

*erefore, the parameter estimation model based on the
maximum likelihood principle can be established by com-
bining (35)–(37):

RML � argmin
R



k

j�1
ln PZj/j− 1




+ ZT

j P
− 1
Zj/j− 1

Zj ⎡⎢⎢⎣ ⎤⎥⎥⎦,

R � diag r1, r2, . . . , rm ,

R> 0.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(38)

Obviously, the measurement noise covariance estimate
has been converted to a typical nonlinear programming
problem with inequality constraint. It will be solved by using
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the sequential quadratic programming method to obtain the
estimation of measurement noise covariance.

3.3. Solution Method. Sequential quadratic programming
(SQP) is one of the most effective algorithms in the world for
solving nonlinear constrained programming problems
[30, 31]. SQP transforms a complex nonlinear constrained
programming problem into a series of quadratic pro-
gramming subproblems. By solving these quadratic pro-
gramming subproblems, the optimal solution of the original
problem is obtained.

Considering the general nonlinear constrained pro-
gramming problem,

min g(x)

s.t. cl(x) � 0, l � 1, 2, . . . , e,

cl(x)≤ 0, l � e + 1, e + 2, . . . , q.

(39)

In the tth iteration, the constraints in (39) are linearized
at the iteration point x(t), and the following quadratic
programming subproblem is obtained:

min G(d) �
1
2
dTWtd + ∇g x(t)

 
T
d,

s.t. ∇cl x(t)
 

T
d + cl x(t)

  � 0, l � 1, 2, . . . , e,

∇cl x(t)
 

T
d + cl x(t)

 ≤ 0, l � e + 1, e + 2, . . . , q,

(40)

where d is the iterative direction; ∇g(x(t)) and ∇cl(x(t)) are
the gradients of functions g(x) and cl(x) at x(t); Wt is the
positive definite quasi-Newton approximation matrix of
Lagrange function La(x, μ(t)) � g(x) + 

e
l�1 μ

(t)
l cl(x)+


q

l�e+1 μ
(t)
l cl(x) at x(t).

For the nonlinear constrained programming problem
described in (39), the computing steps of SQP can be
summarized as follows:

Step 1: when t � 1, we firstly select the initial iteration
point x(1) and symmetric positive definite matrix B1 are
selected, and then, the iteration precision is set ξ > 0.

Step 2: the active set method [31] is used to solve the
quadratic programming subproblem (40) to obtain the
optimal solution d(t) and the corresponding La-
grangian multiplier μ(t).

If d(t) � 0, x(t+1) � x(t) + d(t) is the optimal solution of
the nonlinear programming problem (39), and the
iterative calculation is stopped. Else, we go to Step 3.

Step 3: starting from the iteration point x(t), the ob-
jective function is constructed along the direction d(t).

φ(α) � w x(t)
+ αd(t)

, λ(t)
 . (41)

Here,

λ
(t)

� λ
(t)

1 , λ
(t)

2 , . . . , λ
(t)

q ,

λ
(t)

l � μ(t)
l



, l � 1, 2, . . . , q, t � 1,

λ
(t)

l � max μ(t)
l



,
1
2

λ
(t− 1)

l + μ(t)
l



  , l � 1, 2, . . . , q, t> 1,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

w(x, λ) � g(x) + 
e

l�1

λl cl(x)


 + 

q

l�e+1

λl max 0, cl(x) .

(42)

A one-dimensional search [31] is conducted to φ(α) in
(41) to determine the iterative step size αt.
Step 4: let x(t+1) � x(t) + αtd

(t). If ‖x(t+1) − x(t)‖< ξ,
x(t+1) will be the approximate optimal solution for the
nonlinear programming problem (39), and the iterative
calculation is stopped. Else, we go to Step 5.
Step 5: by using the BFGS (Broyden–
Fletcher–Goldfarb–Shanno) formulation [31], Wt can
be revised as Wt+1:

Wt+1 � Wt −
Wts

(t) s(t)
 

T
Wt

s(t)
 

T
Wts

(t)
+
η(t) η(t)

 
T

η(t)
 

T
s(t)

. (43)

Here,

s(t)
� x(t+1)

− x(t)
,

η(t)
� ϖe(t)

+(1 − ϖ)Wts
(t)

,

e(t)
� ∇ La x(t+1)

, μ(t)
   − ∇ La x(t)

, μ(t)
  ,

ϖ �

1, e(t)
 

T
s(t) ≥ 0.2 s(t)

 
T
Wts

(t)
,

0.8 s(t)
 

T
Wts

(t)

s(t)
 

T
Wts

(t)
− e(t)

 
T
s(t)

, Others.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(44)
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Step 6: let t � t + 1, and we return to Step 2.

3.4. Proposed Method. For the nonlinear system (15),
Figure 2 gives the flowchart of the proposed method, and
the core procedure is shown as follows:

Step 1: the previous time’s system state estimation Xk− 1
and its error covariance Pk− 1 are given
Step 2: measurement noise covariance estimation:

(i) According to (31) and (32), the innovation vector
and its error covariance matrix from time Step 1 to
time step k are obtained

(ii) *e estimation model (38) for measurement noise
covariance based on the maximum likelihood
principle is constructed

(iii) *e SQP method is used to iteratively solve the
(38) to obtain the estimated measurement noise
covariance R

Step 3: time update: CKF steps (Equations (17)–(22))
are performed to calculate the state prediction Xk/k− 1
and its error covariance matrix Pk/k− 1

Step 4: Measurement update: we perform CKF steps
(Equations (23)–(28)) to update the system state esti-
mation and its error covariance matrix, where (24) is
replaced by

PZk/k− 1
� HkPk/k− 1H

T
k + R (45)

Step 5: we repeat Steps 1–4 for all the samples

4. Simulation Analysis and Discussions

Simulations have been conducted to comprehensively
evaluate the performance of the proposed CKF, which is
abbreviated as the MLCKF (Maximum Likelihood-based
Cubature Kalman Filter), for an unmanned aerial vehicle
(UAV) navigation using INS/BDS integration in terms of
inaccurate measurement noise statistics. *e UAV and its
main constitute parameters can been seen in the Figure 3.
Comparison analysis of the proposed MLCKF with CKF,
H-infinity strategy-based robust CKF (HRCKF), and
MCSCKF is also discussed in this section.

A flight trajectory is designed for the UAV dynamic
flight considering the complex maneuvers such as climbing,
descending, turning, uniform linear motion, and accelerated
linear motion. It can be seen in Figure 4. *e initial position
for the UAV is 108.997°, 34.246°, and 1000m in longitude,
latitude, and altitude components; the initial velocity is 0m/
s, 150m/s, and 0m/s in east, north, and up components; the
initial attitude is 0°, 0°, and 0° in pitch, roll, and yaw
components; and the simulation time is 1000 s. *e pa-
rameters for the navigation sensors are as follows: the
constant drift and random walk coefficient of the gyro are
0.1°/h and 0.05 ∘/

��
h

√
; the zero-bias and random walk co-

efficient of the accelerometer are 1× 10− 3 g and
1 × 10− 4 g ·

�
s

√
; the BDS’s accuracy in horizontal position,

altitude and velocity are 5m, 8m, and 0.05m/s in the sense
of root mean square error, respectively; and the sampling
rates for the INS and BDS are 25Hz and 1Hz. For the
navigation filter, the initial position error is set as 8m, 8m,
and 15m in longitude, latitude, and altitude components;
the initial velocity error is 0.5m/s, 0.5m/s, and 0.5m/s in
east, north, and up components; the initial attitude error is ε,
1′, and 1.5′ in pitch, roll, and yaw components; and the filter
period is set as 1 s.

According to the chosen of simulation parameter, the
measurement noise covariance for the INS/BDS integration
should be

R � diag (0.05m/s)2I3×3, (5m)
2
, (5m)

2
, (8m)

2
 . (46)

Measurement
update :

zk/k–1 Pzk/k–1
 

k + 1

Cubature point
calculation 

k = 1

Initialization

Estimation model (38)

Solving using SQP

ˆ

xk , Pkˆ

R

Measurement noise
covariance estimation 

Execute the CKF
steps (25)–(28) 

Noise covariance
estimation?

 Time update

Next time step

Yes

No

ˆ ˆ

Figure 2: Flowchart of the proposed method.

Length : 3m;
Wingspan : 5m;
Take off weight : 95kg;
Payload : 20kg
Voyage : 100km

Figure 3: UAV and its main constitute parameters.

Mathematical Problems in Engineering 7



In the simulation, to evaluate the performance of pro-
posed MLCKF in terms of inaccurate measurement noise
covariance, two cases are considered: (i) Gaussian noise with
inaccurate covariance; (ii) non-Gaussian noise.

4.1. Gaussian Noise with Inaccurate Covariance. In this case,
the measurement noise covariance ε is enlarged to 16 × R
during the time interval (500 s, 700 s), i.e.,

R � diag (0.2m/s)2I3×3, (20m)
2
, (20m)

2
, (32m)

2
 .

(47)

*us, the actual measurement noise covariance used for
the filters can be written as

Rk �
R, Others,

16 × R, k ∈ (500 s, 700 s).
 (48)

4.1.1. Measurement Noise Covariance Estimation Evaluation.
In this section, the measurement noise covariance estima-
tion of the proposedMLCKF will be evaluated by comparing
with the method using the genetic algorithm [32] to solve the
estimation model (38).

Figure 5 gives the estimated measurement noise co-
variance by the proposed MLCKF using SQP for the time
interval (500 s, 700 s). It can be seen that the estimated
measurement noise covariance by the MLCKF can converge
to its actual value at a fast speed. When the proposed
MLCKF tends to be stable, the estimation error for mea-
surement noise covariance in velocity is within 0.0052 (m/s)
2, and the estimation error for measurement noise covari-
ance in position is within 7.41m2. In contrast, Figure 6
provides the estimatedmeasurement noise covariance by the
method using the genetic algorithm. It can be seen that its
convergence speed is significantly slower than that of the
proposed MLCKF using SQP, and its estimation for mea-
surement noise covariance is also larger than that of the
proposed MLCKF using SQP when it tends to be stable. *is
is because the convergence of the genetic algorithm cannot

be guaranteed in theory and the premature convergence may
be occurred [32]. Table 1 lists the mean estimations for the
measurement noise covariance during the time interval
(500 s, 700 s). By comparing the mean estimations with their
actual value in Table 1, the ability of the proposedMLCKF to
adaptively estimate measurement noise covariance has been
verified. *e abovementioned analysis shows that the pro-
posed MLCKF can effectively estimate the measurement
noise covariance and provide accurate measurement noise
statistics information for the filter when the measurement
noise statistics is inaccurate.

4.1.2. Navigation Accuracy Evaluation. Under the same
simulation conditions, the CKF, HRCKF, and MLCKF are,
respectively, used as the navigation filter, and the overall
errors of attitude, velocity, and position for the UAV by the
abovementioned three methods are compared. *e overall
error is defined by [10]

‖Δx‖ �

���������������

Δx2
E + Δx2

N + Δx2
U



, (49)

where ΔxE, ΔxN, and ΔxU are the error components of x in
east, north, and up, respectively.

Figures 7–9 depict the overall attitude errors, overall
velocity errors, and overall position errors by the CKF,
HRCKF, and proposed MLCKF for the UAV navigation.
Analyzing Figures 7–9, we can achieve the following
conclusions:

(i) When the measurement noise statistics is accurately
known, the CKF, HRCKF, andMLCKF can converge
rapidly to estimate the UAV attitude, velocity, and
position with a quite high accuracy.

(ii) During the time interval (500 s, 700 s), both the CKF
and HRCKF are affected by the inaccurate initial
measurement noise covariance, and the attitude,
velocity, and position estimation errors all increase
obviously. *e attitude, velocity, and position esti-
mation errors of UAV are around 0.82’, 0.53m/s,
and 19.17m for the CKF and 0.71′, 0.41m/s, and
16.31m for the HRCKF, respectively. *e navigation
accuracy of the HRCKF is relatively superior to that
of the CKF due to its ability to curb inaccurate
measurement noise covariance. Compared to the
abovementioned two methods, the attitude, velocity,
and position estimation errors of UAV for the
proposed MLCKF are around 0.55′, 0.29m/s, and
13.29m, respectively, which are much smaller than
the CKF and HRCKF. *is is because the MLCKF
can accurately estimate the measurement noise co-
variance by using the maximum likelihood principle.
*us, the MLCKF can achieve a higher navigation
accuracy compared to the other two methods via the
estimation of measurement noise covariance for the
case of inaccurate measurement noise statistics.

Figures 10–12 describe the intuitive comparison of the
CKF, HRCKF, and MLCKF in terms of mean estimation
errors of attitude, velocity, and position for the UAV during
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Figure 4: Flight trajectory of the UAV.
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the time interval (500 s, 700 s), which also validate the
abovementioned conclusions.

4.2. Non-Gaussian Noise. *e nominal Gaussian distribu-
tion of the measurement noise is perturbed by another
distribution; i.e., the actual probability density function is

ρactual � (1 − ε)ρnominal + ερperturbing, (50)

where ε represents the ratio of the perturbing distribution. If
ρperturbing also obeys a Gaussian distribution but with a larger
standard deviation, the actual distribution is called the
Gaussian mixture, which is a non-Gaussian noise. In this
study, the standard deviation of the perturbing distribution
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Figure 6: Estimation of the measurement noise covariance using genetic algorithm. (a) Estimation of the measurement noise covariance in
velocity. (b) Estimation of the measurement noise covariance in position.

Table 1:*e actual value, initial value, and mean estimation by the proposed method using SQP and genetic algorithm for the measurement
noise covariance.

Measurement noise covariance ΔxN (500 s, 700 s)

Actual value diag[(0.05m/s)2I3×3, (5m)2, (5m)2, (8m)2]

Initial value diag[(0.2m/s)2I3×3, (20m)2, (20m)2, (32m)2]

Mean estimation by SQP diag [0.0031 (m/s)2, 0.0032 (m/s)2, 0.0036 (m/s)2, 24.7801m2, 25.0178m2, 64.8577m2]

Mean estimation by genetic algorithm diag[0.0054 (m/s)2, 0.0056 (m/s)2, 0.0053 (m/s)2, 27.2759m2, 27.9192m2, 68.8187m2]
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Figure 5: Estimation of the measurement noise covariance using SQP. (a) Estimation of the measurement noise covariance in velocity.
(b) Estimation of the measurement noise covariance in position.
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is assumed to be 8 times larger than that of the nominal
distribution, and ε is assumed to be the value of 0.2.

Figures 13–15 describe the overall attitude errors, overall
velocity errors, and overall position errors by the CKF,

MCSCKF, and proposed MLCKF for the UAV navigation.
*e CKF’s attitude, velocity, and position estimation error of
UAV are around 1.21′, 0.67m/s, and 20.65m. *e influence
of the non-Gaussian noise is quite serious for the CKF. *e
MCSCKF can deal with the non-Gaussian noise to some
extent. Its attitude, velocity, and position estimation error of
UAV are around 1.02′, 0.59m/s, and 16.97m, respectively.
However, the construction of the estimation error covari-
ance matrix in this method is not based on theoretical
analysis, leading to limited improvement for hindering the
non-Gaussian noise.*e proposedMLCKF also can curb the
non-Gaussian noise to some extent through the covariance
estimation, leading to the attitude, velocity, and position
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Figure 7: Attitude errors of the UAV by the CKF, HRCKF, and
MLCKF for the case of Gaussian noise with inaccurate covariance.
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Figure 8: Velocity errors of the UAV by the CKF, HRCKF, and
MLCKF for the case of Gaussian noise with inaccurate covariance.
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Figure 9: Position errors of the UAV by the CKF, HRCKF, and
MLCKF for the case of Gaussian noise with inaccurate covariance.
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Figure 10: Mean attitude errors of the UAV by the CKF, HRCKF,
and MLCKF in the time interval (500 s, 700 s) for the case of
Gaussian noise with inaccurate covariance.
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Figure 11: Mean velocity errors of the UAV by the CKF, HRCKF,
and MLCKF in the time interval (500 s, 700 s) for the case of
Gaussian noise with inaccurate covariance.

CKF

19.17

HRCKF

16.31

MLCKF

13.22

0

20

15

10

5

25

M
ea

n 
po

sit
io

n 
er

ro
r (

m
)

Figure 12: Mean position errors of the UAV by the CKF, HRCKF,
and MLCKF in the time interval (500 s, 700 s) for the case of
Gaussian noise with inaccurate covariance.
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estimation error of UAV around 0.92′, 0.53m/s, and
15.66m. Figures 16–18 also verify the abovementioned re-
sults by the intuitive comparison of the CKF, MCSCKF, and

MLCKF in terms of mean estimation errors of attitude,
velocity, and position for the UAV.

*e abovementioned simulations and analysis for the
INS/BDS integration show that the proposed MLCKF can
significantly improve the adaptability ability for the filter and
effectively restrain the influence of inaccurate measurement
noise covariance on navigation solution, leading to a higher
navigation accuracy than the CKF, HRCKF, and MCSCKF
for the UAV navigation with INS/BDS integration.

5. Conclusions

*is paper presents a method of the CKF with measurement
noise covariance estimation for the INS/BDS integration.
*e contributions of this paper are as follows: (i) an esti-
mation model for measurement noise covariance is estab-
lished according to the maximum likelihood principle, and
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Figure 14: Velocity errors of the UAV by the CKF, MCSCKF, and
MLCKF for the case of non-Gaussian noise.
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Figure 13: Attitude errors of the UAV by the CKF, MCSCKF, and
MLCKF for the case of non-Gaussian noise.
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Figure 15: Position errors of the UAV by the CKF, MCSCKF, and
MLCKF for the case of non-Gaussian noise.
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Figure 16: Mean attitude errors of the UAV by the CKF, MCSCKF,
and MLCKF for the case of non-Gaussian noise.
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Figure 17: Mean velocity errors of the UAV by the CKF, MCSCKF,
and MLCKF for the case of non-Gaussian noise.
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Figure 18: Mean position errors of the UAV by the CKF,
MCSCKF, and MLCKF for the case of non-Gaussian noise.
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the sequential quadratic programming is applied to calculate
the estimation of measurement noise covariance; (ii) the
estimated measurement noise covariance will be fed back to
the procedure of the CKF to improve its adaptability.
Simulation and comparison analysis demonstrate that the
proposed method can accurately estimate measurement
noise covariance to effectively restrain its influence on
navigation solution, leading to higher navigation accuracy
than the CKF, HRCKF, and MCSCKF for the INS/BDS
integration in presence of inaccurate measurement noise
covariance.
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